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A b s t r a c t .  Particle filtering techniques are a set of powerful and versatile simula- 
tion-based methods to perform optimal state estimation in nonlinear non-Gaussian 
state-space models. If the model includes fixed parameters, a standard technique 
to perform parameter estimation consists of extending the state with the parameter 
to transform the problem into an optimal filtering problem. However, this approach 
requires the use of special particle filtering techniques which suffer from several draw- 
backs. We consider here an alternative approach combining particle filtering and 
gradient algorithms to perform batch and recursive maximum likelihood parameter 
estimation. An original particle method is presented to implement these approaches 
and their efficiency is assessed through simulation. 

Key words and phrases: Optimal filtering, parameter estimation, sequential Monte 
Carlo, state-space models, stochastic approximation. 

1. Introduction 

1.1 State-space models and problem statement 
Let (~t, ~ )  be a measurable  space. Let  {X.}._>o and {Y.}._>o be l~p and Rq-valued 

stochastic processes defined on (~, 9 ~) and 0 E 0 where 0 is an open subset  of •k. The re  
exist probabi l i ty  measures P0 : ~ ---+ [0, 1], # : B p --+ [0, 1] and Borel-measurable  functions 
P0:  lt~P • RP ~ [0, ~ ) ,  c0 :  Rp x It~q -+ [0, co) such tha t  f p o ( x , x ' ) d x '  = f ~ o ( x , y ) d y  = 1, 
7'o (Xo e B) = fB #(dxo) and 

B IXn,Y n) = . / p o ( X n , x ) d x ,  VB C 13 p, n >_ O, (1.1) ~)o(Xn-F1 E 

(1.2) 7Po(Yn+I E B I x n + l , y n )  --- / B g O ( X n + l , y ) d y  , VB E B q, n >_ O, 

where we denote  by Z n _A (Z0, Z 2 , . . . ,  Zn) the p a th  of a process {Zn}n>O from t ime 0 
to t ime n. This  class of models include many  nonlinear and non-Gaussian t ime series 
models (Kitagawa and Gersch (1996)). 

Let  us assume tha t  the t rue value of the pa rame te r  0 is 0* and tha t  only the process 
{Yn}n>0 is observed. We are interested in deriving a ba tch  and a recursive a lgor i thm to 
est imate  0". These  problems are very  complex. Indeed, even if 0* were known, the  opti-  
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mal filtering problem, i.e. estimating the conditional distribution of X~ given y n ,  does 
not admit a closed-form solution and one needs to perform numerical approximations. 

1.2 A brief literature review 
Recently, there has been a surge of interest in particle filtering methods to perform 

optimal filtering in general state-space models; see Doucet et al. (2001) for a booklength 
survey and Iba (2001) for alternative applications of particle methods. Although par- 
ticle filters have proven to be successful in many applications (Doucet et al. (2001)), 
parameter estimation using particle methods still remains a major problem. A standard 
approach followed in the literature consists of setting a prior distribution on the unknown 
parameter 0 and then considering the extended state Zn ~ (Xn, 8). This converts the 
parameter estimation into an optimal filtering problem. One can then apply, at least 
theoretically, standard particle filtering techniques. In this approach, if one were to use 
say the bootstrap filter (Gordon et al. (1993); Kitagawa (1996)), then the parameter 
space is only explored at the initialization of the algorithm. Consequently the algorithm 
is inefficient; after a few iterations the marginal posterior distribution of the parameter 
is approximated by a single delta Dirac function. To limit this problem, several authors 
have proposed to use kernel density estimation methods (Gordon et al. (1993); Liu and 
West (2001)). However, this has the effect of transforming the fixed parameter into a 
slowly time-varying one. A pragmatic approach consists of introducing explicitly an arti- 
ficial dynamic on the parameter of interest; see Higuchi (1997) and Kitagawa (1998). In 
this case, we obtain a so-called self-organizing or self-tuning state-space model (Kitagawa 
(1998)). To avoid the introduction of an artificial dynamic, a clever approach proposed in 
Gilks and Berzuini (2001) consists of adding Markov chain Monte Carlo (MCMC) steps 
so as to add "diversity" among the particles. However, this approach does not really 
solve the fixed-parameter estimation problem. More precisely, the addition of MCMC 
steps does not make the dynamic model ergodic. Thus, there is an accumulation of errors 
over time and the algorithm can diverge as observed by Andrieu et al. (1999). Methods 
based on MCMC steps also require the conditional distribution of the parameter given 
the data {Yn}n>0 and the hidden process {Xn},~>0 to be in the exponential family so 
as to be able to express it through a set of sufficient statistics. If this assumption is not 
satisfied, the computational complexity and memory requirements of these algorithms at 
time n are of order (.9(nN) for N >> 1 particles; this makes these methods useless from 
a practical point of view. 

We propose here two approaches to perform parameter estimation in general state- 
space models. The first method is a batch gradient algorithm to perform Maximum 
Likelihood (ML) parameter estimation where one computes at each iteration the gradi- 
ent of the log-likelihood with respect to the parameters of interest. The second algorithm 
is a natural recursive version of the first one usually referred to as Recursive ML (RML). 
Loosely speaking, RML is a stochastic gradient method for maximizing the average log- 
likelihood. It has been developed originally in automatic control and signal processing 
where it is widely used; see for example Ljung and SSderstrSm (1987). In these ap- 
proaches, it is not necessary to set a prior on the unknown static parameter and the 
conditional distribution of the parameter given the data and the hidden process does 
not have to be in the exponential family. In the context of general state-space mod- 
els, these methods require essentially the ability to compute the optimal filter and the 
derivative of this filter with respect to the parameter of interest. We present here an 
original particle method to approximate the derivative of the filter and we apply it to 
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perform batch and recursive ML. 

1.3 Organization of the paper 
The rest of the paper is organized as follows: In Section 2, we detail the batch 

and recursive maximum likelihood approaches. Section 3 describes a particle method to 
implement the algorithms given in the previous section. In Section 4, we apply these 
algorithms to several parameter estimation problems. 

2. Batch and recursive maximum likelihood estimation 

For ease of presentation, we will consider the case where O E R in the two follow- 
ing sections; the extension to a multidimensional parameter is straightforward and is 
described briefly in Subsection 3.2. 

The likelihood of the observations y n  satisfies 

n 

io(yn) ~-- / ' " / l ' z ( d x ~  H CO(Xk'Yk)~o(Xk E dXk I yk-1), 
k:l 

where 7:'o(Xk C dxk [ yk-X) is the posterior distribution of the state Xk given the 
observations yk-1  and 0; the true parameter value being 0*. The log-likelihood function 
satisfies 

n ( /  ) 
Io(Y ~) = log(Lo(Y~)) = ~--~log eo(xk,Yk)Po(Xk e dxk [ yk-1)  . 

k=l 

We propose here two gradient type algorithms to perform ML estimation. The first 
method is a batch algorithm designed to maximize lo(Y~). The second method is a 
recursive version of the first method maximizing limn--.~ ~lo(yn). 

2.1 Batch maximum likelihood 
Let us assume the data y n  are available. We want to maximize the log-likelihood 

lo(Y n) using a gradient algorithm. At iteration m +  1, the parameter estimate is updated 
through 

(2.1) Om+a = Om + "/m(Ol)om (vn), 

where 0 denotes the derivative evaluated at the point 0m. The stepsize sequence 
{%n}m_>0 is a positive non-increasing sequence typically chosen as %n -- "Y0 " m -a  with 
" y 0 > 0 a n d 0 . 5 < ~ _ < l .  

The derivative of the log-likelihood satisfies 

(2.2) (Ol)o(Y ~) 

= ~ alog(f eo(xk,Yk)7:'o(Xk edxk l Yk--~)) 
k=l 
~-~ f (Oe)O(xk,Yk)'Po(Xk e dxk I yk-1) + f eo(Xk,Yk)(OT~)o(Xk G dxk I yk- ) 
Z_., 
k=l f co(xk,Yk)7)o(Xk C dxk [ yk-1) 

The expression (2.2) involves both the one-step ahead prediction distribution 
Po(Xk C dxk [ yk-1) and its derivative (07:))o(Xk E dxk I yk-1).  We are interested in 
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computing recursively these quantities. Further on, we use the notation: rrg[l(dxk ) -~ 
7)o(X~ C_ dxk I yt) and voeklt(dxk) = (OP)o(Xk e dxk I yI). It follows that the derivative 
of the log-likelihood (2.2) can be rewritten as 

~ ,  f (&)o(xk, Yk)'~k-1 (dxk) + f eo(xk, Y~)wg~_ 1 (dxk) 
(2.a) (Ot)o(Y '~) 

/--"k=l f ~0 (xk, Yk)rrkelk_ 1 (dxk ) 

For any measure #(dx), transition kernel g(x, dx') (not necessarily a probability measure 
or a transition probability kernel) and function f (x) ,  we also use the following standard 
notation 

f #(dx)g(x, dx'), (#, f) : f #(dx)f(x), #.f(dx) : #(dx)f(x). #g(dx') 

o satisfy The probability distribution 7r~ 1 and the signed measure Walk_ 1 

/0 7rOik_l(dXk) = 7rk_llk_l(dXk_l)Po(Xk_l,Xk)dXk, 

 olk(dx  ) = 
f  ~ l(dx ) o(xk, 

o o 
7rk]k_ 1 : 7rk_llk_lPO , i.e. 

0 
0 7rk[ k -1  "EO 

7"(k]k --  O , i.e. 
(Trklk_ 1 , eO) 

and, using a similar notation, 

o o o (Op)o ,  Wklk_ 1 ---- W k _ l l k _ l P  0 + 7rk_l lk_ 1 
0 

wojk = wkJk-,' o + 
(7~Oklk_l,CO) -- 7rOlk 

(wOklk-1 'gO) + (7~lk I ' (OE)  O) 

( glk-1, 

As Weklt(dxk) is the derivative of a probability measure, one can check that under regu- 

larity assumptions f wgrt(dxk) = O. 

2.2 Recursive maximum likelihood 
Recursive ML is a gradient type approach to maximize the average log-likelihood. 

This quantity has indeed "good" properties. Under suitable regularity conditions (Tadid 
and Doucet (2002)), one can show that 

1 
- l o ( Y  n) ---, t(O) 
n 

with 

l(O) A / ~  log ( /  eo(x, y)v(dx) ) Ao,o.(dy, du), 
q X ~O(~p) 

where ~(]~P) is the space of probability distributions on R p and Ao,o* (dy, dr) is the joint 
invariant distribution of the couple (Yk, Po(Xk C dxk I y k - i ) ) .  It is dependent on both 0 
and the true parameter 0% The following Kullback-Leibler information measure satisfies 

(2.4) K(0,0") A I(0") - l(0) >_ 0 

and thus 
0* C argminK(0,0*) .  

0E| 
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To estimate 0", RML aims at minimizing K(O, 0") through a gradient method. The 
gradient of K(O, 0") does not admit an analytical expression but the gradient of lo(Y n) 
satisfies, under regularity assumptions (Tadi6 and Doucet (2002)), 

L (Ol)o(V")  --, -aU(O, O*). 
n 

RML is a stochastic approximation algorithm based on the Robbins-Monro proce- 
dure to find the zeros of -OK(O, 0") (Benveniste et al. (1990); Ljung and S5derstr5m 
(19s7)): 

(2.5) 

(2.6) 

(/ ) On+l =- On + 7 n O l o g  r  

( f ( O g ) O n ( X n ' Y n ) 7 " f O [ n  - l ( d x n )  + f ~ o , ~ ( x n , Y n ) w o ~ _ l ( d X n )  

= on + \ 777Tx7, )-##~ / 

0 ~ where we denote 7rl~_ 1 (dx,~) the probability measure satisfying 

(2.7) 

(2.8) 

0 n 0 n 

7fn{n_ 1 ~ 7rn_l ln_lPO~ ~ 
r, 

0n+l 71"0hi n-- 1 "eO,.+ 1 
7rnl n = 0 n 

<7"(n]n_ 1 , eOn+ l ) 

0n+l 
i.e. 7rnl n (dxn) corresponds to the filter associated to the sequences of parameters values 

0 n+l, the parameter being updated between the prediction step (see (2.7)) and the 
updating step (see (2.S)) using (2.5)-(2.6). The derivative of this measure w~.~.(dx.) is 
a signed measure satisfying 

(2.9) ~ " ~ W<n-1 = W~-lln-lPO. + %-lln-I(OP)o., 
0,~ on 

o-+1 Wnl~-l-eO.+l + %In_l.(&)O.+l 
(2.10) w.i . = (Trn0~n_ 1, ~0n+l ) 

o~ <w-I~-,,~~ + &.~._1,(o~)o.+,> 
- -  7fnl n 7fO" 

< nln--1, C0.+I > 

The stepsize 7n is a positive non-increasing sequence such that ~ % = c~ and ~ 72 < 
cx~; typically one selects % = 7o.n -~ where 7o > 0 and 0.5 < a < 1 (Benveniste et al. 
(1990)). 

2.3 Convergence and implementation issues 
In the context of finite state-space hidden Markov models, it is possible to compute 

the optimal filter and its derivative analytically. In this case, under weak assumptions, it 
can be established that (2.1) converges towards {0:  (O1)o(Y n) = 0} and (2.6) converges 
towards {0 : OK(O,O*) = 0} (LeGland and Mevel (1997)). Note that without any 
additional assumption these gradient methods are not ensured to converge to the true 
parameter value but  only to the set of zeros of the gradient of the cost functions Io(Y n) 
and K(O, 0") given in (2.4). 
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Using (Tadi6 and Doucet (2002)), similar results could also be established for general 
state-space models. However, in this case, the algorithms defined by (2.1) and (2.6) 
cannot be implemented as the filter and its derivative cannot be computed exactly and 
need to be approximated numerically. When these quantities are approximated, results 
in (Tadi6 (2000)) suggest that (2.1) and (2.6) converge to a neighborhood of the zeros 
of the derivative of lo(Y n) and K(0, 0"). 

Many efficient particle methods have been proposed to approximate the filter (see 
Doucet et al. (2001)) so we focus in this paper on approximating the derivative of the 
filter. We present in the next section an original particle method to address this problem. 
An alternative method has been proposed independently in (C~rou et al. (2001)) for a 
specific continuous-time model. 

3. Parameter estimation using particle methods 

In this section, we present a method to compute a particle approximation of w~ I in 
Subsection 3.1. This method is based on an importance sampling resa.mpling strate~r n. A 
few extensions of the algorithm are presented in Subsection 3.2. Alternative approaches 
to estimate w~ are then discussed in Subsection 3.3. 

3.1 Importance sampling 
For simplicity, we only describe here a particle method using the importance density 

Po(', ") to approximate 7r~ (Gordon et al. (1993); Kitagawa (1996)). More elaborate 
algorithms in (Doucet et al. (2000, 2001); Liu and Chen (1998); Pitt  and Shephard 
(1999)) could also be used; see Subsection 3.2. 

For two measures p and v on a common measurable space, we write tt << v if 
and only if v(A) = 0 ~ p(A) = 0 for all measurable sets A. Let us assume that 

0 ~-0 0 wn-l l~-]  << n-11~-1, then it can be shown using (2.9) and (2.10) t h a t  WOn[n_l <(( 7rn[n_ 1 
and W~ n ~< 7r~ ,. This suggests that  one can approximate W~ by simply computing 

the importance ratio (i.e. Radon-Nykodym derivative) of w~ with ~rn~ Let us assume 

f a that at time n - 1, we have the following particle approximation o 7rn_l [n_  1 

N 
1 

(3.1)  "~en-lln-l (dXn-l ) ---- -N E 5X,~-l,, (dxn-1) 
i=1 

where ~x._l,, (dX._l) denotes the delta-Dirac measure at -~.-1,i and 

N 

WOn_l[n_l(dXn_l)-~- EZn_ l [n_ l , i~ ._ , , i ( dxn -1  ). 
i--1 

Note that in the above expression the coefficients ~n-l[n--l,i c a n  be negative or posi- 
tive and do not sum to 1 as  WOn_l]n_l is not a probability measure. Using a particle 
interpretation of (2.9)-(2.10) and rewriting (2.9) as 

0 0 7r 0 (Op)o 
Wnln_ 1 -~ Wn_lln_lPO + n_lln_lPO PO ' 

one can derive a particle method to approximate W~ n. It proceeds as follows at time n. 
We use the notation IrA(Z) = 1 if z E A and 0 otherwise. 
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Gradient estimation using particle methods 
Sampling step 
�9 For i =  1 , . . . , N ,  sample Xn,i ~Po(X,- , , i , ' ) .  

1 E N 1  5fc..,~(dxn) and ~~ n n 1(dxn) = z N = I  ruin-1 i6fc,~,(dxn), �9 ~Onln_ l(axn) ~-- -~ ] - 

where 
1 (Op)o(Xn-l,i,Xn,i) 

fn]n--l,i : fn--lln--l,i q- 
N po(Xn- l , i ,  Xn,i) 

Updating step 
�9 ~~ ) = E N = I  ~nlmihX.,,(dx~), where anln, i -  o( c0(3fn,i, Yn), Ei=xN C~nln,i- = 1. 

E , = I  ~nln,~hX.,, (dxn), where 

(c9c)o ()~n,i, Yn) + N3nln-l,iCo(X.mi, ]In) 
E ; : l  ea(X,~,j,Yn) 

N ~r Yn) + N f n l ~ - l , j ~ ( - ~ , j ,  Yn)) _ 
-- ~-~N_l ~O( 2n , j ,  Yn ) Olnln'i" 

fn[n,i ---- 

Resampling step 
�9 Multiply/Discard particles )(n,i with respect to the high/low weights ~nln,i to 

obtain N particles -~n,~, i.e. )(n,~ = )(~,~,(~) where ~n (i) is determined by the resampling 
mechanism. 

�9 ~gnln (dxn) ---- N1 Ei=IN 52~, ' (dxn) and ~ln(dxn) = Ei=IN fin n,~52~, (dxn) where 

with 

~R+ Uanln,~n(i)) T 
5nln,~(0 

R- I, PnlnAan(i)), 

N 

i=1 
N 

i=1 
N 

~nln A E~nln,i,X_(~nln,i) ' and 
i=1 

N 

i=1 

[] 

The computational complexity and memory requirements for this algorithm axe in 
C0(N) and independent of n. 

Batch ML algorithm. At iteration m of the gradient algorithm, the particle method 
described above is runned from time 0 to T for the current parameter value 0m. This 



416 ARNAUD DOUCET AND VLADISLAV B. TADIC 

~o.~ ,~Om allows to obtain ~k)k-1 and k[k-l" These quantities are used to obtain a Monte Carlo 
estimate of the gradient (2.3) using 

T EN=I ((0~)o~, (Xk,i, Yk) + N3t:lk-l,ieom (Xk,i, Yk)) 

k=l E~=I GO., (-~1r Yk) 

This estimate is used to obtain 0m+l using (2.1). 
Recursive ML algorithm. At time n, we have obtained the sequence of parameters 

0 ~ and ~n~ 11n_1 and ~ 1 1 ~ - 1 "  The sampling step of the particle method described 

above is runned with the parameter 0~. After this step, one obtains ~~ and W l~_ 1 . ~ ~  
This allows to obtain 0n+1 using 

Onq-i On-[-Tn ~k Ei=leon(Xn,i ,  yn) 

which is an approximation of (2.6). Then one runs the updating and resampling steps 

of the algorithm with the new parameter value to obtain 7rn[ n and Wn[n . 

Remark 1. Resampling step. The prediction and updating steps follow directly 
from a particle approximation of (2.9)-(2.10). The resampling step requires extra cau- 
tion. The coefficients ~1~,~(i)  are divided by ~ l n , ~ ( i )  so as to correct for the bias 
introduced by resampling particles according to ~ln, i-  It has also been designed so 
as to ensure that the masses of the positive and negative part of the signed measure 
~~ ~ (dxn) are preserved. In the algorithm presented above, we resample the particles I 
according to ~nl~,i- However, one can expect a high variance for this scheme if the zones 

of important masses for 7r ~ ~ln " It is possible to consider n[n are distinct from that of w ~ 

"hybrid" resampling schemes taking into account both ~nln,i a n d  ~nln,i SO as to perform 
resampling. Optimizing this resampling scheme is the subject of further research. 

Remark 2. Reprojection. Typically the parameter 0 = (01, . . . ,0k)  belongs to O 
which is a compact convex subset of ]~k. The parameter updating step, see equation 
(2.5), does not ensure that 0n+1 E 0 even if 0n E O. A standard approach in stochastic 
approximation to prevent divergence consists of reprojecting 0n+1 inside O whenever the 
value obtained through (2.5), say 0~+1, does not belong to O (Ljung and Shderstrhm 

k (1987)). Typically one has O = 1-L=l[Oi,mi,,Oi,ma• and the reprojection procedure 

simply consists of setting Oi,n+l : 0i,min if Oi,n+l < 0/,rain and 0i,n+l = Oi,max if ~,n+l > 
O/,max. 

3.2 Extensions 
We discuss here several extensions of this algorithm. 
Multidimensional parameter. If 0 = (01, . . . ,0k) where k > 1, one needs to 

propagate k derivatives VTC~nrn_l(dXn) = (Oo, ~Ontn_l (dxn), . . . , OOk ~n~ln_l (dXn) ) T = 
Wnln_lO (dxn) then the updating step (2.6) of say the RML algorithm becomes 

-1  

,o+, =oo+.o(i.o.(xo,.o).:7o_l(.x.) ) 
(/ o .  / o -  ) • (VC)On (Xn, Yn)Trn)n_ 1 (dxn) + co. (Xn, Yn)wnin_ 1 (dxn) 
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where (W)o(xn, Vn) = (&l~e(xn, Yn),---, O0~o(xn, Vn)) T. 
Alternative importance densities. Performance of particle filters can be improved 

significantly if one samples the particles according to an importance density 
qe(xn-1, Yn, ") (i.e. Xn,i ~" qo(Xn-l,i, Yn, ")) different from the prior density p~(Xn-1, ") 
(with pe(x~-l, ") << qe(Xn-1, Yn, ")). In this case, to perform parameter estimation, one 
uses 

log(f  ct~(xn, Yn)TrOnln-l(dXn)) 
( ~  gO(Xn, Yn)po(Xn-I, Xn) 0 ) = xn)dxnTrn_lin_ 1 log ~O(X~- l :~  qo(Xn-l,Yn, (dxn-1) 

where Po (x~_ 1, Y~, x~) = ee (z~ ,Y.)p0 (x._ ~ ,~.) corresponds to the incremental unnormal- qe (z._ 1 ,Y~,x. ) 
ized importance weight (Doucet et al. (2000); Liu and Chen (1998)). It follows that  in 
the parameter updating step of the algorithm, see (2.5), one now uses 

Olog(/gO(xn, Yn)rcOn,n-l(dXn)) 

-=Olog(~po(Xn-l,Yn,xn)qo(xn-l,gn,xn)dxnTr~_lln_l(dXn-l) ) 

(// ,) po(Xn-l,Yn, xn)qO(Xn-1, 0 = Yn, xn)dxnrrn-lln-1 (dxn-1 

x (ff(Op)o(x,~_l,Y,~,x,Oqo(x,~_l,Yn, x,~)dx,~r~_lj,,_l(dxn_, ) 

+ / f  po(x,~-i, gn,x,~)O(qo(xn-l, g,~,x,Odxnrr:-iln_i (dx,- i ))  ) 

where 

O(qe(Xn-l,Yn,xn)dxnTr~ = (Oq)o(Xn-l,Yn, 0 zn)dx,~%_lr,~_x (&n-O 
+ qO(Xn-1, Vn, xn)dxnw~ (dxn-1). 

The particle method to approximate these equations follows straightforwardly. 
Trucking a time-varying parameter. If the parameter t? is actually time-varying 

but one does not have a dynamic model for its evolution, a standard approach in control 
and signal processing to "track" this parameter consists of using the recursive algorithm 
presented before using a fixed-step size "y instead of a decreasing sequence %.  Bounds on 
the tracking errors can be established (Benveniste et al. (1990)). Selecting the step size 
is a difficult problem. If 7 is too large, the statistical fluctuations around the parameter 
are too large. If 7 is too small, the algorithm loses its tracking ability. In the context 
of adaptive filtering, adaptive step size schemes have been developed where the step size 
adapts itself automatically given the observations. It would be of interest to develop 
similar schemes in the context of general state-space models. 

3.3 Alternative approaches 
3.3.1 Gradient methods 

We have investigated several alternative approaches to estimate w~l n using particle 

methods. The most natural one consists of using two distinct set of particles for r~f n 
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and o wnl n. In this approach, one reinterprets (2.9) in a probabilistic way by using the 
fact that (Op)o can be rewritten as 

(3.2) (ap)o = cp,o(p'o - p'o') 

where Cp, 0 E ]I~ + , p~ and p~ are two probability transition kernels. There is actually an 
infinity of such decompositions; the most popular being the Hahn-Jordan decomposition 
where P~o oc 0 V (Op)o and p~' or - ( 0  A (Op)o). Another approach consists of rewriting 

0 tO .tt8 
W,~ln = Cnl,~ (Wnln -- "Wr, l,O 

where Cnl n E R +, W'n~ n and w'~,~ are two probability measures. Using the fact that  

where ce,o E ]~+, ~ and ~ are two probability densities and the expressions (2.9)-(2.10)- 
(3.2), it is trivial to obtain reeursions for C~ln, w ~  and w"~n. One can then propagate 

tO  ~ t t 8  Wnl n and "Wnl n using particle methods. Though these methods sound attractive, they 
are more computationally intensive than the importance sampling approach. Moreover, 
the algorithms we proposed to approximate these measures appear numerically unstable. 
This approach deserves however further study. 
3.3.2 Non-gradient methods 

As discussed briefly in Section 1, several non-gradient approaches for parameter 
estimation using particle methods have been proposed in the literature. A simple ap- 
proach consists of transforming fixed parameters into slowly time-varying ones (Higuchi 
(1997); Kitagawa (1998)) or keeping the original model and combining the particle filter 
with MCMC steps (Gilks and Berzuini (2001)). The first method modifies the original 
problem whereas the second one suffers from an accumulation of errors over time and 
eventually diverges if the dataset is large. Another approach consists of discretizing 
the parameter space and evaluating at each point the likelihood (Higuchi (2001)). This 
method is computationally expensive so one can only perform a coarse discretization of 
the parameter space. On the other hand, the main problem with gradient algorithms is 
their sensitivity to initial conditions. A pragmatic approach might consist of using one 
of the methods mentioned above to initialize a gradient method. 

4. A p p l i c a t i o n s  

In all examples, we apply a simple standard particle method using the prior density 
as importance density. As discussed in Subsection 3.2, more elaborate algorithms could 
be developed using "tailored" importance densities. When Monte Carlo simulations are 
presented, new data have been simulated for each realization. We adopted 7n = "7o "n-~ 
for the stepsize sequence. 

4.1 A nonlinear time series 
Let us consider the following model 

X n +  1 • COS(271"~Xn) ~- ff v Vn+ l,  

Yn = X n  + a ~ W n  

xo  ~ g ( o ,  2), 



PARAMETER ESTIMATION USING PARTICLE METHODS 419 

where Vn i.~d. Af(0, 1) and W~ i.~d. A/'(0, 1) are two mutually independent sequences of 
independent identically distributed (i.i.d.) Gaussian random variables. We axe interested 
in estimating the parameter 0 -~ (r av, a~) where O -- (0, 1) x (0, M) • (0, M) where 
M = 100. Methods combining MCMC steps with particle filters cannot be used in this 
case as the conditional distribution of r given the data  and the hidden process is not in 
the exponential family. 

The true parameter values are 0* = (0.5, 1.0, 1.0). The RML algorithm was im- 
plemented using N -- 1000 and N = 10000 particles and the initial parameter 00 was 
randomly selected. In the updating step of the algorithm, the parameter was reprojected 
inside O whenever necessary. In our 50 simulations, the algorithm appeared trapped in 
a local maximum located around (0.71, 0.99, 1.10) in 12 simulations. For the remaining 
38 simulations, the algorithm converges towards a value located around 0*. In this case, 
as N increases, [[0 - 0*[[ decreases; see Fig. 1 for an example. 

1 , 5  

1 

O . 5  

O 
0 .2  0 .4  0 .6  0 .8  1 1 .2  1 .4  1 .6  1 .8  42 

x l O  

Fig. 1. Sequence of parameter estimates On = (av,n,aw,n,r for N = 10000. From top to 
bottom: av,n, aw,n and r 

4.2 Another nonlinear time series 
We consider the following nonlinear model (Kitagawa (1996, 1998)) 

OaXn 
Xn+l : 03Xn q- 1 + X------~ + 05 cos(1.2(n + 1)) + 01Vn+l, Z 0 "~ JV'(O, 2),  

Yn = 06X~ + 02 Wn 

where Vn i.~d..hf(0, 1) and Wn i.~. A/'(0, 1) are two mutually independent sequences of 
i.i.d. Gaussian random variables. We are interested in estimating 0 A (01, . . . ,  06). 

The true parameter values are 0* = (1, v /~ ,  0.5, 25, 8,0.05). This problem is ex- 
tremely complex. The likelihood function is highly multimodal. It is important in this 
example to initialize the algorithm properly. The batch ML algorithm was implemented 
using N = 1000 particles. With 00 = (0.5, 2, 1, 15, 4, 0.1), the algorithm converges to- 
wards to the neighborhood of the true parameter. We present in Fig. 2 the sequence 
of parameter estimates (04, 05). Clearly, there is a significant variance for the gradient 
estimate associated to 04. 
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Fig. 2. Sequence of parameter estimates for batch ML 04,m (top) and 05,m (bottom) for N -- 1000. 

4.3 Stochastic volatility model 
Let us consider the following model (Pitt  and Shephard (1999)) 

Xn+i = CXn + aVn+l, X0 ~ N 0, 1 - ) 2  

Yn = ~exp(X~/2)W~ 

where Vn i.~. N'(0, 1) and Wn i.~. iV'(0, 1) are two mutually independent sequences, 
independent of the initial state X0. We are interested in estimating the parameter 
0 ~ (r a, ~) where O = ( -1 ,  1) x (0, M) x (0, M)  where M = 100. 

The true parameter values are 0* = (0.8, 0.5, 1.0). We first implemented the RML 
algorithm using N = 10000 particles. As in the previous example, the parameter was 
reprojected inside O whenever necessary. In our 50 simulations, our  algorithm did not 
appear sensitive to the initialization 00. It converged to a value 0 in the neighborhood 
of 0"; the larger N the smaller I1 - 0"11; see Fig. 3 for an example. 

We then apply our batch ML method to the pound/dollar daily exchange rates; see 
(Durbin and Koopman (2000)) and (Harvey et al. (1994)). This time series consists of 
945 data. We apply the batch ML algorithm for M = 1000 iterations with N = 10000 
particles; see Fig. 4. Our results for the ML estimate are consistent with recent results 
obtained in (Durbin and goopman  (2000)). We obtain ~ML = (0.968,0.188,0.638) 
whereas the estimate in (Durbin and Koopman (2000)) is ~ML = (0.973, 0.173, 0.634). 

5. Discussion 

In this paper, we have proposed two original gradient type algorithms to perform 
batch and recursive parameter estimation in general state-space models. These gradient 
algorithms require being able to estimate the derivatives of the filtering distribution 
with respect to the unknown parameters. We have proposed a simple method based on 
importance sampling resampling to estimate this quantity and have demonstrated the 
utility of our algorithms for nonlinear state-space models. 

In the context of recursive parameter estimation, our algorithm requires a sub- 
stantial amount of data to converge. While this is not a problem in most engineering 
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Fig. 3. Sequence of parameter es t imates  for RML 0n = (f~n, Cn, an) for N = 10000. From top 
to bottom: ~n,  Cn and O'n. 
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Fig. 4. Sequence of  parameter es t imates  for batch ML 0m = (f~m,r for N = 10000. 
From top to bottom: ]~m~ (~rn and qm- 

applications, this could be a severe limitation in other contexts. To overcome this prob- 
lem, it is necessary to develop alternative gradient estimation and variance reduction 
methods. Finally, from a theoretical viewpoint, non standard stochastic approximation 
results presented by Tadi5 (2000) need to be used to prove convergence of the algorithms. 
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