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Abstract .  We present new tools from probability theory that can be applied to 
the analysis of learning algorithms. These tools allow to derive new bounds on 
the generalization performance of learning algorithms and to propose alternative 
measures of the Complexity of the learning task, which in turn can be used to derive 
new learning algorithms. 
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1. Introduction 

Recently, there has been a large increase of the interest for theoretical issues in the 
Machine Learning community. This is mainly due to the fact that  Statistical Learning 
Theory has demonstrated its usefulness by providing the ground for developping success- 
ful and well-founded learning algorithms such as Support Vector Machines (SVM). This 
has shown that  elegant and powerful mathematical objects such as reproducing kernels 
can be effectively used in practice. This renewed interest for theory naturally boosted 
the development of performance bounds. This, in turn, has raised concerns about the 
relevance of these bounds, in particular because of their observed looseness on real-world 
problems. 

We would like to show here that  these concerns do not impair the relevance of 
the initial motivation of statistical learning theory, neither should they restrain the 
development of new approaches in this theory. We hope to convince the reader that  this 
theory, if used appropriately, can yield new advances in the understanding of learning 
algorithms as well as in the development of new techniques with practical applications. 

The problem we shall focus on is the following. Given a set of data  consisting of 
labelled objects, the goal is to find a function that  assigns labels to objects such that,  
if new objects are given, this function will label them correctly. Of course, if we do not 
assume any relationship between the data at hand and future unseen data, there is no 
way to solve this problem. The classical assumption is that  all the data (both observed 
and unobserved) is generated by the same process, which is formalized by saying that  
the data is sampled independently from a fixed probability distribution. 

Now the issue is that  this probability distribution is unkown and that  the only 
knowledge we have about it comes from a sample of observations. Typically, one chooses 
a class of possible functions (hypotheses) that  correspond to the possible ways in which 
the labels can be related to the objects, and this choice is made a priori (before seeing 
the data). Then one chooses a function in that  class which agrees as much as possible 
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with the given data. 
The questions that  a theory of learning should address are thus how to choose an 

appropriate class of functions and how to choose a function in that  class. Since we assume 
that  the data is sampled independently from a certain distribution, it is possible to relate 
the observed behavior of a function on the data to its expected behavior on future data, 
by means of probability theory. More precisely, for each given function in the class 
of interest, one can obtain confidence intervals for the expected misclassification error 
(expected number of labelling mistakes of this function when computed on objects from 
the distribution) in terms of the observed misclassification error (also called empirical 
error). 

However, this is not enough to guarantee that, in a given class, a function which 
has a small empirical error will have a small expected error. Indeed, if the class if large 
(think for example of the class of all possible functions defined on the objects at hand), 
then it is likely that,  on a given dataset, many functions will perfectly predict the labels 
of the objects (i.e. classify the objects) but these functions may have very different values 
on the other objects and thus may have diverse expected errors. 

Considering our sample as a random variable, we see that  the empirical error of each 
function in our class is a random variable, which means we have a collection of random 
variables, i.e. a stochastic process which may not be independent. In this context, if 
one wants to have a bound on the expected error of the learning algorithm, since the 
particular function that  the algorithm will pick after seeing the data is not known in 
advance, one has to bound the error of all the functions in the class. In other words, 
one has to bound uniformly the deviations of the stochastic process, which in this case 
is called an empirical process since each element of this process is distributed as a sum 
of independent and identically distributed random variables. 

According to the above view, the question of bounding the error of a learning al- 
gorithm boils down to bounding the maximum of an empirical process, that  is of a 
collection of random variables. It is clear that  the larger is this collection, the larger will 
the fluctuations of the maximum be. However, the notion of size here is not clear yet. 
Indeed, what matters is not necessarily the number of functions in the class but more 
how the errors of the functions are correlated. As an example, if all the errors are highly 
correlated, it is likely that  their maximum will be smaller (on average) than if they are 
independent. 

It should thus be understood that  the notion of size of a collection of random vari- 
ables (indexed by a class of functions) is crucial in statistical learning theory. Several such 
notions have been proposed in the past. For example, the notion of Vapnik-Chervonenkis 
(VC) dimension which applies to classes of boolean functions, measures how many points 
a class can shatter, i.e. can separate in all possible ways. Other quantities like covering 
numbers, which measure the number of balls of a given radius are need to cover the 
space of functions, have been introduced to capture, on a finer scale, the "size" of the 
function class. However, since we are interested in the behaviour of random variables 
indexed by the class and not the class itself, it is important that the notion of size we 
use takes this fact into account. In order to do so, it is possible to use specific metrics 
on the function space that  are related to the covariance structure of the errors. For 
example, the empirical ~2 metric (defined below) is directly related to the covariance 
of two functions. In this paper we will make use of a specific notion of size, called the 
Rademacher average (Bartlett et al. (2002a)), which is directly related to the behaviour 
of the maximum of the empirical process, thus capturing precisely the quantity we are 
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interested in, without the need for introducing metrics on the function class. 
Even with a good measure of the size of a functions class, the obtained bounds might 

be loose. Indeed, we said before that  we want to bound the maximum of the empirical 
process, which means that  we want to bound the worst deviation of the empirical error 
from the expected error for functions in our class. It is clear that  a particular learning 
algorithm may very well pick a function whose corresponding error deviation is much 
smaller than the maximum over the class. More precisely, most learning algorithms will 
be inclined towards choosing functions which have a small empirical error and thus are 
likely to have a small expected error as well. For such functions, the error deviation 
may also be small since the error being a non-negative (bounded) quantity, its variance 
is related to its expectation, so that  functions with small expected error will also have a 
small error deviation. 

From this reasoning, we deduce that  what really matters is not the size of the entire 
class of functions but rather the size of the subclass of functions with small error. In 
other words, we now want to bound the maximum of an empirical process which is 
indexed by a subclass of the initial class. It turns out that  the notion of Rademacher 
average can be naturally modified to take this into account, yielding the so-called local 
Rademacher average (Koltchinskii and Panchenko (2000)). 

Our claim is that  this notion of size is capturing, in a natural and sharp way the 
complexity of the learning problem, in the sense that  it really measures the magnitude 
of the error deviation of functions with a small errors, which are the ones that  are likely 
to be picked by the learning algorithm. We say that  we consider functions with "small" 
expected error, but we have to make this more precise. It turns out that  one can actually 
use a circular definition: the expected error will be said to be small if it is of the order 
of the maximum error deviation in the class of functions with small error. This may 
seem meaningless but we will see how to formulate this mathematically as a fixed point 
equation. The solution of this equation which we call the complexity radius will be 
precisely, both the maximum expected error of the functions which we call "small", and 
the maximum error deviation of those functions. 

What  are the implications of all this? The simple answer is that  we obtain new and 
sharper bounds. However, we would like to emphasize that  the sharpness of the bounds 
should not be the main drive. Indeed, if one looks for example at bounds for maximum 
margin classifiers, the important  aspect of such bounds is not so much that  the margin 
or the square root of the margin or the squared of the margin is the correct term. It 
is rather the fact that  the margin enters the bound at all. In other words, one should 
not be concerned about the quantitative value of the bound or even about its functional 
form but rather about the terms that  appear in the bound. In that  respect, a useful 
bound is one which allows to understand which quantities are involved in the learning 
process. 

As a result, performance bounds should be used for what they are good for. They 
should not be used to actually predict the value of the expected error. Indeed, they 
usually contain prohibitive constants or extra terms that  are mostly mathematical ar- 
tifacts. They should not be used directly as a criterion to optimize since their precise 
functional form (e.g. whether we have the square or the square root of the margin) may 
also be a mathematical  artifact. However, they should be used to modify the design of 
the learning algorithms or to build new algorithms. 

In this paper we introduce new tools from probability theory known as concentration 
inequalities that  allow to obtain error bounds in terms of local Radema~her averages. 
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It should be understood that  the use of these new tools not only allows to obtain new 
proofs of earlier results (see Section 3) or refined error bounds (as in Section 4), but 
more importantly, provides new insights on the performance of learning algorithms. 

The outline of the paper is as follows. In Section 1, we will introduce the mathemat- 
ical framework and the notation used throughout the paper and describe in more details 
the ideas behind the proofs of performance bounds. Section 2 will present applications 
of concentration inequalities to quantities that are relevant in statistical learning theory 
and explain their relevance and implications. Then, in Section 3 we will discuss previous 
results and in particular present a simple application of the concentration inequalities we 
introduced. In Section 4 we will state and discuss our main result and comment about 
its consequences. 

2. Preliminaries 

2.1 Notation and definitions 
As usual in the framework of statistical learning theory, we consider a space X 

of possible inputs (instance space) and a space y of possible outputs (label set). The 
product space X • Y is assumed to be measurable and is endowed with an unknown 
probability measure denoted P. 

Input-output pairs (X, Y) are sampled according to P. A sample of size n is 
created by sampling n independent and identically distributed (i.i.d.) pairs denoted 
(Xl, t/1),- �9 �9 (X, ,  yn). 

We will denote by ]P [A] the probability of the random event A, where the probability 
is taken over all the random variables occuring in the definition of A. Similarly ]E [B] will 
denote the expectation taken with respect to all the random variables occuring in the 
quantity B. When considering conditional expectations, we will use an index to specify 
over which random variables the integration runs. For example if X and a are two 
random variables, IE~ If(X, a)] will denote the following function of X, IF, If(X, a) I X] 
(where a is integrated out). 

In order to measure the size of a class of functions we will use the notion of cov- 
ering numbers. Given a sample (X1,Y1),..., (Xn,Yn), we will denote by N(Jr, e) the 
e-covering number of 9 v, i.e. the minimal number of balls of radius e with centers in 9 r 
needed to cover )t- in the empirical pseudo-metric given by 

d(f, f ') :-- (f(X~, Y~) - f'(Xi, y/))2 

Notice that  the sample is drawn according to the product distribution P | P |  | 
P = P| We introduce the empirical measure Pn of the sample which is the discrete 
random measure that  puts mass 1/n at each observation, and can be written as the 

5 linear combination P~ = n -1 ~--]~=1 x~,Y, of the dirac measures at the observations. 
If Q is a measure and f is a Q-measurable function, it is common to use the notation 

Qf  = f fdQ (see e.g. van der Vaart and Wellner (1996)). We will thus denote P f  = 

lE [f(X, r ) ] ,  and 
1 

n 

Phi = f ( x .  
n 

i=1 

Notice that  Pnf is a random variable that  depends on the sample (Xr Y~)i=l ..... n- 
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Similarly, we introduce the r andom variable 

R,f=l  f( y,) - -  Cq X i  , , 

n 
i=1 

where a l , . . . ,  an are n Rademacher  r andom variables, i.e. n i.i.d, r an d o m  variables such 
tha t  ]P [ai = 1] = ]D [ai = -1 ]  = 1/2. Notice tha t  Rnf  is a r an d o m  variable tha t  depends 
bo th  on the sample and on the ai. The  no ta t ion  ~ will denote  the  r an d o m  vector  whose 
coordinates  are a l ,  �9 �9 �9 an. 

This  will allow us to define the so-called Rademaeher average of a class ~" of functions 
as  

LSe  J 

where the  expecta t ion  is taken with respect  to bo th  the sample ( (Xi ,Yi))  and the 
Rademacher  variables. 

Moreover we will denote  by IE~ [ ] the expecta t ion  with respect  to the Rademacher  
variables only (conditional to the  sample).  

We will also use the so-called local Rademacher average defined as 

sup Rnf l , IE 
fEJz:Pf<_r J 

which measures (in a sense to  be precised later  on) the "size" of the  subclass with error  
smaller t han  r.  

2.2 Obtaining bounds in statistical learning theory 
2.2.1 The goal of learning 

The  goal of a learning a lgor i thm is to pick a funct ion g in a space G of functions 
from A' to  Y in such a way tha t  this funct ion should capture  as much as possible the 
relat ionship (which may not be of a funct ional  nature)  between the  r an d o m  variables X 
and Y. In order  to measure how well this is captured,  a cost funct ion c from y • y to 
IR+ is defined tha t  measures the cost of predict ing a wrong label. T h e  risk (or expected  
risk, or expected error) of a funct ion g C G is then  the  expected  cost, defined as 

L(g) = IE [c(g(X), Y)] ,  

and the  empirical  risk (or empirical  error)  is defined as 

1 ~ c(g(Xi), Y,). Ln(g) = n 
i=l  

For convenience we will denote  by g the funct ion from ~ to IR x • y which maps  a funct ion 
g to its associated loss function g(g) defined as 

: X x y 11% 

(x, y) c(g(x), y). 
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We then define the loss class J: associated to G as 

f = ( t (g ) :  g E ~}. 

In the remainder we will only consider classes G and cost functions c that  yield loss classes 
of bounded non-negative functions. In other words, we will assume that  c(., -) E [0, b] 

for some b > 0. 
2.2.2 The empirical processes view 

We now explain how to formulate the problem of obtaining error bounds in terms 
of bounding the maximum of an empirical process. 

An error bound (or performance bound, or generalization bound) is a probabilistic 
bound on the quantity L(gn) - Ln(gn), where gn is the function choosen by the learning 
algorithm. Since gn is not known before we see the data, it is convenient to bound the 
quantity 

sup L(g) - n~(g),  
g E G  

since this will directly yield an error bound. If we consider the class ~" defined above, 
this quantity can be written as 

sup IE [f(X, Y)] - l f ( x i ,  Y/), 
fE .~  

,/$ 

which is called the supremum of the empirical process indexed by the class of functions 9 r ,  
empirical process meaning that  we consider a collection of random variables IE [f(X, Y)] -  
-~f(Xi ,  Y/), each one distributed as a sum of n independent and identically distributed 
random variables. 

Using the notations introduced earlier, we can rewrite the supremum we want to 
bound in a shorter way as supf6y P f  - P n f .  Note that  this is a random variable 
depending on the sample. Our goal is thus to bound the probability that  this quantity 
goes above a certain value. 
2.2.3 Measuring the size of  a class of functions 

We have introduced above the notion of covering numbers. The metric we proposed 
is the so-called empirical ~2 metric since it is a (pseudo) metric based on the data (and 
thus random). 

This metric is not the one typically used in learning theory. Other possible metrics 
are the t o  metric defined as doo(f, f ' )  = suPi= 1 . . . . .  n ] f (Xi)  - f l (Xi)]  or the ~1 metric 
defined as d l ( f , f ' )  = n - l ~ i n l  I f (X i )  - f ' ( X i ) l .  Notice that  the gl distance is the 
smallest one and the goo the largest one. As a result the gl covering numbers are smaller 
than the g2 ones which are smaller than the ~ ones. 

However, we will not use the covering numbers as our measure of size of the function 
space but rather to compare the notion we introduce to classical ones. Indeed, since the 
quantity we want to bound is suplej= P f  - P n f ,  we will see that  the deviations of this 
quantity about its expectations do not depend on the size of $" and as a consequence, we 
will claim that  the "ideal" notion of size of the space ~" (with respect to the distribution 
at hand) is given precisely by IE [ s u p $ ~ - P f  - pn f ] .  

It turns out that  there is a tight connection between such a quantity and the ex- 
pectation of the Rademacher average via the well-known symmetrization inequality (see 
Appendix A) 

ks~- LSe7 J 
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Moreover, there exist corresponding lower bounds (see e.g. Bartlett  and Mendelson 
(2002)). In view of these inequalities, the Rademacher average is a natural and sharp 
notion of size of a function class. We will see later that  it can be upper bounded by a 
function of the covering numbers. 

3. Concentration inequalities for empirical processes 

Recently, new tools have appeared in probability theory. These tools called concen- 
tration inequalities allow to bound the deviation of a random function from its expecta- 
tion, just knowing the sensitivity of this function to the change or removal of one of its 
arguments. We give a list of some of these inequalities in Appendix A and we give in this 
section applications of these inequalities to quantities that are of interest in statistical 
learning theory. Next section will comment on the consequences of such results in terms 
of measuring the size of function classes and obtaining data-dependent bounds. 

3.1 Results 
We now present applications of the above inequalities to quantities that  are relevant 

in the analysis of learning algorithms. 
The first result we give is a straightforward application of McDiarmid's inequality 

to a class of bounded functions. 

THEOREM 3.1. Let ~ be a countable set of functions from X • y to IR and assume 
that all functions f in ~ satisfy supx,u [Pf - f(x,y)[ <_ b. Then, defining Z as 

for all ~ >_ O, we have 

Z = sup P f  - pnf ,  
.fay 

IP [Z >_ IE [Z] + b v ~  ] < e-% 

Next we give deviation bounds for quantities similar to the Rademacher average. In 
particular these bounds relate the Rademacher average computed on a particular sample 
to its expectation. 

THEOREM 3.2. (Boucheron et al. (2002)) Let .T be a countable set of functions 
from 2( • 33 to lit and assume that all functions f in 3 ~ satisfy supx,u If(x,y)l <_ b. Then 
defining Z as 

Z = lE~ [sup R~f]  . 
LSc7 / 

We have for all ~ > O, 

and 

IP Z_>~>oinf ( I + a ) I E [ Z ] +  +~aa -<e-~'  

- ,~e(o,1) ~ + 2n(1 - - a ) a  -< e-e" 
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Finally we provide an inequality for the supremum of an empirical process indexed 
by a class of functions that  are simply upper bounded. The fact that this result does 
not require the lower boundedness of the functions will be crucial in the derivation of 
our main result presented in a subsequent section. 

THEOREM 3.3. (Bousquet (2002a)) Let ~ be a countable set of functions from 
2( x y to lR and assume that all functions f in :F satisfy SUPx,y P f  - f (x ,  y) <_ b. Then 
defining Z as 

Z = sup P f  - Pnf, 
So J= 

and v = sup/e~-P(f2) ,  then for all ~ > 0, we have 

IP[Z>- inf ((l+a)]E[Z]§ §  b--~)] 

3.2 Consequences 
We will now discuss the relevance of the above results for statistical learning theory. 
Recall that the goal of a learning algorithm is to minimize the expected risk, that  

is to find a function f E ~- which minimizes 

P f  = IE [f(X, Y)]. 

However, since P is unknown to the algorithm, an estimate of this quantity has to be 
used instead, e.g. 

1 n 

p , f  = 
i=1 

This is called the empirical risk of the function f .  Typically, learning algorithms use Pnf  
to select their output,  it is thus crucial to be able to control the quality of the estimation 
of P f  by Pnf. A key question is to provide bounds on P f  - P , f  uniformly over the class 
~ ,  since the particular f that  will be chosen by the algorithm is not known in advance. 
3.2.1 Complexity of function classes 

Let's consider a class ~- of functions satisfying 0 _< f _< b for all f E ~- and let ~ > 0. 
By Theorem 3.3 we have with probability at least 1 - e -~, 

with v = sup/e  j= p ( f 2 )  < b e. We are thus able to upper bound, uniformly over ~', the 
difference between P f  and Pnf  with a quantity which depends on the size of ~" only 
through the term 

IE [sup P f -  L f~'r P,~f]. 

This is really important: it tells that the random variable s u p f e ~ - P f  - Pnf  is always 
sharply concentrated around its expectation, no matter  how big the class ~- is. Also 
it tells that the complexity (for learning) of a function class can be measured by the 
quantity ]E[sup/~j: P f  - Pnf] only. 

In this sense, concentration inequalities allow to decompose the study of the random 
quantity suPle~: P f  - Pnf  into the study of its random fluctuations and its average size. 
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3.2.2 Stability 
It can be argued that considering s u p / c 7  P f  - Pn f  is too crude and does not really 

capture the fact that learning algorithms typically select functions that  may be far from 
achieving this supremum. Indeed the quantity one should study is rather Pf,~ - Pnfn 
where fn is the function actually selected by the learning algorithm. 

It is possible to prove (see Vapnik and Chervonenkis (1991)) that  those two quan- 
tities are essentially the same when the algorithm minimizes the empirical risk (i.e. 
fn = arg minfej= pnf ) .  

However, most successful learning algorithms do not simply minimze the empirical 
risk, but  rather use some form of regularization. Under certain conditions (studied for 
example in Bousquet and Elisseeff (2002)) it can be proven that Pf,~ - Pnfn is a function 
of the training sample that satisfies the bounded increments condition of Theorem A. 1. 

One can thus apply concentration inequalities directly to the quantity Pfn  - Pnfn. 
This approach is called the stability approach. 
3.2.3 Reweighting 

Another way to take into account the specificity of the learning algorithm to be 
studied is to consider a reweighted version of the empirical process. The idea is that 
since fn, the function chosen by the algorithm, typically has small empirical error, it 
should also have small expected error and thus if we consider the quantity 

P f  - Pn f  
sup 

it is likely that the supremum will be reached at a function which has small expected 
error. 

Studying the above quantity can thus be justified in two ways: 
�9 When studying algorithms which minimize the empirical error, one is more inter- 

ested in the deviation P f  - Pn f  for functions f that have small empirical error 
(and thus also small expected error). 

�9 For non-negative bounded functions, P f  is an upper bound (up to a fixed constant) 
on the variance var f ( X )  and reweighting by the variance allows to 'uniformize' the 
deviation P f - pn f .  

In the remainder we will focus on this quantity and try to provide bounds that  
involve Rademacher averages computed locally, i.e. for functions with small error. 

4. Previous work 

4.1 Vapnik-Chervonenkis inequalities 
First we recall a classical result by Vapnik and Chervonenkis 

Chervonenkis (1971)) for a class 5 r of {0, 1}-valued functions. 
(Vapnik and 

F 7 
i P f -  PZt > 

J 
This immediately gives the following inequality relating the expected and empirical risk 
of all the functions in ~'. For all ~ > 0, with probability at least 1 - e -e,  

(4.1) Vf E 9 e, P f  < P , J  + ~/8(e + l~ 41E[N2(Y'n Tt--1/2)]) 
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Notice that for (0, 1}-valued functions the quantity N2(~, n -1/2) is an upper bound 
on the so-called shatter coefficient on a double sample, which is the quantity initially 
used by Vapnik and Chervonenkis. 

Vapnik and Chervonenkis also obtained the following result for classes of {0, 1}- 
valued functions 

Pf  - Pnf ] 
(4.2) IP sup > t 

L J ~  ~ - 

_< 41E[N2 (9 ~, n-1/2)]e -nt2/4 ' 

where the constants above were actually achieved by Anthony and Shawe-Taylor (1993). 
Combining this inequality with Lemma B.1 gives the following inequality relating 

the expected and empirical risk of all the functions in 5 v. For all e > 0, with probability 
at least 1 - e -~, for all f E ~', 

(4.3) [ ] P f <  inf ( l + a ) P , f +  4 1 +  (log4IE[N2(~,n-U2)]+e) 
- -  o ~ > 0  n 

4.2 A simple application of concentration 
Here we provide a simple result which is an adaptation of a result obtained in 

(Bartlett et al. (2002a)). We slightly modify the original result in order to obtain a 
Rademacher average without absolute values. This quantity has some advantages (see 
e.g. Bartlett  et al. (2002b)). 

The inequality below can be considered as an analogue of (4.1) where the complexity 
which was measured by empirical covering numbers is now measured by the empirical 
Rademacher average. 

THEOREM 4.1. Let .~ be a class of functions such that 0 < f < b for all f E jr. 
Then for all n >_ 2, all e > 0 with probability at least 1 - 2e -~, 

Vf E.T',Pf <_P,~f +4lE~[sup Rnf] + 5bv/-~. 

We shall briefly discuss about  the above result. If we inspect the proof (see Ap- 
pendix B) we can see that the result is quite sharp. Indeed, in the first step, we separate 
the random fluctuations of the variable of interest from its expectation. Its expectation 
is, as said before, what measures the complexity of the class 9 v. Next we symmetrize this 
expectation. The symmetrization inequality actually works both ways so that the loss in 
this step is simply a (universM) constant factor in front of the complexity term. Finally, 
we replace the expectation of the Rademacher average by its value on the sample and 
again the concentration is very sharp since it does not depend on the size of the function 
class. The bound is thus, up to small constants, very sharp. 

An interesting application of such a bound is to classes jc  that are the convex hull of 
some class 75. In this case, it can be proven that the Rademacher average of ~ is equal 
to that of 75, which is a property that is not shared by other measures of complexity 
such as covering numbers. Indeed, the covering numbers of the convex hull of a small 
class can be quite large (see e.g. Mendelson (2001)). 
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It is possible to relate the Rademacher average to the empirical covering numbers 
using the following bound (see e.g. Ledoux and Talagrand (1991)) 

(4.4) [sup Rnf] LSe~- - 4x/2 ff0D v/l~ N ( ~ '  ~)dz' n 

where D is the diameter of the class ~ ,  D = supf,f,e~- d(f, f '). 

5. Main result 

We have shown how to derive an analogue of (4.1) with concentration inequalities. 
Our main result is a generalization of (4.3) which uses a concentration approach. 

5.1 Statement 
First we present a generalization of (4.2). 

THEOREM 5.1. Let ~ be a class of functions such that 0 < f < b for all f E ~ .  
Let r be a non-negative, non-decreasing function such that r is non-increasing 
for r > 0 and such that 

I E [  sup [ P f - P n f [ ]  < r  
kfE.~:Pf~_r 

and let r* be the largest solution of r -- r. 
Then, for all c > O, the following inequality holds with probability at least 1 - e -e, 

for all f C .~, 

x / ~  < inf ( l + a ) x / ~ -  1 +  log + + ( 3 + _ a ) e v ~  
- ~>0 2 3an ]"  

The following corollary gives an error bound that  can be compared to (4.3). 

COROLLARY 5.1. Let jz be a class of non-negative functions bounded by b almost 
surely. Let r be a non-negative, non-decreasing function such that r  /s non- 
increasing for r > 0 and such that 

sup [Rnf[[ _~ 

I 

2 1 E  r 
fEJZ:Pf~_r J 

and let r* be the largest solution of r = r. 
There exist a universal constant K such that for all c > O, with probability at least 

1 - e -~, for all f c ~ ,  

[ ( 1 ) (  b b~)] 
P f  -< a>0inf (1 + (~)Pnf + 1 + - ~  31r* log 2 --r. + 50 . 

We thus have fulfilled our goal: we now have a bound which is similar to (4.3) but  
where the complexity term now depends on the local Rademacher average, that  is the 
complexity of the subset of functions with small error. 
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5.2 Discussion 
It is important to understand the role of the function r and the real r*. The 

conditions required on r which are here mainly for mathematical reasons, may seem 
restrictive but there are several easy ways to satisfy them. The first way is to use the 
entropy integral (4.4) in combination with an upper bound on the empirical covering 
numbers. 

Let's give an example. For Vapnik-Chervonenkis classes of functions with VC- 
dimension d, it can be proved (see e.g. Koltchinskii and Panchenko (2000)) that 

r* <_ K d log n. 
n 

This shows that the above bound is tight up to logarithmic factors. Indeed the optimal 
order for such a bound is dn and we would obtain d log3 n. 

However, we can use a different approach. It is possible to slightly enlarge the class 
of functions in order to get a function r with appropriate properties. Indeed, if we 
consider the star-hull of ~ around 0, defined as the following set 

and if we set 

, (9 ~) := {c~f: f e ~ , a  e [0,1]}, 

r  -- ]E [ sup IRnfl], 
k f E *(.~): P f ~_r 

then r is non-negative, non-decreasing and r  is non-increasing (see e.g. Bartlett 
et al. (2002c) for a proof). Moreover, it can be shown that the covering numbers of*(~-) 
are not much larger than those of ~'. 

Now the quantity r* which can be cMled the complexity radius of the class ~" is 
really what measures the complexity of a class of non-negative functions. Indeed, if the 
(global) Rademacher average has the correct order for general classes of functions, for 
non-negative bounded functions, the complexity is better measured by r*. The main 
reason is the relationship that exists for such classes between the variance and the error, 
p(f2) < bPf. The meaning of this inequality is that small error functions have small 
variance, so that the random fluctuations of the empirical error of the functions in 
have a size controlled by the expected error itself. 

In order to make our main result actually usable in practice (in learning algorithms) 
it is necessary to replace the expected local Rademacher average by its empirical coun- 
terpart. This is studied in Bousquet  (2002b) or Bartlett  et al. (2002b). Indeed, the 
bound of Theorem 4.1 can be computed from the data only while the bound in the 
above corollary depends on the distribution. 

An equivalent result with empirical local Rademacher averages may have direct 
consequences on the design of learning algorithms. In particular, if one is able to bound 
r* by a function of some parameters of the algorithm, it is possible to allow the algorithm 
to automatically tune these parameters. 

5.3 Sketch of the proof 
We try here to give a flavor of the ideas behind the proof of Theorem 5.1 in order to 

explain why the complexity radius arises. For details we refer the reader to Appendix B. 
Examining Theorem 3.3, we see that an important role is played by the variance 

term v. It is thus clear that  if one wants to sharpen the results, one has to use carefully 
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this term. Indeed if one applies the theorem to the initial class the variance term will 
be bounded only by the maximum expectation in the class which is a constant term. 
However, keeping in mind the fact that  the algorithm may pick functions with small 
error, we should try to apply Theorem 3.3 to a class of functions on which we can 
control the maximum variance. 

The trick is thus to modify the class of functions on which we apply this theorem in 
order to make it sharper. This is done by simply reweighting the class of functions by 
dividing each of them by the square root of its expectation. 

Since the functions in ~" are non-negative, so will be the functions f/v/-P-f. However 
they are no longer lower bounded (which is not an issue for applying Theorem 3.3). 

Once we have obtained a deviation inequality for this reweighted function class, we 
have to bound the expectation of the supremum. The main idea is to decompose the 
function class in successive balls (in the Pf  seminorm) and to apply, on each of them the 
bound given by the function r On each of these subclasses, there will be a weighting 
factor coming from the minimum value of Pf  over that  subclass. By balancing the size 
of the subclasses with the growth of their radius, one can obtain a bound that  involves 
the complexity radius. 

Indeed, the weight of each ball is the inverse of its radius r while its size is given 
by r Thus the right balanced will be achieved when the radius is of the order of the 
size. 

The symmetrization inequality will then yield the corollary. 

6. Conclusion 

We have quoted several recent concentration inequalities and proved that  they may 
have applications in the analysis of learning algorithms. 

In particular we have derived a generalization of Vapnik and Chervonenkis' relative 
error inequality which uses a novel measure of the size of function classes, namely the 
local Rademacher average. For non-negative bounded function classes, we have proved 
that  a sharp measure of the size is given by the so-called complexity radius. 

Further research should focus on obtaining bounds that  depend on an empirical 
counterpart of the complexity radius that  can be computed from the data  only and 
which can be related to various parameters of the learning algorithm of interest. 

Appendix 

A. Concentration inequalities 

Concentration inequalities are tools from probability theory that  allow to bound 
the deviation from its expectation of a random variable. Here we will only consider 
concentration inequalities defined on a product measure spaces. In other words, the 
random variables we are interested in are functions of n i.i.d, random variables defined on 
an arbitrary measurable space (here the product X' • y ) .  The inequalities we will present 
give deviation bounds for such functions simply from conditions on their increments. 
More precisely, if one is able to bound the variation of the function when one coordinate 
is modified or removed, then one can apply one of the following inequalities. 

Let's denote by T the pair of random variables (X, Y) and similarly, let Ti -- (Xi, Y/). 
The results in this section apply to any type of independent random variables Ti, i.e. not 
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only pairs and not only identically distributed but  we will apply them to the random 
variables introduced in previous section. 

As mentioned earlier we will denote by ]E [.] the expectation with respect to 
T 1 , . . . , T n ,  and we introduce the notation ]E k [-] for the expectation with respect to 
Tk only (i.e. the expectation conditional to T1, . . .  ,Tk-1, Tk+l , . . . ,  Tn). 

We consider an arbitrary random variable Z which is a function of T1 , . . . ,  Tn, i.e. 
Z := f ( T 1 , . . . , T n ) .  We want to bound the difference IZ - I E [ Z ]  I. In order to do 
so, we introduce auxiliary functions (and corresponding random variables) as (for all 
k = 1 , . . . , n )  

and 

Zk := A(TI , . . .  ,Tk-l,Tk+~,... ,T,~), 

z i  := gk(T1,... ,Tn). 

These functions will be used as comparison functions. For example, if one defines fk as 
the function f computed on all but  the k-th random variable, then the difference Z -  Zk 
will measure the sensitivity of Z to the removal of the k-th of its arguments. The results 
we present below rely on various types of assumptions on the behavior of the differences 
Z - Zk, also called the increments of the random function. 

The first result we quote is the so called McDiarmid's inequality. 

THEOREM A.1. (McDiarmid (1989)) Let Z and (Zk)k=l ..... n be as defined above. 
Assume that for all k = 1 , . . . ,  n the following inequality is satisfied 

then for all e >_ 0, 

and 

IZ - Zkl _< b, 

Although very simple to use, this result has the disadvantage of providing a bound 
that depends on the dimension n of the sample. As the next inequality shows, it is 
possible to obtain dimension-free bounds when more restrictive conditions are satisfied 
by the increments Z -  Zk. 

THEOREM A.2. (Boucheron et al. (2000)) Let Z and ( Z k ) k =  1 ..... n be as defined 
above. Assume that for all k = 1 , . . . ,  n the following inequality is satisfied 

O < _ Z - Z k < I ,  

and 
n 

~ Z - Z k  <_Z, 
k=l 
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then for all c >_ 0, 

and 

e z > ~ [ z ] + v ~ - ~ [ z ] +  5 <e - ' ,  

e [ z  < ~ [ z ] -  v ~  [z]] < ~-" 

The bound for deviation above the expectation can actually be generalized as shows 
the next result (inspired by the work of Rio (2001)). The non-negativity of the increment 
can be replaced by a weaker condition, at the expense of paying for the variance of the 
increments. 

Z ! THEOREM A.3. (Bousquet (2002a)) Let Z, ( Z k ) k =  1 . . . . .  n and ( k)k=l . . . . .  n be as de- 
fined above. Assume that there is a constant u > 0 such that for all k = 1 , . . . , n ,  the 
inequalities below are satisfied 

and 

z~ < z -  zk < 1, E~ [z~] > 0 ana z'~ < ~, 

v e >  1~-]  k Tt ]En [(Zk)2] 
k = l  

Then let 7 = (1 + u)lE [Z] + nv 2. We obtain for all ~ > 0, 

�9 

Although the difference between Theorems A.2 and A.3 does not seem significant at 
first glance (it may look like if one could obtain the latter by combining the former with 
Jensen's inequality), the latter allows to deal with more general random functions. In 
particular, inspecting the hypotheses of Theorem A.2, one notices that  they imply that  
Z > 0 so that  this theorem will only apply to non-negative functions. Moreover, the 
requirement of non-negative increments prevents to apply this theorem to even simple 
functions like sums of independent upper bounded random variables. 

The importance of Theorem A.3 is demonstrated in Subsection 3.1 where it is shown 
to provide a sharp bound on the deviation of the supremum of an empirical process, which 
is precisely the object of interest here. 

B. Proofs 

PROOF OF THEOREM 4.1. The proof consists of three steps. 
1. First concentration 
We apply Theorem 3.1 to Z -- sup/e~= P f  - Pnf .  With probability at least 1 - e -e, 

we have 

s u p P f - P n f  < _ l E [ s u p P f - P n f ]  + b y e - -  ~ .  

2. Symmetrization 
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We introduce an i.i.d, sample ((X~,Yil))i=l,...,n independent from the sample 
((Xi, Yi))i=l ..... ~ and denote by P~ the corresponding empirical measure. We have the 
foUowing 

]E [sup P f  - Pnf] 
[re.T" 

�9 ] 
= E s u p  ~ {P~'fl - P ,~ f  

~ E St-- 

" ] 
_< 117] sup P~f - Pnf (by Jensen's inequality) 

f E r -  

n ] 
1 i 

= IE sup - ~ .  ai(f(Xi,Y/)  - f(X~,Yi)) (introducing random signs) 
f s ~ -  n 

_< 2117] sup -1 E a i f ( X i ,  yi (since s u p a +  b < supa  + supb) 
f E 2  n i =1  

1 

=21E s u p R n f [ .  
] 

3. Second concentration 
We apply Theorem 3.2 and obtain with probability at least 1 - e -c, 

117] [sup Rnf] < 2IE~ [sup Rnf] + 2b__~ 
[ f e y  J Ires= J n 

Combining the above inequalities yields the result. [3 

We now prove our main result (Theorem 5.1). We first give a simple lemma which 
is used to relate the deviation to the reweighted deviation. 

LEMMA B.1. Let ~ a class of non-negative functions and let 

P f  - Pnf V = sup 
fe.T" 

We have 

and also, 

Vf E jz, p f  <_ pnf  + Vv/-p-~ + V 2, 

[ ( ')] Vfc.~,Pf<inf_~>o ( I + c ~ ) P n I +  1+~--~ V 2 . 

P R O O F .  Notice that  

P f  < Pnf + v f ~  ( s u p  P f -  Pnf ~ )" 
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Moreover, it is easy to check that 

x < A v ~ + B ,  

implies 
x < B + A v / - B + A  2. 

Finally, we use the simple fact that ~ = inf~>0(aa + b/4a). [] 

Now we will prove Theorem 5.1 in several steps. The first step consists as before in 
applying concentration. 

LEMMA B.2. Let jz a class of functions such that 0 <_ f <_ b for all f E jz and let 

P f  - Pn f  V = sup 

Let e be a non-negative real number. We have with probability at least 1 - e -E, 

V < in>fo ( ( 1 +  a)IE[V] + ~ + ( 1  + 1 )  ~--~) �9 

PROOF. We apply Theorem 3.3 to the class of functions 7-I := {h = --/- : f E ~'}. ,/7 
We have for all h E ~-/, 

Also 

P f  - f( .)  
P h  - h ( . )  - <_ <_ 

f 2 )  p(f2)  
P(h 2 ) = P  -p--] - p f  <_b. [] 

Next we use an idea from Massart (2000) to bound the expectation. 

LEMMA B.3. Let yz be a class of functions such that 0 <_ f <_ b for all f E :F. Let 
r be a non-negative, non-decreasing function such that r /s non-increasing for 
r > 0 and such that 

IE 

Then for all r > 0 we have 

IE 

sup IP f  - P~fl] ~ r 
fE.~:Pf<r 

sup 
f ~  

_< v~ + - - ~  l + l o g  . 
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PROOF. We choose some x > 1 and we define Jr(a, b) = { f  E jc : a < P f  <_ b}. 
Notice that  s u p f e j : P f  - Pn f  <_ b and let N = [log(b/r)/logzJ. We have 

P f  - Pnf  
sup 
fcS~- ~ - f  

P f  - Pn f  N < sup + E sup [n f  - P~fl  
- /e~(0,r) - v ~  k=0 Se~(rxk,,~+l) vf-P-f 

_< sup P f - Pn f  Y E sup I P f  - P . f l  
ye~(0,~) vFP-f + k=OfEJ:(rxk,rxk+l ) r l / 2x  k/2 

N 
< sup P f -  Pn f  1 ~ sup I P f - -  P~fl 
- /eT(0,~) x/-P-f + ~ = /e~(0,r~+~) xk/2 

For P f <_ r we have 
p f  - P ~ f  

Taking the expectation we obtain 

_<CRY<,/;. 

I P f  - P . / I  1 s r  k+l) 
]E sup < ~ + 

LSc7 - ~  - - ~  k=o xk/~ 

< v/7 + r (Y + 1)x 1/2 
- , /7  

< v~+ r l o g ( b / r ) / l o g x ) x  U2, _ -~-  + 

and we get the result by taking x = e 2. [] 

Now, if we choose in previous lemma r -- r*, the largest solution of the equation 
r = r, we obtain 

]E[supPf-=Pnf][/cJ: x/-P-f J -< ~ (1 + e ( l + l ~  

This bound combined with the concentration result above gives Theorem 5.1. 
Now if we take a = .4 in Theorem 5.1 we obtain the upper bound 

which, for ~ < n is upper bounded by 

Using Lemma B.1 and the fact that  (a + b) 2 < 2a 2 + 2b 2 we obtain the result stated in 
the corollary. 
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