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Abstract .  Estimation of a survival function from randomly censored data is very 
important in survival analysis. The Kaplan-Meier estimator is a very popular choice, 
and kernel smoothing is a simple way of obtaining a smooth estimator. In this paper, 
we propose a new smooth version of the Kaplan-Meier estimator using a Bezier curve. 
We show that the proposed estimator is strongly consistent. Numerical results reveal 
that the proposed estimator outperforms the Kaplan-Meier estimator and its kernel 
weighted smooth version in the sense of mean integrated square error. 

Key words and phrases: Bandwidth, censored data, kernel smoothing, strong con- 
sistency. 

1. Introduction 

Randomly right-censored data arise quite often in survival analysis for medical re- 
search, and estimating a distribution function is very important in this area. As an esti- 
mator of a survival function S, the Kaplan-Meier estimator (Kaplan and Meier (1958)) 
is most popular and has many desirable properties. First of all, the KaplanoMeier es- 
timator S(x) is self-consistent (Efron (1967), Miller (1981), Fleming and Harrington 
(1991)). Also, it is a generalized maximum likelihood estimator of S (x )  in the sense of 
Kiefer and Wolfowitz (1956). eeterson (1977) showed that  S(x) is strongly consistent, 
and Breslow and Crowley (1974) established that  it is asymptotically normal. However, 
it is a step-function which is undesirable as an estimator of a smooth survival function. 
This prompted many statisticians to find smooth versions of the Kaplan-Meier estima- 
tor. Among these, Blum and Susarla (1980) and FSldes et al. (1981) suggested kernel 
methods based on the Kaplan-Meier estimator. A review of kernel density estimation 
from censored data is given by Padgett and McNichols (1984). Also, Padgett  (1986) sug- 
gested a kernel-type estimator of a quantile function from right-censored data. Marron 
and Padgett (1987) discussed the bandwidth selection problem for the kernel density 
estimator with censored data. Note that  all these results are based on kernel smoothing 
of the Kaplan-Meier estimator. 

In this paper we suggest a new smooth version of the Kaplan-Meier estimator using 
a Bezier curve. Bezier smoothing is a very popular technique in computational graphics, 
especially for computer-aided-geometric-design. See Farin (2001) for a detailed discussion 
on Bezier curves. However, it appears to be virtually unknown to statisticians, and we 
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have found no other references to its use in statistics except Kim (1996) and Kim et al. 
(1999). In the latter two papers, it was shown that a density estimator using a Bezier 
curve has the same rate of convergence as the kernel estimator, but  is superior to the 
latter for small sample sizes. 

In Section 2, a kernel-type smooth version of the Kaplan-Meier estimator is intro- 
duced, which is a simple modification of the kernel-type distribution function estimator 
with complete data. In Section 3, the Bezier curve smoothing of the Kaplan-Meier es- 
t imator is suggested, and its strong consistency is established. Section 4 contains some 
simulation studies comparing the Bezier curve smoother with the kernel-type estimator 
by means of mean integrated square error. 

2. The Kaplan-Meier estimator and kernel smoothing 

Let X ~  X ~ denote the true survival times from the unknown distribution func- 
tion F,  and let C 1 , . . . , C n  denote the censoring random variables from the unknown 
distribution function G. Also, let S be the survival function, i.e., S(x)  = 1 - F(x) .  It 
is assumed that X ~ and C are independent. The randomly right-censored data  are the 
pairs (Xi, 6i), i = 1 , . . .  ,n  where Xi = min{X ~ C~} and 

1 if xo<c  
6 i =  0 if Xi ~  

Here, 5i is usually called a censoring indicator. For notational convenience, let X1 < 
X2 < . . .  < Xn be the ordered survival times and 6i be the censoring indicator cor- 
responding to Xi. Also, it is assumed that there are no ties in survival times. Let 
I(1) < I(2) < - . -  < I ( N )  be indices of the uncensored survival times, where N = ~-~in__l 6i 
is the number of the uncensored survival times. 

The most famous and widely used estimator of the survival function S is the Kaplan- 
Meier estimator (Kaplan and Meier (1958)), which is defined by 

i:X~ <_x 

Note that if the last observation is censored, i.e., 5n = 0, then S(x)  74 0 as x ~ c~. To 
avoid technical difficulties arising from this, it is usually assumed that the last observation 
is uncensored, i.e., 6u = 1. 

First, we introduce the kernel weighted smooth version of the Kaplan-Meier estima- 
tor S(x). Note that the kernel estimator of the distribution function F with the complete 
data  X ~  Xn ~ is given by 

(2.2) [zK(X) = -~K Fn(y)dy --~ -~ i=1  

where Fn is the empirical distribution function, W ( x )  = fx_~ K( t )d t ,  K is the kernel 
function, and h is the bandwidth to be chosen. The kernel weigted version of the Kaplan- 
Meier estimator S(x) is then obtained by replacing the empirical distribution function 
by S, i.e. 

(2.3) SK(X) = -~K S(y)dy  = 1 - E s i W  h Xi  
i----1 
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where si is the jump size at X~ of the Kaplan-Meier estimator S. By differentiating 
SK(X) with respect to x, we get the kernel density estimator 

(7) 1 ~ s i K  x i ] K ( x )  : 

which was studied by FSldes et at. (1981) and McNichols and Padgett  (1986). 

3. Bezier curve smoothing 

3.1 Bezier curve 
Consider k + 1 points in R 2, denoted by 

b0 = (z0, w0)', bl = (zl, wl) ' , .  �9 , bk = (zk, Wk)' 

where zo < zl <_ . . .  <_ zk. The Bezier curve based on the k + 1 Bezier points (control 
points) bo, b l , . . . ,  bk is defined by 

x(t)  = biBk,i(t),  t �9 [0,11 (3.1) b(t)  -- \ y ( t ) /  = 

where Bk,i (t) is the binomial density given by 

which is also called a Bernstein polynomial or a blending function. 
There are several properties to note on Bezier curves. First, Bezier curves have 

endpoint interpolation property, i.e., bo and bk are always on the curve b(-). In fact, 
b(0) = bo and b(1) = bk. Next, b(.) is invariant under reversal of numbering for the 

k 
Bezier points, i.e., {~-~i=o biBk,i(t) : 0 < t < 1} = {~-~k_ o bk- iBk, i ( t )  : 0 < t < 1}. It is 
clear that it does not change when one reverses the indices of bo, b l , . . .  , bk. Thirdly, it 
preserves linearity. Note that  ~ _ o ( i / k ) B k # ( t )  = t for all t �9 [0, 1] so that  a straight 
line is reproduced. Finally, the first derivative of b(t) with respect to t is given by 

k - 1  

(3.2) d b(t) = k E ( b i + l  - bi)Bk- l , i ( t ) .  
i=0 

3.2 The Besier smoother 
We note that the Bezier curve depends heavily on the choice of Bezier points. Fig- 

ure 1 shows three types of Bezier points based on the Kaplan-Meier estimator with the 
resulting Bezier curve. The Bezier points in Fig. 1 (a) and (b) are located at the left-most 
and the right-most, respectively, on a Kaplan-Meier estimator S, while those in Fig. 1(c) 
are located at both. The artificial data used in Fig. 1 are 9, 13 +, 18, 23, 28 +, 31, 34, 
45 +, 48, 80, where the numbers with + denote the censored observation. 

We suggest to choose the Bezier points as described in Fig. l(a) since we found 
that they give the best numerical performance in mean integrated square error among 
the three types (see Section 4). Now, we need to select a value, denoted by An, on 
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Fig. 1. Bezier curves (---) and Bezier points  marked by ,, wi th  :~ ( - - )  where S is the 
Kaplan-Meier  estimator.  

the x-axis for the last Bezier point. First of all, An should be larger than the last 
uncensored observation XI(N). TO see the influence of the last Bezier point, we performed 
a simulation study. Generating 100 pseudo values of X ,-- Exp(1) and C ~ Exp(1), we 
computed mean integrated squared errors (MISE) for A = 5(1)10, and it turned out that 
MISE does not depend seriously on the choice of An. Based on our limited experience, 
we propose to choose An = (1 + 1/N)XI(N). For strong consistency of the Bezier 
estimator, it is sufficient to choose An = (1 + rn)Xi(N) for some random sequence rn 
which converges to zero with probability one. See Theorem 1 below. 

Thus, we consider N + 2 Bezier points which are given by 

b0 = ( 0 , 1 ) ' ;  bi -- (X I ( i ) , S (X~( i ) ) ) ' ,  i = 1 , . . . , N ;  bN+l = (An,O)' .  

The resulting Bezier curve is defined by 

~y(t)) -~ Ei=o biBN+l,t(i), 

where BN+l,t(i) is the binomial probability as defined in Subsection 3.1. Here for nota- 
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tional convenience, we used BN,t(i) instead of BN,i(t). Note that  

N+I 

x(t) =-Xn(t)= E X'<i) BN+I,t(i) 
i=O 

N+I 
y ( t )  -  n(t) = 

i=O 

with Z i ( o )  : 0, X I ( N + I )  : An. Now, the Bezier estimator is defined by 

= v(t ) 

where tn is the point such that  X(tn) = x. 
There are several desirable properties of SB. First, SB(0) = 1 is guaranteed by 

the end-point interpolation property of the Bezier curve. Secondly, SB is monotone 
which can be easily verified by using the first derivative of the Bezier curve given in 
(3.2). Thirdly, one does not need to choose a smoothing parameter which usually arises 
in other smoothing techniques. Fourthly, while the Bezier curve smoother is known to 
have some difficulties at boundaries in regression and density estimation settings, it does 
not have such problems in the current context. Finally, a Bezier curve estimator of the 
density with censored data  may be obtained by differentiating SB(X) with respect to t 
using (3.2). 

To see consistency of SB, we define the sub-distribution function of the uncensored 
survival time by 

F.(x)  = P(X~ < x,51 ~-~ 1). 

A natural estimator of Fu (x) is given by 

n 

1 EI(Xi<x'Si=l)" P u ( x )  = ; _ 

i = 1  

Also, we define 

F - l ( p )  = sup{x: F(x)  < p}, 0 < p < 1 

where F -1 (1) is the right end-point of the distribution F which may be +c~. Let f -- F '  
and g = G'. We need the following assumptions: 

(i) F-1(1)  < G- l (1 )  _< oo; 
(ii) F is twice differentiable and G is differentiable on (0, F - l (1 ) ) ;  

(iii) inf0<x<F-l(1) f ( x )  > 0 and suPo<x<F_,0)[f '(x)[ < oo; 
(iv) suP0<x<F-l(1  ) g ( x )  < 00. 

THEOaEM 1. Let x be a fixed point i n  (0, F - l ( 1 ) ) .  Under  the assumptions (i) --~ 
(iv), Ss(x)  converges to S(x)  as n --+ oo with probability one i f  one takes An = (1 + 
rn)Xi(g)  for  some random sequence rn which converges to zero with probability one. 

See the Appendix for a proof. 
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4. Numerical study 

To evaluate the numerical  per formance  of SB, we conducted  a s imulat ion s tudy  
compar ing the mean integrated squared errors (MISE) of several es t imators  of S. These  
es t imators  include the Kaplan-Meier  es t imator  ^(S), i ts  kernel smoother  (SK),  and the 
three  types of the Bezier curve smoothers  (SB1, SB2, SBa).  Here, B1, B2 and B3 indicate 
the types of the Bezier points used, corresponding to the left-most,  the r ight-most  and 
the case where bo th  are taken,  respectively. We genera ted  survival t imes from Exp(1) ,  
i.e., S ( t )  -- e - t ,  and censoring times from Exp(A), i.e., 1 - G(t )  = e -;~t with  A = 1 (50% 
censoring) and A = 3 /7  (30% censoring). Sample sizes considered are n --- 30, 50 and 

Table 1. Monte Carlo estimates of the mean integrated squared error for S, SK, SB1, SB2 and SB3. 

~ S SK SB1 SB2 SB3 
30 1 .0414731 .0241248 .0120058 .0655141 .0192931 

(.0034031) (.0025061) (.0012955) (.0066889) (.0023042) 
3/7 .0233780 .0178458 .0114956 .0308447 .0159091 

(.0018285) (.0018032) (.0013272) (.0031426) (.0018397) 

50 1 .0279322 .0177510 .0096526 .0311106 .0130147 
(.0024091) (.0018981) (.0010202) (.0036589) (.0015957) 

3/7 .0151211 .0117405 .0086413 .0151438 .0105112 
(.0011062) (.0010559) (.0009123) (.0016240) (.0010962) 

100 1 .0147137  .0109856 .0055154 .0156707 .0073325 
(.0011710) (.0010692) (.0005718) (.0016815) (.0008267) 

3/7 .0086773 .0075782 .0053548 .0087745 .0064684 
(.0006986) (.0007075) (.0004768) (.0008417) (.0006067) 

Note: Results are based on 100 pseudo samples. Standard errors of the 
Monte Carlo estimates are given in the parentheses. 

q 

E 

g d 

d 

1 2 3 4 

Fig. 2. Three types of survival estimates, Kaplan-meier estimate S (--), kernel estimate SK 
(-'-), and the Bezier estimator SB1 ("" )  with the switch life data. 
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100. For each sample size, 100 pseudo samples are generated. For the kernel estimator 
SK, we used the Epanechnikov kernel and the global bandwidth which minimizes the 
MISE. 

The simulation results are summarized in Table 1. First, the MISE decreases as 
the sample size increases. Second, the first type of the Bezier curve smoother SB1 
outperforms the other two. Also, the kernel e s t i m a t o r  g g  is inferior to the Bezier 
estimator :~B1 even though we used the optimal bandwidth for SK. We see a slight 
improvement of S with SK.  Finally, the MISE decreases as the censoring proportion 
decreases. 

As an illustrative example, we considered the switch life data with n = 40, which 
was also used in quantile estimation by Padgett  (1986). The data set consists of 17 
uncensored observations and 23 censored ones, i.e. there is 57.5% censoring. The three 
estimators S, SK and SB1 are depicted in Fig. 2. The bandwidth for gK(X) we used is 
1.3. We see that  the Bezier smoother is much closer to the Kaplan-Meier estimator than 
the kernel estimator. 

Appendix: Proof of Theorem 1 

We prove FB(X)  --+ F ( x )  with probability 1 where FB(X)  = 1 -- SB(X) .  
~'(x) = 1 - S(x). For the sub-distribution function F~, define 

Fu-l(p) = sup{x:  F u ( x )  < p} ,  0 < p ~ 1. 

Likewise, define -f'ul(p) for 0 < p < 1. Let Fu-l(0) = Fu l (0 )  = 0. 
F u l ( F u ( + c c ) )  = F - l ( 1 ) .  We may write 

Write 

Note that 

N 
X(~;) ~- ~t~u--1 ( i )  SN_~l,t(i)-~An~; NT1 

i=o 
N 

y( t )=~-~ ' ( t~u-1  ( i ) )BN+l , t ( i )~-[2(An) t  N+I. 
i=o 

We claim that 

(A.1) x(t) -~ Ful(Fu(-{-oo)t) -J- Rn(t ) 

where supo<~<l IRn(t ) l  -~ 0 as n --* cc  with probability 1. Suppose (A.1) holds. 
Let tn be a sequence of random variables such that x ( t n )  = x .  By (A.1) we get 
Fu-l(Fu(WCx~)tn) ~ x so that  

(A.2) 

with probability 1. 

t n +  F (x) 

Next, we consider y( t ) .  By Cs5rgo and Horvs (1983) or FSldes and Rejt5 (1981), 
we may write 

(A.3) 
N 

i=0 
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where sup0<t<l [/~n(t)l = O(n-1/2(loglogn) 1/2) as n ~ oc with probability 1. Using 
(A.3) and applying the same arguments leading to (A.1) along with a Taylor expansion 
we obtain 

(A.4) y(t) = g(Fu l(Fu(+cx))t)) + Rn*(t), 

where suP0<t<l ]Rn*(t)[ --~ 0 as n -* c~ with probability 1. Put t ing (A.2) and (A.4) 

together and noting that Fu is strictly increasing on (0, F -1 (1)), we get FB(X) = y(tn) --~ 
F(x) with probability 1. 

It remains to prove (A.1). Let Rn(t) = Rnl(t) + Rn2(t) + Rn3(t) where 

N 
Rue(t) -~ i~=o {P:I ( i )  -Fu l  ( i)}BN+l,t( i)  

Rn2(t)= ~ 1  { s u e  ( i ) _ S t _ 1  ( ( N  n+__l)t)}UN+l,t(i); 
i=0 

Rn3(t) --- F~l  ( (N + l ) t )  - 

We prove all the three terms tend to zero uniformly in t(0 < t < 1) with probability 1. 
Consider Rnl first. Divide the summation into two parts : the one for 0 < i < nF~(+c~) 
and the other for i > nF~(+cc). Now, we can get an analogue of Theorem 3 of Kiefer 
(1970) with F~ taking the role of F there: 

sup f~(Fjl(p)) lFUl(p)  - Fj l (p) l  -- O(n-1/2(loglogn) U2) 
O<_p<_F~ ( +oo) 

with probability 1 where fu = Fur. Thus, the first summation has an order of magnitude 
n-i/2(loglogn) 1/2 uniformly in t (0 _< t _< 1) with probability 1. Next, the second 
summation plus {An - F - l (  N+i BtN+i  is bounded (uniformly in t) by I/~u -1 (Fu(+c~)) - 

U n ] J  

F- l (1 ) ]  + rnXl(N) which converges to zero with probability 1. Consider Rn2 now. We 
note that 

N+I 
E { i -  (N + 1)t}BN+l,t(i) = 0 
i=O 

and (F~I)" is bounded. Thus a Taylor expansion shows that 

sup [nn2(t)[ = O(n -1) 
0<t<l 

with probability 1. Finally, it follows that sup0<t<l ]Rn3(t)[ ~ 0 with probability 1 since 
_N __, Fu(+oz) with probability 1 and ( F u l )  ~ is bounded. 
n 
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