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Abst rac t .  We propose a resampling method for left truncated and right censored 
data with covariables to obtain a bootstrap version of the conditionM distribution 
function estimator. We derive an almost sure representation for this bootstrapped 
estimator and, as a consequence, the consistency of the bootstrap is obtained. This 
bootstrap approximation represents an alternative to the normal asymptotic distri- 
bution and avoids the estimation of the complicated mean and variance parameters 
of the latter. 
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i .  Introduction 

In this paper we study lifetime data  with covariables which axe subject to both left 
truncation and right censorship. Let (X, Y, T, S) be a random vector, where Y is the 
lifetime, T is the random left truncation time, S denotes the random right censoring 
time and X is a covaxiable related with Y. It is assumed that Y, T, S axe conditionally 
independent at X = x and a(x )  = P ( T  < Z I X = x) > 0, where Z = min{Y,S}. In 
this model, one observes (X, Z , T , 5 )  if Z > T, where 5 = l{y<s}.  When Z < T nothing 
is observed. (We will refer to this model as LTRC model.) 

Let (Xi, Zi, Ti, 5i), for i = 1, 2 , . . .  , n, be an i.i.d, random sample from (Z,  Z, T, 5) 
which one observes (then Ti _< Zi, for all i). If F ( y  I x) = P ( Y  < y I X = x)  denotes 
the conditional distribution function of Y when X = x, a nonparametric estimator of 
F(- I x), called generalized product-limit estimator (GPLE), Fh(" I x), is defined in 
Iglesias P6rez and Gonzs Manteiga (1999), as follows: 

(1.1) Fh(y I X ) =  1-- l ~  [ 1 -  l{z,<_y}5~Bhi(X) 
i=1 [ E J  n--1 I{Tj<-Z'<-Z~} B h j ( x )  

where {Bh~(X)}~_ 1 is a sequence of nonparametric weights (specifically, Nadaxaya and 
Watson weights) and h = hn is the bandwidth parameter. Moreover, some important 
properties about  this estimator axe provided: an almost sure asymptotic representation 
of F h (  I x), the asymptotic normality of (nh ) l / 2 (Fh(y  I x) - F ( y  I x ) )  and the weak 
convergence of the corresponding process. 
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Note that the GPLE reduces to a GPLE with left truncation (see LaValley and 
Akritas (1994)) when there is no right censoring (5 = 1, Z = Y) and to a GPLE with 
right censorship when there is no left truncation (T = 0). The GPLE with censored 
data has been further studied by Beran (1981), Dabrowska (1989), Gonzs 
and Cadarso-Su~rez (1994), Akritas (1994) or Van Keilegom and Veraverbeke (1997), 
among others. These latter authors, in addition with other results, define a bootstrap 
procedure for approximating the distribution of (nh)l/2(Fh(y I x) - F ( y l x ) )  and show 
the validity of their proposed bootstrap procedure. 

The aim of this paper is to study a bootstrap method for left truncated and right 
censored data  (LTRC data) with covariables to obtain a bootstrapped estimator of the 
conditional distribution function. 

Bootstrap methods for LTRC data without covariables have been studied by Wang 
(1991), Bilker and Wang (1997) and Gross and Lai (1996). Wang generalizes Efron's 
"obvious" bootstrap method for RC (Efron (1981)) to LTRC data under certain assump- 
tions about the identifiability of F (the distribution function of Y) and assuming that  
the variables Y and (T, S) are independent, S > T and D = S - T is independent 
of T. Her "obvious" method starts by estimating the unknown distribution functions 
of Y, T and D, denoted by F,  L and Q, respectively, through the corresponding non 
parametric maximum likelihood estimators (NPMLE)~ F,  ], and ~.  Immediately after, 
it generates independent random variables: Yi* from F,  Ti* from L and D~ from Q and 
defines Zi* = min{Yi* , S*} where S~ = D* + Ti* and 5* = l{z~=~*). The observation 
(T~*, Z*, 5~) is retained if and only if T* ~ Z*, so the bootstrap sample consists of n 
random vectors (TI* , Z~', 5~), . . .  , (T*, Z~, 5n) with :Y~* < Z*. The validity of this "obvi- 
ous" bootstrap method is proved by Bilker and Wang (1997). These authors also point 
out that the previous "obvious" method is not equivalent to the "simple" bootstrap for 
LTRC data, again using Efron's (1981) term, which places equal weight, 1/n, at each 
of the observed triplets {(T~, Z~, 5~)}n_1. Gross and Lai (1996) define the "simple" boot- 
strap for LTRC data in a model with covariables, so that, the bootstrap sample consists 

* * * * . . , X *  * ,  * of n random vectors (X1, T~, Z1,51 ),. ( n, T* Z*, 5~) obtained by sampling with re- 
, , . n placement and placing equal mass at each of the observed vectors ((X~, T~ Zi 5~)}i=1. 

They develop an asymptotic theory of the simple bootstrap method for this extended 
model, showing that the simple bootstrap approximations to the sampling distributions 
of various statistics from these data  are accurate to the order of Op(n-1) .  It is worth 
pointing out that  between the mentioned statistics the only that have covariables is an 
estimator of the parameter ~, where ~ is the minimizer of E { p ( Y  - ~rX)l{a_<Y_<b}} in 
some region D, where [a, b] is an appropriate interval and p is a convex and differentiable 
real function. 

In Section 3 we propose a "conditional obvious" bootstrap method for LTRC data 
with covariables in which the conditional independence of Y, T, S given X = x is 
assumed. This new assumption is a bit more stringent than that adopted by Wang in 
one-sample case but is more convenient for the development of theory and methods (see 
also Remark 1 in Section 3). 

2. Notation and assumptions 

To define and study our bootstrap procedure, which is done in Sections 3 and 4, we 
need to introduce some notation and assumptions. The following curves are defined: 

(i) M(x)  = P ( X  < x), represents the distribution function of X. 
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(ii) 
X = x .  

(iii) 
X = x .  

(iv) 
X = x .  

(v) 
function 

(vi) 

(2.1) 

G(y [ x) = P ( S  < y ] X = x), is the conditional distr ibution function of S at  

L(y [ x) = P ( T  < y [ X = x), is the conditional distr ibution function of T at  

H(y  [ x) = P ( Z  <_ y [ X = x), is the conditional distr ibution function of Z at  

HI(y I x) -- P ( Z  < y,5 = 1 J X = x), is the conditional subdistr ibution 
( w h e n Z = Y )  of Z a t X = x .  
The conditional cumulative hazard rate function of Y at  X = x, which is 

-_J dR(t Ix) 
A(y ] x) = ~ 1 - F ( t -  Ix)" 

This function can be wri t ten as 

f y  dHl#(t [ x) 
(2.2) A ( y l x  ) = ! 

C ( t l x )  j _  

where C(y I x) = P ( T  < y < Z [ X = x , T  < Z), (see equation (5) in Iglesias P6rez 
and Gonzglez Manteiga (1999)). The relations given in (2.1) and (2.2) are crucial in the 
definition of the GPLE (1.1) as was shown in the above ment ioned paper. 

(vii) Remember  F(y  [ x) = P ( Y  < y I X  = x), the conditional distr ibution function 
of Y when X = x, and 

(viii) a(x) = P ( T  _< Z [ Z = x), the conditional probabil i ty of absence of t runcat ion 
at X = x .  

Moreover, for any distr ibution function W(t)  = P(~ < t), we denote the left and 
right support  endpoints by aw -- i n f { t / W ( t )  > 0} and bw = i n f { t / W ( t )  = 1}, respec- 
tively. Specifically, we will use the notation: aL(qx), aH(.[x), bL(qx) and bH(qx) for the 
support  endpoints of functions L(y [ x) and H(y [ x), considering L and H as functions 
of the variable y for a fixed x value. 

Finally, for a distr ibution function W, we define W # (t) = P ( r  / _ t [ T _< Z). Then 
we will consider: M # ( x )  = P ( X  <_ x [ T <_ Z), L#(y  [ x) = P ( T  < y I X  = x , T  <_ Z), 
H # ( y  [ x) = P ( Z  <_ y I X = x , T  < Z) and Hl#(y I x) = P ( Z  <_ y, 5 =  I [ X = x , T  <_ 
Z). We also define the function H~ (y l x) = H # (y I x) - HI# (y l x). 

To formulate our results, we will use some of the hypotheses listed below: 
�9 The model assumptions: 

(H1) X,  Y, T and S are absolutely continuous random variables. 
(H2) a) The variable X takes values in an interval I = [Xl, x2] contained in the 

support  of m #  (density of M # (see Remark 1 in Iglesias P@rez and Gonzglez Manteiga 
(1999))), such tha t  

0 < V = inf [m#(x)  : x  E I~] < sup[m#(x)  : x  E I~] = F < c~ 

for s o m e I e = [ x l - e ,  x 2 + e ] w i t h r 1 6 2  1. 
And for all x C Ie the r.v. Y, T, S are conditionally independent  at  X = x. 

b) Moreover, as regards the Y, T and S variables, we consider: 
i) aL(qx) ~_ aH(.Ix ), bL(qz) <_ bu(.Lx ), for all x E I~. (Compare wi th  Woodroofe 's  

results (Woodroofe (1985)) about  identifiability of F for t runcated  da t a  wi thout  covari- 
ables.) 
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ii) The variable Y moves in an interval [a, b] such that i n f [ a - l ( x ) ( 1 - H ( b  I x))L(a I 
x ) : x  e IE] ~ 0 > 0 (note that, ifaL(.,z) < y < bH(.,x) then C ( y l x  ) = a - l ( x ) ( 1  - H ( y l  
x)) • L ( y l x  ) > 0, therefore condition ii) say that C ( y l z  ) > 0 > 0 in [a, b] x I~). 

(H3) a < aH(.ix ) and bn(.ix ) < bH(.ix), for all x E Ie. 
(H4) The corresponding (improper) densities of the distribution (subdistribution) 

functions L(y), H(y) and H1 (y) are bounded away from 0 in [a, b]. 
�9 The smoothness hypotheses: 

(Hh) The first derivatives with respect to x of functions m(x) and ~(x) exist and are 
continuous in x E I~ and the first derivatives with respect to x of functions L(y I x), 
H ( y l z  ) and H1 (y lx)  exist and are continuous and bounded in (y, x) C [0, co) x / e .  

(H6)  The  second derivatives with respect to x of functions m(x) and a(x) exist and 
are continuous in x E I~ and the second derivatives with respect to x of functions L(y I x), 
H ( y l x  ) and / /1  (y lx)  exist and are continuous and bounded in (y, x) �9 [0, co) x I~. 

(nT) The first derivatives with respect to y of functions n(y I x), H(y I x) and 
HI (y lx )  exist and are continuous in (y, x) C [a, b] x IE. 

(n8) The second derivatives with respect to y of functions L(y I x), H(y I x) and 
H1 (y lx )  exist and are continuous in (y, x) �9 [a, b] x I~. 

(H9) The derivatives first with respect to x and second with respect to y of functions 
L(ylx) ,  H ( y l x  ) and H1 (y lx )  exist and are continuous in (y, x) �9 [a, b] x Ie. 

(H10) The third derivatives with respect to x of functions re(x) and a(x) exist and 
are continuous in x �9 Ie, and the third derivatives with respect to x of functions L(y I x), 
H(y Ix) and H1 (y lx)  exist and are continuous and bounded in (y, x) E [0, co) x Ie. 

(Hl l )  The fourth derivatives with respect to x of functions re(x) and a(x) exist and 
are continuous in x �9 It  and the fourth derivatives with respect to x of functions L(y I x), 
H(y Ix) and H1 (y lx)  exist and are continuous and bounded in (y, x) �9 [0, oc) • I~. 

�9 The kernel function assumptions: 
(H12) The kernel function, K,  is a symmetrical density vanishing outside ( -1 ,  1) and 

the total variation of K is less than some )~ < +co.  
(H13) The kernel function, K, is twice continuously differentiable and with bounded 

first derivative. 
�9 The bandwidth parameter hypothesis: 

(H14) The bandwidth parameter h = (hn) verifies: h --~ O, ln n/(nh) ---* 0 and 
nhh/In n = O(1). 

Finally, we work with nonnegative variables as is usual in survival analysis. 

3. The bootstrap procedure 

In this section we develop a bootstrap procedure for approximating the distribution 
of the statistic (nh)l/2I~'h(y I x) -- F(y I x)], which will be called conditional obvious 
bootstrap method for LTRC data. In order to do so, we need to dispose of appropriate 
estimators for the conditional distributions of T and S. Hence, we discuss this question 
previously. 

We can consider the model with variables: X,  Z and T, in which we observe 
(X, Z, T) if Z _> T and if Z < T nothing is observed. This model is a truncation 
model with covariables and, under the hypothesis H2, we have that: 

1) Y, T, S are conditionally (mutually) independent at X = x (for all x E I~) which 
implies that T and Z = min{Y, S} are conditionally independent at X = x. 

2) aL(.ix ) ~ aH(.Jx), bL(.Ix) ~_ bH(.Ix ), for all x C I~. 



CONDITIONAL BOOTSTRAP FOR LTRC DATA 335 

These two conditions are the identifiability conditions for the conditional distribu- 
tions of T and Z at X = x, and the mentioned distributions are uniquely determined by 
the following equalities (see Woodroofe (1985) for the unconditional case): 

and 

fo u dH(t t x) _ fo y dH#(t l x) 
1 - H ( t l x )  C(tl x) 

f +oo dL(t l x) _ ~+oo dL#(t l x) 
L( t lx)  C( t lx)  

Therefore, it is possible to define and study both GPLE of H(y I x), [-th(y I x), and of 
L(ytx),  Lh(y Ix) (in the same way as Fh(yt x) was derived). These estimators are 

(3.1) 

and 

(3.2) 

[_ih(yix)=l_~i[1 - l{z,<y}Bh/(X)] 
i=1 Ejn--_l I{Tj<_Z,<_zj}Bhj(X) 

Lh(y l x) = ~i  [1 - l{T~>y}Bhi(X) 
i=1 EJ n=l I{T~<T~<--ZD Bhj(x) ' 

respectively. As before, {Bh/(X)}n_l is a sequence of nonparametric weights and h = hn 
is the bandwidth parameter. Specifically, we use Nadaraya and Watson weights, which 
are given by Bhi(x) g ( - ~ ) / v ' n  K [x-x~ .. = A.~j=l ~ h ], i = 1,2, . ,n, where K denotes a 
kernel function. 

Note that the GPL estimators given by (3.1) and (3.2) equals to PL estimators of 
the distributions functions of Z and T, respectively, studied by Woodroofe (1985) when 
one is in absence of a covariables situation (Bhi (x) = 1/n, for all i). Consistency of the 
both PLE is proved in Woodroofe's paper (1985), among other properties. 

On the other hand, the hypothesis that Y, T and S are conditionally (mutually) 
independent given X = x, allows us to define the GPLE of G(y I x), Gh(y I x), by taking 
into account that the variable S plays a similar role to Y but with an indicator variable 
( 1  - 5/) instead of 5/ in the LTRC model (defined in p. 1). So, Gh(y I x) is obtained by 
substituting in formula (1.1) 5 /by  (1 - 6~), that  is: 

(3.3) Gh(Y , x) = 1 -  lk[ [ 1 -  ~ Z-'<y---~}(1-6i)Bhi(x) 
i= l  ~ j = l  I{TjNZiNz~}Bhj(X) 

The consistency of Gh(y I x) is a consequence of the consistency of Fh(y I x) and the 
relationship^H0(y [ x) = H(y I x ) -  HI(y I x). Moreover, note that: (1 - - (~h(y  [ 
x)) • (1 -- Fh(y [ x)) = (1 -- Hh(y I x)), which is the empirical version of the equality: 
(1 - c ( ~  I x ) ) (1  - F ( y  I x ) )  = (1 - H ( y  I x) ) .  

A very interesting property of all GPLE's is the fact that the jumps of these functions 
are easy to be calculated lsee p. 218 in Iglesias P@rez and Gonzs Manteiga (1999)). 
Particularly, the jump of Fh(y I x) at y = Z/ is given by 

1 -__Ph(z/- I ~) 
(3.4) Bh/(X)hi 

ch(z~ t x) 
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where 

n 

(3.5)  h(y I x) = E I{Tj<-Y<zj}Bhj (x)' 
j = l  

the jump of Lh(y ] x) at y ---- Ti is given by 

Lh(T  Ix) 
(3.6) Bh,(x)  l x ), 

and the jump of [-Ih(y I x) at y ---- Zi is equal to 

(3.7) Bh (x) 1 - Hh(ZV r x) 
Ix) 

Remark 1. As can be read in Part  3.2 of Gross and Lai (1996), when the Y/ are 
subject to right censoring in addition to left truncation, difficulties in estimating the joint 
censoring-truncation distribution increase substantially, although the distribution func- 
tion of Y can be consistently estimated by the PLE under certain assumptions. Some 
additional hypothesis will be necessary for consistent estimation of the mentioned joint 
distribution. In that  sense, we would like to emphasize that the assumption of condition- 
ally independence between Y, T and S given X is crucial for consistent estimation of the 
conditional joint censoring-truncation distribution in the present work. This assumption 
generalizes the hypothesis of independence between Y, T and S when no covariables are 
present (assumed by Zhou (1996), among other authors), and, of course, it is not the 
only proposal to do that. Another one, for example, would be to generalize the model 
proposed by Wang (1991) and Bilker and Wang (1997) in absence of covariables to a 
conditional context with covariables. 

In order to illustrate how our bootstrap method is based on consistent estimators, 
we present a simple simulation study to show graphically the consistence of the PLE's  
of the distribution functions L, F and G without covariables. The three mentioned dis- 

t r ibut ions are simulated independently from exponential distributions with means 0.1, 
1 and 4, for L, F and G, respectively. (This produces a 11% of truncation and a 20% 
of censorship.) The triplets (T, Y, S) were drawn independently until n of them saris- 
fled the condition T < Z = min{Y, S}. In this way, censored and truncated samples 
(T1, Z1, 51 ) , . . . ,  (Tn, Zn, 5~) of size n were obtained for n = 5, n = 50 and n = 500, and 
PLE's of L, F and G were calculated using these samples. Moreover, 1000 replications 
of the three PLE's  were obtained for each n. Finally, we present the averages of the 
replicated PLE's  (APLE's) in Figs. 1, 2 and 3. Note the good performance of APLE's 
of L and F (that 's why n = 500 is not displayed because graphical differences are im- 
perceptible) and the strong influence of censorship on S (80%) in the estimation of G. 

We are now able to enumerate the conditional obvious bootstrap method for LTRC 
data: Let {(Xi, T/, Zi, 5i)}n=l be the observed sample, 

1. For Xi, independently obtain: Y/* from /~g(y I Xi), S~ from Gg(Y I Xi) and 

T~* from Lg(y I X~) where Fg(y I Xi), Gg(y ] Xi) and Lg(y I Xi) are the estimators 
defined in (1.1), (3.3) and (3.2) respectively, but  with a bandwidth sequence g = (gn) 
(see Remark 2 below). 
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Fig. 1. Average PLE's of L. Fig. 2. Average PLE's of F. 
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Define Z* = min{Y~*, S*} and 5* = 1{~.<_8:}. If T* < Z* then keep the observation 
(Xi, T*, Z/*, 5*), otherwise discard due to truncation and repeat the process. 

Continue until the bootstrap sample (X1, T{, Z~, 5~), . . .  , (Xn, T,~, Z~, 5*) is com- 
pleted. 

2. Based on the bootstrap sample, obtain the bootstrap analogue of the GPLE of 
F ( y l x  ) in (1.1), which is given by: 

(3.8) 
i=1 ~-~jn=_ 1 I{T;<_Z;<z;}Bhj(X) 

3. Approximating the distribution of (nh)l/2[Fh(y I x) - F(y I x)] by the bootstrap 
distribution of (nh)l/2[F~(ylx) -/~g(y I x)]. 

Remark 2. The bandwidth sequence g -- (gn), defined in the first step of the 
resampling scheme, is typically asymptotically larger than h = (ha). This oversmoothing 
in an initial pilot bandwidth aims to the bootstrap bias and the bootstrap variance are 
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asymptotically good estimators for the bias and variance terms. Due to this, we consider 
the following hypothesis: 

(H15) g = (g~) verifies that  g --~ 0 and lnn/(ng) --* O. Moreover g/h --* co, ~ --* co 
and ~_~_h = 0(1).  

I n n  g 

Remark 3. Note that  the above defined conditional obvious bootstrap lets us ob- 
tain the bootstrap version of different estimators for conditional functions of interest, in 
addition to F(y I x). Some important estimators which will be used in the next section 
are the kernel nonparametric estimators of the functions H~(y I x) and C(y I x) with 
bandwidth g, given by 

(3.9) 

and 

(3.1o) 

/ = 1  

n 

Cg (y I x) = E I{T~<y<_z~}Bgi(x) 
/ = 1  

respectively, and the corresponding estimators, with bandwidth h, made with the boot- 
strap sample, defined as 

n 
(3.111 ^ #* Hlh (Y l X) = E l{z*<y,~*=l}Bhi(X) 

i=l 
and 

( 3 . 1 2 )  

n 

a;(y I x) = E l(~.<y<z.~Bhi(x). 
i = 1  

We will also use the following estimator of A(y I x) (see (2.2)1: 

fo~ dft~(t l x) n l{z,<y}6iBg,(x) 
(3.13/ h.(y I x) = ~g(t l x) - E E j~ i  I{T~<Z,<zj}Bgj(x) 

i = 1  

and its bootstrap version with bandwidth h, given by 

/o 1 . ,  dill#h*( t I x) (z, <y}Si Bhi(X) 
(3"14/ h~(Y l X) ~- ~ ; ( t  l X) i=l E J  n=l I{Tj'<-Z*<-Z; }Bh j ( x ) "  

4. Main results and proofs 

Firstly, we present the main results about this conditional obvious bootstrap method 
for LTRC data: an almost sure representation, and, as a consequence, the uniform weak 
consistency of the bootstrap. 

THEOREM 4.1. (Bootstrap almost sure representation) Suppose that conditions 
(H1)-(H9) and (H12)-(H15) hold. Then, for x E I and y E [a,b], it follows that: 

a) h~(y I x) - h a y  I x) 
n n 

= E Bh,(X)~(Z*, T~, 5~, y, x) - E Bgi(x)~(Z,, Ti, 5,, y, x) + RA~(y I x) 
/ = 1  / = 1  
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where 

and 

l{z<y,6=l} ~0 y .I{T<,,<Z} dH#( u ix  ) 
~(z, T, 6, y, x) - c ( z  I x) c2(u I x) 

sup = o . .  
[a,blx, \ \ nh ] a.s. (P). 

b) 

where 

[~;(y I ~) - F~(y l z) 

= ( 1 -  F(y Ix))]~--~ Bhi(X)~(Z*,T*,5*,y ,x)-  

f -  

Bgi(x)~( Zi, Ti, Si, y, 
k i = 1  i = 1  

+ RAy I ~) 

sup IR~(y l x)l = OF. a.s. (P). 
ro,bj• \ \  nh / / 

x,] 

THEOREM 4.2. (Uniform weak consistency) Under the assumptions of Theorem 
4.1, (H10) and ( n l l ) ,  for x e I and y �9 [a, b], we have that 

sup I P * [ ( n h ) l / 2 ( ~ ( y  I x) - [~g(y t x)) <_ tl - P[ (nh ) l /2 (Fh(y  I x) - F ( y  I x)) < t]l 
tCN 

converges to zero in probability. 

Note that  the symbol �9 after expectations, variances and probabilities means that  
the corresponding statistical operators are conditioned on the observed sample 
{(Xi, T/, Z/, fi) }n_l. 

It is interesting to point out that  the bootstrap representation of ^* F~ (y l x) given 
by Theorem 4.1 comes down to the bootstrap representation given by Van Keilegom 
and Veraverbeke (1997) when there is no left truncation (T = 0), although these latter 
authors work at fixed design context with Gasser Miiller type weights. Moreover, when 
one is in an absence of covariables situation (Bhi(X) ---- 1/n, for all i) and there is no left 
truncation (T = 0) Theorem 4.1 b) comes down to the bootstrap representation obtained 
by Lo and Singh (1986) for the bootstrap version of the Kaplan-Meier estimator. 

In what follows, we present the proofs of the above mentioned theorems. 
The first step is to establish the lemmas which are necessary to prove Theorem 4.1. 

The proof scheme of this theorem is similar to the same one of Theorem 2 in Iglesias P&ez 
and Gonzglez Manteiga (1999). So, several results about uniform strong consistency (as 
Theorem 1 in Iglesias Phrez and Gonzglez Manteiga (1999)) and about the almost sure 
behavior of the modulus of continuity (as Lemma 6 in the latter mentioned paper) 
have to be derived, but according to the present situation. Thus, in Lemmas 4.2 and 
4.3 below, we deal with the uniform consistency of some estimators of the conditional 
functions Hl#(y I x) and C(y I x): nonparametric estimators with bandwidth g given by 
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(3.9) and (3.10) respectively (Lemma 4.2), and the corresponding bootstrap estimators 
defined by (3.11) and (3.12) (Lemma 4.3). An analogous scheme, but  as regards the 
results about  the modulus of continuity of the mentioned estimators, leads to Lemmas 
4.4 and 4.5. Moreover, we establish the Lemma 4.1 previously because it is necessary in 
Lemmas 4.3 and 4.5 to analyze the expectations of the bootstrap estimators [-I~*(ylx ) 
and Cg(y lx ) ,  (see again (3.11) and (3.12)). 

LEMMA 4.1. a) For the GPLE of L(y I x) with bandwidth g, defined according to 
(3.2) and denoted as Lo(Y I x), the jump at y = Tj, dLg(Tj I x), is equal to 

(4.1) Bgj(X)/(1 - [-Ig(Tj Ix)) 
Ei~=l Bgi(x)/(1 - [-Ig(T(- Ix))" 

If Bgj (x) = 0 the latter quantity means O. 
b) For the GPLE of H(y t x) with bandwidth g, defined according to (3.1) and 

denoted as fI~(y I x), the jump at y = ZS, dH~(Z~ I x), is equal to 

Bo&) / to ( z j  I ~) 
E,%1 Boi(x)/Lg(Z', I x)" 

If Bgj (x) = 0 the latter quantity means O. 
c) Moreover, we have 

(4.2) E l - i = l  ftg(Ti- lx) -- i~l'= Lg(Zi lx)" 

PROOF. 
that  

(4.3) 

a) To prove that dLg(Tj Ix) is given by (4.1), it is suffices to show, first, 

(1 - f~o(T 7 I x))dLAT~ Ix) 
Bos(x) 

(denoted by s(Tj)) is a constant C', for j -- 1 , . . . ,  n and, second, that  this constant is 
equal to 

--1 

To prove (4.3) we will see that  the expression s(Ts) for an arbitrary j 
(j = 1 , . . .  , n - 1) and for the corresponding j + 1 are equal. Let's consider the sample 
{(X[il,T(i), Z[il,5[i])}'~=l where T(1 ) < T(2 ) ~ . . .  < T(n ) are the ordered T-values, X[il, 
Z[il and ~[ij denotes the concomitants associated with T(i), and Bg[i](x) is the weight 
corresponding to X[il. For an arbitrary j between 1 and n - 1 it is easy to see, because 

(3.6), that  s(T(j)) = (1 -/;/g(T(~) I x))Lg(T(j) I z) /Cg(T(j) l  x). It is also easy to show, 
by using the definitions in (3.1), (3.2) and (3.5) but  with bandwidth g, that  

r(,)<Z,<T(,+,, C~(Zi l x ) ] J  [Cg(T(i+--~) i-~---Bg[j+,](x) ' 
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thus, the proof of (4.3) finishes if we show that  

(4.5) 1-I 1 
T(j) <Zi<T(j+I) 

O~(T(j) I x) 
Cg(T(j+l)  IX) -- Bg[j+I](X) 

= 1 .  

In order to obtain this result, we analyze the set {Zi /T( j )  <_ Zi < T0+D}. Suppose that  
this set contain k ordered elements denoted by (T(j) <)Zfm d _< Z[m2] <- "'" <_ Z[mk](< 
T0+I) ). Then, because the definition of Cg(ylx) ,  we have: 

n 

Cg(To) ] x) = y ~  I{T(,) <_T(j) <_Z[,,}Bg[i](X) 
i=l 

~g(zE~ll x) = ~g(T(j) Ix) 

(4.6) 

~.(T(~+I) l ~) = 0 ~ ( Z i ~ j  [ x) - B.im~i(~) + B ~ + ~  I, 

and these expressions lead to (4.5). 
The result of C'  = (4.4) is obtained taking into account that  (4.3) leads to 

~j~=l dLg(Tj I x) = C' ~j~___1(Bgj(x)/1 - [-Ig(T 7 [ z)), an expression which is equiv- 
alent to C' -- (4.4). 

b) Analogous to the proof of a). First, it is shown that  the expression 

(4.7) Lg(zr I x)dfIg(ZJ Ix) C", . . ,  is a constant for j = 1, 2,. n, 
Bgj(x) 

and, second, it is obtained that  C"  n ^ = ~i=i(Bgi(x)/Lg(Zi  Ix)). 
c) The equation (4.2) means that  C'  = C", and this result can be demonstrated 

(due to (4.3) and (4.7)) by proving that  for certain indexes i, j in {1, 2 , . . .  , n} it verifies 
that: 

(1 - [-tg(T 7 I x))dLg(Tj Ix) _ Lg(Z~ I x)d[-Ig(Z, Ix) 
B~j(.) Bgi(z) 

This equality is straightforwardly proved for the pair (Too, Z M). 

Remark 4. Lemma 4.1 gives the jumps of the GPLE's  of L(y I x) and H(y I x) in 
an alternative form to (3.6) and (3.7), respectively. In fact this lemma consists in the 
empirical version of these theoretical relations: 

and 

dL#(y l x) (x(x), dH(y l x ) -  dH#(y l x) " " 
dL(y l x) = 1 -  H(y -  Ix) ~ [ x )  aLx) 

O~(X) -1 = ]R d H # ( y l x )  
L(y l x) 

_ f dL # ( y [ x )  

JR 1 - g ( y -  Ix ) '  



342 M. C. IGLESIAS PI~REZ AND W. GONZ~.LEZ MANTEIGA 

for parts a), b) and c), respectively. 

LEMMA 4.2. Under the hypothesis (H1), (H2a), (Hb), (H6), (H12), (H14) and 
(H15), it follows that: 

(4.8) 

(4.9) 

sup I[I#(ylx)  - H~(y lx ) l  = 0 <\  nh ] ] a.s. (P) 
[a,b] x I 

sup  ICg(y Ix )  - C ( y l x ) l  = 0 \k-~-~) a.s. (P) .  
[a,b] • I 

PROOF. It is easy to see that the assumptions in this lemma lead to the assump- 
tions in Lemma 5 and Theorem 1 of Iglesias P6rez and Gonzs Manteiga (1999) for 
the estimators _f-I~(ylx ) and Cg(y] x). So, applying these results we obtain the order 
O ( (  In n ] 1/2] O(  { I. n)1/2) because the . ha. . +O(g 2) for (4.8) and (4.9). The latter order is a ~, nh 
rates of convergence about h and g (see (H15)). 

LEMMA 4.3. 
lOWS that: 

Under the hypothesis (H1)-(H3), (Hb)-(HT) and (H12)-(H15), it fol- 

{ ( l n n ~  1/2) 
a) [~,bjsup•176 \ \ - ~ - K ]  

{ { l n n ~ W 2 ~  
b) [asuP, b]• Id;(YlX) - Cg(y I x)[ = OR. ~ \  nh ] ] 

a.s. (P) 

a.s. (P). 

PROOF. 
bounded by: 

(4.1o) 
(4.11) 

(4.12) 

a) We study the expression I/;/l#h * (y I x ) - / : / ~  (y I x)l which can be upper- 

+ ]E*[-:I~*(y I x) - Hs#(y] x)] 
+ l [ -I~(y lx)  - Hl#(y lx ) l .  

To analyze (4.10) and (4.11) we will use that 

n 

(4.13) E*Y-I#*(Y l X) = E Bhi(x)[-I~ (y I Xi)' 
i=1 

result that is proved now. As E*Yt#*(y I x) = Y~i"=l Bhi(x)E*[l{z;<y,~:l}] we calcu- 
late: 

E*[l{z~<y,8;=l}] = ~ l{z~<_y}P*(Z.~ = Zk,6* = 1) 
k=l 

Ek l{zk <_y} (Ei I{Tj<_zk}dLg(Tj I Xi))(I - Gg( Zk I Xil )dFg( Zk l Xi) 
(4.14) = 

E;-----1 E j L 1  l{Tj<zk}dLg(Tj [Xi)dY-Ig(Zk [Xi) 
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By taking into account the jumps of Fg(- I Xi) and/: /g( .  I Xi) at y = Zk (see (3.4) and 
(3.7) but  with bandwidth g) and the fact of 1 - / / g ( .  I Zi)  -= (1 - Fg(-I Z,))(1 - (~g(. I 
Xi)), we can write that  

(4.14) = ~-~=a l{z~<v}Lg(Zk [ Xi)6kd[-Ig(Zk I X  i), 
Lg(z  I X,)dHg(Zk I 

where, via Lemma 4.1, the above expression equals to/;/~g(y ] X~). This proves (4.13). 
Now we analyze the term (4.10). To study the supuc[a,b](4.10 ) we use a idea of Lo 

(I, n )-1/2 subintervals and Singh (1986). If we parti t ion the interval [a, b] into Cn ~ nh 
[Yj,Yj+x] with j = 1 , . . .  ,cn, where Yl = a and yc.+l = b, we have tha t  supue[a,b](4.10 ) 
is bounded above by 

(4.15) m.ax I/:/~*(Yj I x ) -  E*[I~*(yj ] x)l 
3 

(4.16) + max [E*/-:/~*(yj+I I x) - E*[I~*(yj [ x)l 

where we have taken into account that J x) and I nondecreas- 
ing functions. The term (4.15) is a Op. ((~__~)1/2) a.s. (P) by using that  P(Ui ai)  <_ 
~-~P(A~) and by applying the Bernstein inequality (in a bootstrap context) to 
[l{z;_<vj,~;=1} - H~(Yj  I Xi)]Bhi(X). A further step is to prove that  

( ( l n ? ~  1/2) 
(4.17) supD~(x)  = OR. a.s. (P) 

xcl ~k k. nh ] 

where D~(x) = (4.15). To do this, we use an idea of Cheng and Cheng (1987) which 
consists in consider a set En C I such that  for all x E I,  exists 2,~ C En which verifies 
that  Ix - Yen] <_ c i /n  2 (cl is a constant) and there are at most n 2 + 1 such elements in 
E~. So, it is easy to see that  supxei D~(x) is smaller than 

(4.18) max D~(Yen) +supmaxl[-Ii#h*(yj I x) - E*f-I~*(yj Ix) 
&,~6E,~ x 6 I  3 

- [-I~*(yj lyon) + E*[-I~*(yj lYe-)]. 

((Inn)l/2) The first term above is OF. ,~h a.s. (P) bearing in mind the analysis of (4.15) and 
the inequality P([.Ji Ai) <_ ~ i  P(A~). As to the second term, it can be writ ten as 

" x 0 )  supm.ax ~[Bh i (X)  - Bh,(Xn)](l{z:<yj,6~=l} -/-I#.(Y[ 
x 6 I  3 

o 

_< sup~ez ~ ~ ]Bh,(X) -- Bh,(Ye,)I ---- O ~ \ ~ ]  a.s. (P),  

where the latter order is straightforwardly obtained by using the definition of the 
Nadaraya-Watson weights and the following known results and assumptions: 
sup~ct Irhh#(X) -- m#(x)[  = O((1%~) 1/2) a.s. (P), m#(x)  _> 7 > 0 for x �9 I,  the first 
derivative of the kernel function K is bounded and Ix - Yenl <_ cI /n  2- Thus, (4.17) has 
been shown. 
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(4.19) 

(4.20) 

As regards (4.16), we have that sup~es(4.16) is bounded above by 

2sup sup Bh~(x)H~(y [ X~) - H~(y t 
xEl yE[a,b] 

+ supmax IH~(yi+l Ix)- Hl~(yjlx)t 
x E I  3 

where, as we show immediately, (4.19) -- o((lnn] 112) tt nh " n h '  a.s. (P) and (4.20) = o((lnn) 1/2) 
So, sUP~ES(4.16 ) r)ff ln~l/2~ = ~ nh s s a.s. (P) and this result together with (4.17) lead to 

( ( l n n ~  l/2~ 
(4.21) sup (4.10) = Op. a.s. (P). 

i<,,~• t, t ,7 / - )  ) 

The proof of (4.20) = O((Inn~l/2) follows from a Taylor expansion, the hypothesis nh J 
(H7) and the conditions about the partition on [a, b]. To study (4.19) we use the following 
upper bound of it: 

(4.22) 

(4.23) 

xi) ]  2sup sup EBh'(x)jI~(ylX~)- H#(y] 
xEI yE[a,b] i=1 

where 

(4.22) < 2sup sup sup i=:, B~,(x)H~(y I ~:) - H # @  I ~) 
xEI 5cE(x-h,x+h) yE[a,b] ~ 

= o \ -n-K] a.s. (P) 

(the latter order is consequence of h 0 and Lemma 4.2), and (4.23) = 0 r t t  nh ] 
a.s. (P), since Lemma 5 in Iglesias P~rez and GonzAlez Manteiga (1999) can be applied, 
lightly adapted, to the estimator y~in=l Bhi(x)H#(y]Xi) .  

The expression (4.11), because (4.13) and the order of (4.19), is such that 

(4.24) sup ( 4 . 1 1 ) = O  [ [ ( l n n ~ ' / 2 ~  
[a,bl• \ k nh J ] a.s. (P). 

Finally, sup[a,b] • = O((~n-~) 1/2) a.s. (P), by using the Lemma 4.2. Combining 
this result with (4.21) and (4.24) we conclude the proof of a). 

b) We can write: 

^ .  ^ 

sup IC~(yix) -C'g(Yix)]  <_ sup ]L#*(y]x) -L#g(y ix) I  
[a,b] xI [a,b] xI 

+ sup I H ~ * @ l x ) -  H~(yI~)I ,  
[a,b] • I 
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n [_i#*(y where L#*(y I x) = Y~'-i=l l{T~*<y}Bhi(X) and ] .#(yl  x) = Y~-i=I l{T,<u}Bgi(x); h , I 
x) = E i L ,  l{z;<_y}Bhi(X) and [-I~(y l x ) = E i L 1  l{zi<_y}ggi(X)" 

The analysis of the latter two above suP[a,b]xi terms is a copy, step by step, of the 

proof of part a) in this lemma. Observe only that E*L#h*(y I x) = ~-2~i~=1Bhi(x)L#9(y ] 

x~) and E*/~2*(y I x) = E L i  B ~ ( ~ ) H ] ( y  I X~). 

LEMMA 4.4. Under the hypothesis (H1), (H2a), (H4)-(H9), (H12) and (H14)- 
(H15), it follows that: 

sup sup [/: /~(t  ] x) - H ~ ( s  Ix)  - Hl~(tl x) + Hl#(s I x)l 
xCI {s,tE[a,b]/ls-tl<bn} 

( ( l n n ~ 3 / 4 ~  
= 0  ~ \  nh ] ] a.s. (P) 

sup sup 1(2g( t I x) - (~g(s I x) - C(t I x) + C(s I x)l 
x e I  {s,te[a,b]/ls-tl<_b,~} 

= 0 \-~-ff] ] a.s. (P) 

where bn = o ( ( ~ ) 1 / ~ ) .  

PROOF. Under the present assumptions it is possible to apply Lemma 6 in Iglesias 
P~rez and Gonzglez Manteiga (1999) for W(t  I x) = H # ( y  I x) and obtain the order 
O((~gbn) 1/2) + O(b2n) + O(bng) a.s. (P) for the first expression above. The latter order 

(lnn b ~1/2 (lnn~3/4 = (h~l/2 _+ 0, and bag : (lnnnh)3/4 ___ is a O((~--~) 3/4) because: t--gTg nj : ~,nh] x g .  

ng5 h'll/4 = O(1) (see (H15)). Inn g] 
The second supxei sUP{s,tE[a,b]/is_ti<_bn } above can be upper-bounded by 

sup sup ]L#g (t l x) - L#g (s ] x) - L#( t  I x) + L#(s  I x)l 
xCI {s,tE[a,b]/ls--tl<_bn } 

+ sup sup I/2/g# ( t I x) - [-I~(s I x) - H#( t  I x) + H#( s  I x)] 
xEI  {s,tE[a,b]/]s--tl<_b~} 

which have order I ~ { ( l n n ~ 3 / 4 " l  v tk  nh ] ] a.s. (P), arguing in the same way that before, but for 
L # ( y l x  ) and H #(y I x), respectively. 

and 

LEMMA 4.5. Under the hypothesis (H1)-(H9) and (H12)-(H15), it follows that: 

sup sup I/2/l#h*(t I x)-/:/l#h* (s I x) -/2/l#g(t I x ) +/2/1#g (s I x)l 
xCI {s,te[a,b]/]s-tl<_bn } 

sup sup IO;(t I x) - 0 ; ( s  I x) - 5~(t I x) + 0~(s I ~)l, 
xEI  {s,tE[a,b]/Is-ti<_b~} 

where bn ~ (lnn)l/2,_g_K are Op.((~hh ) 3/4) a.s. (P). 
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PROOF. We s tudy I/:/l#h*(t I x) -- [-Ii@h*(S I X) -- /?/~(t I X) + / ? /~ (S  I X)I, which is 
smaller than  

(4.25) I/:/~*(t I x) ^ #* - Hlh (s Ix)  - E*fi~*(tlx) + E*Y-I~*(s I x)l 
(4.26) + IE*[t~*(tlx)- E*[-Z~*(s Ix) - / : / ~ ( t  I x) + / : / ~  (s I x)l. 

Arguing as in the proof of L e m m a  A.5 in Van Keilegom and Veraverbeke (1997) we 
divide the interval [a, b] in subintervals Ii with center  ti and radio bn, such tha t  to = a, 
tm -- b and, if Is - t I < bn there is an interval Ii, i = 1 ,2 , . . .  , m -  1, with s , t  E I i .  
Each interval Ii is also divided in subintervals whose limits are called tij, and such tha t  

�9 bn [ In n ~ - 1 / 4  Using these parti t ions tij ~ ti -t- 3h--~, with j = - a ~ , . . .  , + a n  and an ~" ~-~-j �9 

and the monotony  of the est imators  /?/l#h*( �9 I x) and E*.f/#*( �9 [ x), we have tha t  the 
sup{~,te[~,bl/l~_tl<b~}(4.25 ) is bounded  above by: 

Hlh ( t i j  I x) - E*[-Ii#h*(tik I x )  + E*~I~*(tij I x)l (4.27) miaxmaxl/?/~*(t,k I x ) -  ^ #* 
j , k  

(4.28) + 2maxmaxlE*-fll#h*(tij+l i x ) -  E*[-Ii#h*(tij I x)l. 
i j 

As regards (4.27), we have tha t  (4.27) = max, max/,~lErL1 w:(~jk) (x) l, where 

W:(i jk)(X)  = Bhr(X)[l{z*<_tik,5*=l} -- l{z*<_t~j,5*=l} -- fill#g(tik I Xr)  + ~Ii#g(tij I Xr)]- 
In a boots t rap  context,  the variables W~*(ijk)(x ) are i.i.d, and E*W*(ijk)(X ) = 0. More- 

w *  over, it is not very difficult to see that :  I r(ijk)(X)l <-- 2maXrBhr(X) = a.s. 
(P)  and ~-~r Var* W* o ( [ l n n )  1/21--L~ r(ijk) (X) = t nh nh J a.s. (P).  So, we can apply the Berustein 
inequality (in a boots t rap context)  to the variables W*(~jk ) (x) (for any x E I).  This 
application (and the inequality P(Ui A,) < ~ i  P(Ai))  leads to 

(4.29) (4.27) -- maxmaxi  j,k ~=1 w;*(ijk) = O p .  \ \  nh ) ) a.s. (P) .  

A second step in this proof is to show tha t  

(4.30) sup(4.27) = Op. ((lnn'~3/4"~ 
~e, \ nh ,] ) a.s. (P). 

To prove (4.30) we arguing as in the  s tudy of (4.17). Thus, we can write: 

sup Sl~(x)  _~ max S l~(~n)  
x E I  gcnEEn 

(4.31) + sup  m a x  m a x  l fi * (t,k l x)  ^ #* 
- -  glh  (tij ] X) xEI i j,k 

- ix)  + w*[s *(t,jlx) 
^ ~ ^ 

-- Uih (tik I 3On) + Sl#h*(tij I Xn) 

+ J n)- 

where S l y ( x )  denotes (4.27) and the  set En verifies the conditions of En as defined for 
(4.18). 
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{( Inn "13/4~ The max~eE~  Sl~(~n) =- Op* ~ - ~  ~ a.s. (P),  bearing in mind (4.29) and the 
inequality P(Ui Ai) <_ ~-~ P(Ai).  

On the other hand, we can write (4.31) as supxe[maximaxj,k I~-'~rn=~[Bhr(X)- 
Bhr(k~)]A*(i3k)l , where A* = - - r(ijk) l{z*<t~k,5*=l } l{z*<_t,j,5*=l} fIl#g(tik [ X r )  + 

/~ ( t~j  I x~). Then, an upper bound for (4.3~) is 

1 n ( ^ )  
supm.axmax (~h#h(&n)_dn#h(X))E l___K xn Xr , 
xGl z j,k ?~h (X)lTt~h (~n) r----1 nh  A~(iJk) 

+ sup m~x m,~x rhh# (x) r=, )-nh (X'~hX")) 
where it is easy to show that  the second term is a O ( n - ~ )  a.s. (P).  The first term above 
is smaller than 

sup 
~ ,  , ~ ( ~ ) ~ ( ~ )  

m a x  ( m a x  m a x  
~.EE~ ~k i j,k r•=lBh ( ^ ) A * ( j k )  r Xn r i  

and it is not very difficult to obtain that  the first factor above is O((l~--~) 1/2) a.s. (P)  
((,.~)3/~) and the second one is Op. - ~  a.s. (P) (note that  Bh~(k~)A*(ijk ) ---- W* 

So we have finished the proof of (4.30). 
Now, we study (4.28), which equals 2 m a x i m a x j  I~'.~n=i Bh~(X)(fI~(tij+l Xr) - 

/?/~(tij I X~))I. Then, sup~ez(4.28 ) can be upper-bounded by 

2 sup m a x m a x  ~ Bhr(x)(Hlg(tij+l I X~)- H~(ti3lx~) 
~eI  i J ITS--1 

- -  Hl#(tij+l I X~) + Hl#(tij I X~)) 

X~)) m a x  m a x  2_., + 2sup Bh~(X)(H#(tij+, I X~)- Hl#(tij[ . 
xEI ~ 3 r = l  

The first term of the latter expression is bounded by 

2sup sup sup I/:/~ (s I ~) - ~q~(t 1 ~ ) - gl#(s I ~) + H ~ ( t  I 2)1 , 
x~I ~c(x-h,x+h) {s,t~[a,b]/is-ti<_b~} 

which is O(( in n ~3/4) nh / a.s. (P) via Lemma 4.4. For the second one we have the upper  bound 

given by 2supxei  sup~e(,_h,x+h) maxi maxj  I(H#(tij+l t x) - Hl#(tij I 5:))1 which is 

smaller than C(H~' )  maxi maxj [ti,j+l - t i j l  ~ nh �9 = O~( Inn )3/4) Therefore, we have obtained 
that  supxcx(4.28 ) o((lnn~3/4~ = vt~ nh J j a.s. (P).  Moreover, this result and (4.30) lead to 

(4.32) 
xEI {s,tE[a,b]/Is-tl<_bn} ~ ~ nh ] ) a.s. (P).  
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Secondly, we study the term given by (4.26). This term is bounded above by 

(4.33) ~=1Bhi(X)([I~(t lXi)-  [I~(s I X i ) -  Hl#(tlXi) + Hl#(s I Xi)) 

n 

(4.34) + E Bhi(x)(Hl#(t l Xi) - Hl#(s ] X~)) - H~(t l x) + Hl#(S Ix) 
i=1 

(4.35) + I H ~ ( t  l x) - Hl#(s I x ) -  [-I~(t l x) + ~I~(s I x)l. 

As regards SUPxci sUP{s,tE[a,b]/is_tl<_b,~} (4.33), one has the following upper bound: 

sup sup sup I/:/~(s 1 2 ) - / 2 / ~ ( t  ] & ) -  Hl#(s 15:) + Hl#(t ] i:)l, 
x e I  ~cE(x-h,x+h) {s,tE[a,b]/Is-tl<_bn } 

which is a O(('~-~) 3/4) a.s. (P) from the application of Lemma 4.4 on an certain interval 
y){{ lnn  ~3/4~ I~ 1/ I C I~ 1 C Ie. We also have that supxeisup{s,te[a,b]/ls_tl<b~}(4.35 ) = .0.~ nh J J 

a.s. (P), via Lemma 4.4. Finally, we obtain the same order for supxel- 
sup(8,te[a,b]/is_tl<_b~}(4.34), since Lemma 6 in Iglesias P~rez and Gonzs Manteiga 

(1999) can be applied, lightly adapted, to the estimator IVn(y Ix) = ~in__l Bhi(X)Hl#(yl 
Xi) of the function W ( y l x  ) = H#(y lx) .  The three latter results lead to 

( ( l n n ~ 3 / 4 ~  
sup sup (4.26) = O a.s. (P). 
xe t  {s,te[a,b]/Is-tl<_bn} ~k \ nh ] ] 

This expression, combined with (4.32), implies the first part of this lemma. 
The proof of the second part of this lemma is analogous to the proof of the first 

one, but taking into account the relationship between the functions C, H # and L #, and 
also the relations between their non parametric estimators and their bootstrap versions, 
respectively. 

PROOF OF THEOREM 4.1. a) We analyze the difference ^ * Ah(Y l X ) Ag(y l x ) (see 
(3.13) and (3.14)), which can be written as 

fo y a[Ii#h*(t l x) - a-fI~(t l x) 
c-(t i 

fY(C~(t]x)-Cg(t'x)~dHl#(t~ " x) R1 R 2 + R 3  - J o \ , ] ' U ( t l ~  I + + 

where 

R I =  

R 2 =  

R 3 =  

[(1 
d~(t Ix) 

 .(tax) 

foY (C~(t ' x ) -Og( t  J x ) )  (dH~#(t ' x)-d[-I#( t  ' , x) 

fo y ( 1 1 )d[_i#(t + (C~(tlx)- Og(t Ix)) C2(t[ x) ~ ( t  I x)Og(t Ix) 

1) 
Cg(t J x ) ( d ~ I ~ * ( t l x ) - d l f I # ( t l x ) ) '  

1 ) (d~ i~ . ( t l x )_d[_ i# ( t l x ) )  ' 
c( t  I~) 

x). 
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The two first terms in the above given expression are the dominant part  of the 
difference ^ * Ah(Y I x) ?tg(y I x) and, with the notation of this theorem, can be written 
as :  

n n 

E Bhi(X)~(Z;,T*,6~,y,x) - E Bg~(x)~(Zi,T~,Si,y,x). 
i:i /:i 

The other three terms are the error part, RA*(y I x) : R1 + R2 + R3, which has to be 
bounded. 

The expressions R1, R2 and the first summand in R3, denoted by R31, have a 
similar form to the term R2~a (y I x) defined in the proof of Theorem 2 in Iglesias P~rez 
and Gonzs Manteiga (1999) and, because Lemmas 4.2, 4.3, 4.4 and 4.5, the respective 
least upper bounds in [a,b] x I can be studied as the sup[~,blxr IR2,~a(y I x)l. So, we 

( I n n ) 3 / 4  obtain a Op* nh a.s. (P) for all of them. For the second summand in R3, denoted 
by R32, is not difficult to show that  sup[a,blxi IR321 = O (ln~x P* t-~-K-) a.s. (P), using Lemmas 
4.2 and 4.3. Thus, one has that  

(4.36) [~,b]SuPxtlRA~(ylx)[ = ON. \ nh ] ] a.s. (P). 

b) To a n a l y z e / ~ ( y  ] x ) -  ~'g(y I x) we use the identity: 

F;(y ] x) - [;g(y I x) = (1 - ~~g(y [ x ) ) ( ]  - e ln(1-~';(ylx))-ln(1-~',(y]x))) 

and a Taylor expansion of 1 - eln(1-k;(Yb))-'~(1-F~(ul~)) which leads to ( - A  - �89 

where  A : ln(1 - ~ ; ( y  I ~))  - ln(1 - Fg(Y Ix ) )  and ~n is b e t w ~  0 and A. 
Considering the discomposing for - A  given by - A  = [ - ln(1  - ^* 

x)] + [3,~(y I x) - Ag(y I x)] + [3,g(y I x) + ln(1 - fig(y I x))] and using the representation 
obtained in part a) of this theorem, we find that F~(y I x) - Fg(y I x) is equal to 

(1 - l~(y I x)) B h ~ ( ~ ) ~ ( Z ; , T ; , e ; , y , x )  - B ~ ( x ) ~ ( Z ~ , T . e . y , x )  + R~(~ Ix) 
i=l 

where 

(4.37) < ( ~  I x)  = (1 - F ( y  i x ) ) [ - I n ( 1  - k ; ( y  Ix ) )  - h i ( y  I x)] 

+ (1 - F ( y  x ) ) i R A n ( y  I x)] 

+ (1 - F(y x))[Ag(y I x) + ln(1 - Fg(Y I x))] 

+ ( 1 - F ( y  x)) [ - l e ~ ' A  2] 

�9 (1_ 0 . 

Now, we will study each term of R* (y I x). For the first one, we have that  

(4.38) sup 1 - l n ( l - / ~ ( y  I x ) ) -  A~(y I x)[ = Op. (--~) a.s. (P). 
[a,b] x I 
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This result is obtained in a similar way as 

(1) 
(4.39) sup IA.g(y [ x) + In(1 - /~9(Y I x))l = o 

[a,b] • I 
a.s. (P),  

which is shown in Theorem 2.2 of Iglesias P~rez and Gonz~lez Manteiga (1999) (expres- 
sion 3.22). The order for the second term is given by (4.36), and the order for the third 
one is shown in (4.39). 

�9 I n n  1 /2  The following step in this proof is to show that  sup[~,blxt IAI = Op ((-~-) ) a.s. 
(P).  From part  a) in this theorem, (4.36), (4.38) and (4.39) it follows that  

n 

(4.40) sup IAI-- sup ~Bh~(x)dZ:,T~*,5*,y,x) 
[a,b]• [a ,b]xI  i = l  

n 

- Z B~(x)~(Z,,T~,5,,y,~) 
i=1  ((lnn~3/4~t] (l)~gg (~h) + Op. \ \ ~ , ]  + 0  +OR. a.s. (P).  

Moreover, Lemma 4.3 and the assumptions (H2) and (Ha) show tha t  

(4.41) sup 
[a,b] • x 

= sup 
[a,b] • I 

= Op. 

Is ~ B~(x)dZ;, T*, ~, y, x) - ~ Bg~(.)~(Z~, T~, ~, y, ~) 
i----1 /=1  

i f  ^#* d[-I~(t x) Y dHlh (t[ x) - [ 
jo 

\ -~-~- ) ) a.s. (P).  

Thus, (4.40) and (4.41) lead to 

( ( l n n ~ l / 2 ~  
(4.42) sup IAI = OF. a.s. (P).  

Io,~l • \ ~ )  ) 

To find an upper bound for the fourth and fifth terms of R*(y I x) (see (4.37)) we 

use (4.42), and we also use the inequality given by e r- < 1-~(vl~) < 1 which is 
- 1-P~(yJ~) - l-F~(yix)' 

a.s. bounded for all (y, x) e Ia, b] x I ,  because F(y Ix) < 1 and 

(4.43) sup IPg(y I x ) -  F ( y l x ) l  = o .  . a.s. (P). 
k nh ) [a,b] • I \ I 

(This latter result is easily shown following the proof of Theorem 2.2 part  c) in Iglesias 
P~rez and Gonzs Manteiga (1999) and using the assumptions about the bandwidths 
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h and g.) Hence, we have that  the sUP[a,bJxi of the fourth and of the fifth terms are 
( ln 'n  "~ Op. ,  nh ' a.S. (P). 
Finally, we have proved that  sup[~,b] x,  R~(y [ x) = Op. ((1m_~)3/4) a.s. (P).  

Immediately below, we introduce five lemmas which will be used in the proof 
of Theorem 4.2. To be more specific, this theorem is immediate through Lemmas 
4.6 and 4.10, because Lemma 4.6 gives the approximation between the distribution of 
(nh)l/2(Fh(y [ x) - F(y [x)) and the normal distribution with parameters b(y Ix)  and 
s(y [ x) (defined in the mentioned lemma), and Lemma 4.10 establishes the approxima- 
tion in probability between the bootstrap distribution of (nh): /2(F~(ylx)  - Fg(y [ x)) 
and the same normal distribution. As regards Lemmas 4.7, 4.8 and 4.9, they are neces- 
sary to prove Lemma 4.10. 

LEMMA 4.6. Assume (H1)-(H9), (H12), (H14) and h = Cn -:/5. Then, for x E X 
and y C [a, b], one has 

~0 

where 
b(y [ x) = c b / 2 ( 1 -  F(y [ x)) ( /  z2K(z)dz)  (O"(x)m#(x) + 2~ ' (x)m#' (x) ) /2m#(x)  

with 

(4.44) ~(u) = E[~(Z,T, 5, y,x)  I T  <_ Z , X  = u] 

dH~ (s Ix), Jo c(,  Ix) J0 c2(s Ix) 

and ~N denotes the distribution function of a standard normal random variable. 

PROOF. It is a consequence of Corollary 3b) in Iglesias P~rez and Gonzglez Man- 
teiga (1999). 

LEMMA 4.7. Assume (H1)-(H9), (H12)-(H15) and h = Cn-Wb. Then, for x E I 
and y G [a, b], one has 

(nh):z2(1 - F(y I x)) ~(Bh~(x)~(Z:, T;, ~ ,  y, x) 
tC~ i=1 

-Bgi(X)~(Zi,Ti,~i,y,x))) ~ t] 
- cN ( t - b;(y I x) a . s .  

0 
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w h e r e  

and 

bn(Y l X ) : (nh)l/2(1 - F(y  l x)) 
n 

�9 E[Bh i (x )E*(~(Z* ,  T;,  6*, y, x)) - Bgi(x)((Zi,  Ti, 6i, y, x)] 
i = 1  

n 

s~2(y [ x) = nh(1 - F(y l x)) 2 ~ B~,(x) Var*(5(Z*,T~,5~,y,x)) .  
i = 1  

PROOF. By applying the Berry-Essden inequality to the variables: 

l/i* = (nh)l/2(1 - F(y  I x))Bhi(X)[~(Z;, T*, 6", y, x) - E*(~(Z;,  T*, 6~, y, x))], 

we obtain, for the supt~R defined in the statement of this lemma the following upper  
bound: 

(4.45) A ~i~1B~i(x)E*(I~(Z* 'T~ '8~ 'Y 'X)  - E*(~(Z*'T*'8~'Y'X))t3) 
n Z ~  , ()-]i=1 B~i(x) Var* ~( i ,  T~* 5i, y, x))3/2 

where A denotes an universal constant. 
The numerator  in (4.45) is a O(~-]in=l B3i(x)) = O((nh) -2) a.s. (P) because the 

bootstrap expectation enclosed therein is smaller than 4[E*([{(Z:,T*,5~,y,x)[ 3) + 
(E* [~(Z~, T{*, 6", y, x)[)3] and [~(Z*, T{*, 6", y, x)[ are uniformly bounded (by 2/02), for 
(y,x) �9 [a, b] x I and for all i. The denominator in (4.45) is a O((nh) -3/2) a.s. (P) 

f ) /  ( n h )  - 2  .~ as a consequence of Lemmas 4.8a) and 4.9 (below). Thus, (4.45) is a ~ , ~ )  = 

O((nh)-U2) a.s. 

LEMMA 4.8. A s s u m e  (H1)-(H9), (H12)-(H15) and h = C n  -1 /5 .  Then, for x �9 I 
and y �9 [a, b], it follows: 

where 

a) s;2(y I x ) -  [ x) = o { \ \  nh ] a.s. (P) 

n 

s2(y I x) = (nh)(1 - F(y  [ x)) 2 E B~i(x) varr Ix ({ (Z i '  Ti, 8i, y, x)). 
i = l  

b) Moreover, i f  (H10) and (Hl l )  hold, then 

b*(y I x) - bn(y I x) = Op((nhSgd) 1/2) 

where 
n 

bn(y l x) = (nh)l/2(1 - F ( y l x ) ) E B h i ( x ) E Y I X ( ~ ( Z i , T i , 6 i , y , x ) ) .  
i = l  

The symbol Y I X after expectations, variances and probabilities means that the cor- 
responding statistical operators are conditioned on the observations (X1,X2, . . .  ,Xn) .  
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n 

nh(1 - F(y I x)) ~ ~ B2i(x)[E*~;2(Y, x) - EYIX~(y, x)] 
i=1 

n 
(4.47) + nh(1 - F(y I x)) ~ ~_, B~(x)[(EYIX~i(Y, x)) 2 - (E*~'(y,  x)) 2] 

i=1 

where we have used the notation: ~*(y,x) for ~(Z*,T;,6[,y,x) and ~i(y,x) for 
~(Zi,Ti,bi,y,x). 

E * ~*2r x" For (4.46) we have, after straightforward calculations, that  ~i /Y, ) = A~ + B~ 
2C*, where 

A* E* 
\ c~(z : lx )  ] = J o  C-~l-g) 

ix,) /o ix) 
- c2(y I x) + 2 c3(u I 

B* = E* Y l{T~<-~<Z;} dYl#(U Ix) 
c2(u Ix) 

~Y f_rC~g(u,Xi) ( f u Y ( l - [ I g ( v , X i ) ) d H # ( v , x ) ) d H , ( u , x ) ,  2 
(1 - . . g t ~ l  Xi))C'(u Ix) C2(v Ix) 

C~----E* [(l{z'<-Y'6-'=l}-~ (~'oY C(Z[ [x). ] C2(u,x) 

= ~;l(xi)~Y (Lg(?2 ' Xi)~Y HHIg(V [-x~i)) dYl~(?2 ' C2(u  , x) 

= 1 -~g(U i--Xi) C(z [X)~g(Z I Xi) C2(u Ix) 

and where &gl (x i )  -- f Lg(z I Xi)df-Ig(z I Xi). Making a similar analysis, we obtain 
that  EglX~2(y, x) = Ai + Bi - 2Ci, where 

Ai = E yIx ( l{Zi<-y'~=l} ~ : ~o y dgl#(U I Xi) 
\ c~(zi Ix) ] c2(~ Ix) 

- c 2 ( y l x  ) + 2  c~(~l  

((/0 Bi = E YIX Y l{r~_<~<z,} dH~(u Ix) 
c~(~ Ix) 

foy C(ulXi)  ( f Y  ( 1 - H ( v l  Xi))dHl#(V )dHl#(U x) 
= 2 (1 - g(u  t Xi))C2( u I x) C-ff-~i x') I x) I 

and 
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[1~, ~(Zi]-~) ) (L yl{Ti<u<Zi}''T'-l#" 

1 - H(u I Xi) C(v I Xi)C(v I x) C2(u Ix)  " 

Consequently, we can write 

n 

(4.48) (4.46) = O(1) E Bhi(X)[(A~ - A~) + (B* - Bi) + 2(Ci - C~) l a.s. (P) .  
i = l  

When h --* 0 and taking into account Lemma  4.2 and the  fact of C(y [ x) > 0 for 
(y, x) C [a, b] • I ,  we can argue as in (4.22) to show 

(4.49) sup 
[a,b] x I 

i=~ Bhi (x)(A* - Ai) = o  ) a.s. (P) .  

A slightly more difficult than  (4.49), because we need to add and substrate  the convenient 
terms, but  in a similar way, we obtain the same order for suP[a,b}xl ] )-~4n_1 Bhi(x)(B* - 
Bi)l and for sup[a,b]•192 I ~ i ~  1 Bhi(x)(C* - Ci)[. To s tudy these two lat ter  supremums we 
also have to use that ,  when h ~ 0 : 1  - H(y I x) > 0 for (y, x) E [a, b] x I~ and 

sup sup sup I/~g(y I ~ ) -  H ( y I ~ ) I  = o \-~-~] 
x E I  ~cC(x-h,xA-h) yC[a,b] 

a.s. (P) .  

(This result is similar to (4.43) in the  part icular  case of absence of censorship.) All these 
rates of a.s. convergence and (4.48) lead to 

l l l n n ~ l / 2 ~  
(4.50) (4.46) = O \ \  nh ] ] 

As regards (4.47), we have: 

a.s. (P).  

n 

(4.47) -- O(1) E Bhi(X)[(EYIX~i(Y' x) - E ~i (Y, x))(EYIX~i(Y, x) + ~i (Y, x))] 
i = l  

a.s. (P) 

where EYIX~i(y, x) - E*~*(y, x) is equal to 

o y dHl~(UIXO-dH~(ulX~) Y C(u XO-Cg(ul 

and EY}X~i(y, x) + E*~*(y, x) are uniformly bounded, for (y, x) C [a, b] x I and for all i. 
Therefore 

( n f) (4.47) _< o sup - . 

\[~,bl• i=1 
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Finally, by using a reasoning as the same in (4.22) and taking into account Lemma 4.2 
and the fact of C ( y l x  ) > 0 for (y,x) E [a,b] • I,  we arrive at (4.47) = O(( l -~)  1/2) a.s. 

8*2 . s2(y  O((l"n)ll2~ (P) This and (4.50) lead to n (Yl x ) -  I x ) =  ~nh  sa.s.  (P). 
b) We will use Theorem 3 in Hs and Marron (1991). To apply this result note 

that  

and 

b~(y Ix) = (nh)112(1 - F(y I x) )[EYlX~h(X) -- (I)(x)] 

where (I)(u)is defined in (4.44) and ~h(U) = 2 in=l  Bhi(U)~(gi,Ti,~i,y,x) denotes the 
kernel estimator of (I)(u) with bandwidth h. Furthermore, the hypotheses in this part of 
the present lemma allows for the application of the mentioned result. Thus, we have the 
convergence to 1 in probability of 

(4.51) 
E Y [ X [ ( n h ) - a ( 1  - F(y I x))-~(b~(Y I ~) - bn(y I~)) :] 

[h4(Cln-lg -5 + C294)] 

where C1 = d ~ V(x ) ( fK" (u )2 d u ) /4 m# (x )  and C2 = daK((m#(x)O(x)) t v  - 
(m#"(x)~(x))")2/16m#(x)  2 with V(u) = Var(~(Z,T, 5, y ,x)  I T < Z , X  = u) and 
dr< = f u~K(u)du. 

Reasoning as in the proof of Cao Abad's (1990) Theorem 3.18 (see also Cao Abad 
(1991)), one can see that  (4.51) leads to b*(y I x) - bn(y [ x) = Op(nhh(Cln- lg  -5 + 
C2g4)) 1/2, which is Op((nhhg4) 1/2) because the assumptions about h and g. 

LEMMA 4.9. Assume (H1)-(H9), (H12), (H14)-(H15) and h = Cn -1/5. Then, for 
x C I and y C [a, b], it follows that 

( ( l n n ' ~  1/2"~ 
a) bn(y I x) - b(y I ~) -- 0 tt\--~--U) ) 

b) ~ ( v  Ix) - ~ ( y  I x) = 0 (nh)il~ 

( (lnn)l/2 ~ 
= 0 n l / 5  ] a.s. (P) 

= 0 n2/5 ] a.s. (P). 

PROOF. a) We can write 

(4.52) b~(u I x)= b~(~ I x) + O (~,~(y I x)(lnn~ 1/2) \ nh ) a.s. (P) 

where bn(Y I x) = (nh)-l/2(1 - F(y  i X))?Tt#--I(x) E L I  K(~-~)42(Xi )  and (I)(u) is 

defined in (4.44), because the properties about the est imator ~h#(X) of m#(x) .  More- 
over, using standard calculations to obtain the bias of a kernel estimator with Nadaraya 
Watson weights, we have E1)n(y I x) ---- b(y I x) + 0(n-1/5) ,  which implies 

(4.53) /~n(Y I x) = b(y I x) + bn(Y I x) - Ebn(Y I x) + O(n-1/5). 
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- -  0{( lnn  "~1/2"~ Finally, [t)~(y [ x) Eb~(y I x)[ is ~,~-~/bj j a.s. (P), using Bernstein inequality on 

the variables Wni - EW~i, where W~i = 1 - f ( y  I x ) ( n h ) - l / 2 K ( ~ Z ~ ) ~ ( X i ) / m # ( x )  �9 
This, (4.52) and (4.53) lead to part a). 

b) The proof parallels completely that of part a). 

LEMMA 4.10. Assume (H1)-(H15) and h -- Cn -~15. Then, for x C I and y E 
[a, hi, it follows that 

sup - Fg(y Ix)) < t] - ( t - -  b(y I P,  0. 

PROOF. Due to Theorem 4.1 it suffices to prove that 

(nh)l/2(1 - F(y  I x)) E (Bh i (X)~(Z; ,  T;,  5;, y, x) 
t e n  i=1 

-Bgi(X)~(Zi,Ti, 5i,y, x)))~_ t] 

This convergence is obtained as a consequence of Lemmas 4.7, 4.8 and 4.9, applied jointly 
with the triangular inequality and with the following bound (see Lemma 2.4 in Cao Abad 
(1990) or Cao Abad (1991)): s u p z e e  I ~ ) N ( - ~ 2  ~2) -- ( ~  t/z--:~[~l J -- < lltCg(t)t[~176 X 

la2 - al I max(0.1,0.2) + lien I[oo {(0.10.2) -1 [cr2 - al I ( l~ I + 0.i -11 11 max(0.1, ~2)) + o111~2  - 

#1[}, where #1, #2, 0"1 > 0, 0" 2 > 0 are real numbers, CN is the density function of a 
standard normal r.v. and, for any real function f ,  lIfI[o~ -- supx If(x)[. 

PROOF OF THEOREM 4.2. It is immediate through Lemmas 4.6 and 4.10. 

Remark 5. Observe that we obtain weak instead of strong consistency in Theorem 

4.2 due, only, to the influence of bn(y [ x) - bn(y [ x) P O. 

If we had obtained a strong consistency result, instead of a weak consistency result, 
Theorem 4.2 would generalize the strong consistency results of bootstrap method as 
defined by Van Keilegom and Veraverbeke (1997) in case of absence of truncation, and 
as defined by Lo and Singh (1986) in case of absence of truncation and covariables. 
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