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A b s t r a c t .  Chen and B h a t t a c h a r y y a  (1988, Comm. Statist. Theory Methods, 17, 
1857-1870) derived the exact  d i s t r ibu t ion  of the  m a x i m u m  likelihood es t ima tor  of  
the  mean of an exponent ia l  d i s t r ibu t ion  and  an exact  lower confidence bound  for 
the  mean based  on a hybr id  censored sample.  In this  paper ,  an a l te rna t ive  s imple 
form for the  d i s t r ibu t ion  is ob ta ined  and is shown to be equivalent  to  t ha t  of  Chen 
and B h a t t a c h a r y y a  (1988). Not ing t h a t  th is  scheme, which would guaran tee  the  
exper iment  to  t e rmina t e  by a fixed t ime  T,  may  resul t  in few failures, we propose a 
new hybr id  censoring scheme which guarantees  a t  least  a fixed number  of failures in a 
life tes t ing exper iment .  The  exact  d i s t r ibu t ion  of the  MLE as well as an exact  lower 
confidence bound  for the  mean is also ob ta ined  for this  case. Finally,  th ree  examples  
are presented  to  i l lus t ra te  all the  results  developed here. 

Key words and phrases: Type- I  and  Type- I I  hybr id  censoring, exponent ia l  d is t r ibu-  
tion, order  s ta t is t ics ,  confidence bound,  life tes t ing.  

1. Introduct ion 

Consider a life testing experiment in which n units are put on test and successive 
failure times are recorded. Assume that the lifetimes are independent and identically 
distributed exponential random variables with probability density function (pdf) 

(1.1) f ( x ;O)  = 1 -x/o ~ e  - , x > _ O ,  0 > 0 .  

Let the ordered lifetimes of these items be denoted by XI:n, X2:n,.-.  ,Xn:n- Various 
interesting properties of these exponential order statistics are known in the literature; 
see, for example, David (1981), Arnold et al. (1992), and Balakrishnan and Basu (1995). 

Epstein (1954) considered a hybrid censoring sampling scheme in which the life 
testing experiment is terminated at a random time T~ -= min{Xr:n, T}, where 1 < r < n 
and T E (0, ~ )  are fixed in advance. As with a conventional Type-I censoring scheme, 
the termination point here is at most T, and so we will refer to this scheme as a Type-I 
hybrid censoring scheme (Type-I HCS). Motivated by the works of Bartholomew (1963) 
and Barlow et al. (1968), Chen and Bhattacharyya (1988) derived the distribution of 
the maximum likelihood estimator (MLE) of 0 and also an exact lower confidence bound 
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under such a Type-I HCS. As mentioned by these authors, Type-I HCS is used as a 
reliability acceptance test in MIL-STD-781 C (1977). For some more recent results on 
Type-I hybrid censoring, one may refer to Ebrahimi (1992), Jeong et al. (1996), and 
Gupta and Kundu (1998). 

Like conventional Type-I censoring, the disadvantage of Type-I HCS is that the 
inference results are obtained under the condition that the number of observed failures 
is at least one, and in addition there may be very few failures occurring up to the 
prefixed time T. We, therefore, propose an alternative hybrid censoring scheme that 
would terminate the experiment at the random time T2* = max{Xr:~, T},  where again 
1 _< r _< n and T E (0, oc) are fixed in advance. This scheme, which we shall call a 
Type-H hybrid censoring scheme (Type-II HCS), has the advantage of guaranteeing that 
at least r failures are observed. Such a censoring scheme may arise in a situation when 
the experimenter determines that at least r failures must be observed, and has prepaid 
for the use of the testing facility for T units of time. If the r failures occur before time 
T, then the experiment can continue up to time T to make full use of the testing facility. 
If the r-th failure does not occur before time T then he/she will naturally choose to 
continue until the r-th failure. Thus, in direct comparison between this Type-II HCS 
and Type-I HCS, there are the following advantages and disadvantages for both of them: 

Table 1. Comparison of Type-I and Type-II hybrid censoring schemes*. 

0 = 1 Type-I HCS Type-II HCS 

Expected Length Expected No. Expected Length Expected No. 
n r T 

of Life Test of Failures of Life Test of Failures 

10 4 0.5 .393 3.366 .586 4.569 

0.75 .455 3,825 .774 5.452 

1.5 .479 3.998 1.500 7.77 

6 0.5 .483 3.872 .863 6.063 

0.75 .659 4.960 .937 6.316 

1.5 .833 5.936 1.512 7.832 

8 0.5 .499 3.933 1.430 8.002 

0.75 .740 5.258 1.439 8.018 

1.5 1.245 7.379 1.684 8.390 

20 10 0.5 .480 7.679 .689 10.190 

0.75 .615 9,369 .804 11.184 

1.5 .669 9 .997 1.500 15.540 

13 0.5 .499 7.862 1.006 13.007 

0.75 .728 10.409 1.027 13.143 

1.5 .995 12.914 1.510 15.623 

16 0.5 .500 7.869 1.514 16.000 

0.75 .749 10.549 1.515 16,003 

1.5 1.344 15.027 1.671 16.510 

*Note that the same results will hold for any 0 when we replace T by 0T and expected length by 0 
(expected length), 
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�9 In the case of Type-I HCS, the termination time is fixed by the experimenter which 
is a clear advantage. However, if 0 (the unknown mean lifetime) is not small compared 
to T (the pre-fixed termination time), then with a high probability the experimentation 
would terminate at T. In addition, there is a disadvantage that far fewer than r failures 
may be observed which may have an adverse effect on the efficiency of the inferential 
procedure based on Type-I HCS. 

�9 In the case of Type-II HCS, the termination time is unknown to the experimenter 
which is a disadvantage. In the case when 0 is not small compared to T, with a high 
probability the experimentation would terminate at X~:n thus resulting in a longer life- 
test. However, there is a clear advantage that more than r failures may be observed 
which will result in efficient inferential procedures based on Type-II HCS. 

In Table 1, we present a comparison of these two hybrid censoring schemes for some 
selected choices of the parameters. The values of the expected length and expected 
number of failures for the two hybrid censoring schemes in the table give supportive 
evidence to the advantages and disadvantages of the Type-I and Type-II hybrid censoring 
schemes described above. 

In this paper we present, in Section 2, an alternative simpler derivation and expres- 
sion for the distribution of the MLE of 0 and the resulting lower confidence bound under 
Type-I HCS. The expression obtained, which is shown to be algebraically equivalent 
to the one given by Chen and Bhattacharyya (1988), is computationally simpler and is 
expressed in terms of the incomplete gamma function. In Section 3, we derive the cor- 
responding results for a Type-II HCS. Some illustrative examples are given in Section 4 
wherein the effects of considering a hybrid censored sample as a conventional Type-II 
censored sample are examined in terms of confidence coefficients. 

2. Simplified results for Type-I hybrid censoring 

Under the Type-I HCS, the MLE of 0 is given by 

if T < X~:~ 

if X~:~ <_ T, 

where D denotes the number of observed failures that occur before time T. To derive 
the moment generating function of 0", Chen and Bhattacharyya (1988) considered the 
following expression: 

(2.1) 
r - -1  n 

S o ( e ~ )  = E Eo( e~O [ n = d)Po,~(D = d) + E Eo(eWO ] n = d)Po,c(D = d), 
d =  1 d = r  

where Po,c(D = d) is the conditional probability that D = d given that D _> 1. They 
obtained a rather complicated expression for the second term in (2.1) involving a triple 
summation. The values of D in the first sum correspond to all possible values when 
T < Xr:n. We can simplify their results for the second sum by simply conditioning on the 

event Xr:n <_ T, i.e., we replace the second sum by Eo(e w~ [ X~:n <_ T)Po,c(Xr:n <_ T). 
Given the event {Xr:n ~_ T),  the joint density function of Xl:n, X2:n,..  �9 , Xr:n is given by 
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n! r 
f (Xl ,X2, . . .  ,xr I Xr:n < T) = (n - r)!Po(Xr.n < T) H f (x j ){1  - F(x~)} n- r  

�9 - -  j = l  

O < X l < ' " < X r  < T .  

Hence, we get 

Eo(e ~0 I XT:n <_ T)Po,c(Xr:n <_ T) 

= (1 -- e-nT/O) -1 n! 
(n - r)!W 

.~T~oX~...~oX2e-1/O(1-Ow/r){~'[=~xiT(n-r+l)x.}dXl...dx r 

(1 -~T/O - in ! (1 - -Ow/r )  -(~-1) 
= - e  ) ( n - ~ - - 1 - ~ . , e  

�9 .~T{1 -- e-1/O(1-Ow/r)xr}r-le-1/O(1-ew/r)(n-r+l)Z~dxr 

: ( 1 - - e - n T / ~  -r  

r - i  (__1) k ( r - - 1 ) {  1 _e_(i_Ow/r)(n_r4.kTi)T/O} ' 
" ~ n - r + k + l  k k=O 

where the second equality is obtained from the identity 

/?/? /?o 1 
. . .  ~=1 X* dXl . . "dXr-1 --~ 

(1 -- e-aXe) r-1 
a T - l ( r -  1)! ' 

and the last equality is obtained by expanding the first term in the last integral binomi- 
ally. Combining this last expression with the results of Chen and Bhattacharyya (1988) 
for the first term in (2.1) gives the following theorem. 

THEOREM 2.1. Conditional on D >_ 1, 
given by 

A 

the moment generating function of 0 is 

(2.2) ,1 
[ d = l  (1 - wold) d (1 - qO-Ow/d))d 

�9 k=o (_1) k ( rk l ) { l_q( l_Ow/T) (n_r+k+l )}]  

1 
W < ~  

where q = e -T/O. 
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Remark 2.1. The expression in (2.2) is equivalent to the expression of Chen and 
Bhattacharyya (1988), and the details of this equivalence are given in the Appendix. 

Remark 2.2. Another way of viewing the difference in approach leading to the 
simplified expression in Theorem 2.1 is as follows. Chen and Bhattacharyya (1988) 
obtained the expression in (2.1) by viewing the random variable D as a binomial random 
variable with pmf Po(D = d) = (~){F(T)}d{1 - F (T ) }  n-d, d = 0, 1,. . .  ,n. However, 
under the proposed censoring scheme, D can really only take on values from 0 to r, 
since the experiment is terminated (at the latest) immediately following the r-th failure. 
Therefore, our approach is equivalent to viewing the random variable D as having the 
following pmf: 

I ~ n d ) { F ( T ) } d { 1 - F ( T ) }  n - d  for d = 0 , 1 , . . . ,  

for d = r .  

r - 1  

THEOREM 2.2. Conditional on D > 1, the pdf of ~ is given by 

(2.3) f~(x) = (1 - qn)-I 
r - l d (  d )  r 

d=l  k=O 

( r  n ) ~  (-1)kq ' ~ - r + k ( ; - i ) g (  T* -_r ) ]  + r  k=l n -  r + k 1 x -  ,r; (~,r 

0 < x < nT,  

where Ck,d = (--1)k(~)(d)q n-d*k, T~, d ----(n--d + k)T/d ,  and 

f O~ p xP_le_et x x > 0  

otherwise. 

PROOF. By expanding (1 - q(1-Ow/d))d binomially, splitting the second term in 
r--1 ]~k[r-l~ 1 __ (2.2) through 1-q(1-Ow/r)(n-r+k+l), and using the identity ~-~k=o(--.j ~ k ] ~-+n--r+l 

1 - ~ ,  we get 

MO(w) = (1 - qn)--I E Ck,dew(n-d+k)TId(1 -- Owld)-d + (1 -- Owlr) - r  
k d = l  k=O 

r ~n-r-l-k ] 
+ r ( n )  k~__l(--i)k (k  - 11)~=rTkeW(n-r+k)T/r ( i - -Ow/r)  - r "  

The proof is completed upon noting that ewA(1 -- w/ve) -v is the moment generating 
function of the random variable Y + A, where Y has the pdf g(x; a, p). 
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Remark 2.3. The simplified representation of the pdf of 0 given in Theorem 2.2 
allows one to see how the results for Type-I hybrid censoring reduce to the results for 
conventional Wype-II censoring. Indeed, if we let T ~ 0% then f~(x) -- g(x; r~, r), and 

we get the well-known result in this case that ~-~ has a chi-square distribution with 2r 
degrees of freedom. 

C O R O L L A R Y  2.1. We have 

I t - 1  d 

Eo('O) = (1 - qn)-e I E  E Ck,d(O -{- T~, d) § 0 
I_d=l k = 0  

+r(n)~( -1 )kqn-r+k(k - l l ) (O+T~c , r ) ]  
n-7-T  

and 

EO(~ "2) = (1 - qn)-I [ E E  Ck,d - ~ - ( 1  § d) § 2T;,dO § (T• ,d)  2 

k d = l  k = 0  

§ 2 4 7  

~ ( - - 1 ) k q n - r + k ( ; - - l l ) { ~  } ]  
"k=l n - - r T k  (1 + r) + 2~r;,~0 + (T;,r) 2 . 

By integrating the density function in (2.3), we obtain the following expression for 
Po(O > b) which can be used to obtain a lower confidence bound for 0, as illustrated in 
Section 4: 

COROLLARY 2.2. 

[~1 ~ Ck,d r(d, r(r, rb/O) 
Po(O> b) = (1 - qn)-I  E (d - - l ) !  Ad(T~'d)) + (r -- 1)! 

L d = l  k=O 
r ( n ) ~  (--1)kq n-r+k (;--11) ] 

+ ( r - -  1)-----~ n:r -+-k  F(r'Ar(T;:'r)) ' 
k=l 

where Ak(a) = ~ (b - a), (x) = max{x, 0}, and F(a, z) = fz ~ ta-le-tdt is the incomplete 
gamma function. 

Remark 2.4. One can also express Po (0 > b) in terms of chi-square integrals as in 
the case of conventional Type-I censoring (Bartholomew (1963)). 

3. Results for Type-ll hybrid censoring 

In this section, we derive analogous results for Type-II HCS, wherein the experiment 
is terminated at the random time ~r~ = max{Xr:n,T}. As in Section 2, let D be the 
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number of failures up to time T. Then the likelihood function is given by 

(nnWr)!e 1/o{r[=lx,+(~ ~)xr} if D = 0 , 1 , . . . , r - 1  
L(OI x)= 

)~e - 1 / ~  if D = r , r + l , . . . , n  

and the MLE of 0 in this case is 

{ 1 ~  r x i + ( n - r ) x ~ l  

J 
if D = 0 , 1 , . . .  , r -  1 

if D = r , r  + l , . . .  ,n. 

THEOREM 3.1. The moment generating function of 0 is given by 

(3.1) Mo(w ) = ( 1 - O w / r ) - ~  E q(n-d)(1-Ow/r){1--qO-O~/r)Id 
d=0 

n ( d )  + E q(n-d)(1-Ow/d){1 -- q(1-Ow/d)}d(1 -- Ow/d)-d' 
d = r  

r 
w<-~. 

PROOF. In this case, D is binomial and takes on values from 0 to n. Again, we 
condition on the values of D, but this time the precise values of D must be specified in 
both cases, 

r--1 n 

Mo(w) = E E~176 [ D = d)Po(D = d) + E E~176 [ D = d)Po(D = d). 
d=0 d = r  

Then, we note that  for d = 0 ,1 , . . .  , r -  1, the conditional density function of 
XI:n,X2:~, . . .  ,Xr:= given D = d is given by 

n! r 

f ( x l , x2 ,  .. . ,xr [ D = d) = ( n -  r)!Po(D = d) H f (x j ){1  - F(xr)}~-~'  
j= l  

0 < X 1 < . . .  < X d < T < X d +  1 < . . .  < x r < (x);  

also, for d = r, r +  1 , . . .  , n, the conditional density function of Xl:n, X2:m. . .  , Xd:n given 
D = d is given by 

f (x l ,X2 , . . .  ,Xd [ D = d) = 
n! d 1--[ f (x j ){1  F(T)}  ~-d, 

(n - d)!Po(D = d) 11 
j= l  

O < x l  < . . . < x d < T .  
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Hence, we have 

Mo(w) 
n! r - 1  

(n 
d=0 

/ j  ~~176 loT ~xa e-1/O(1-Ow/r){E '-, ~c'+(n-r)xr}dx .dxddXr . .dXd+ 1 
r - - 1  

n! T 
+ ~ ,  (n_d),Od fo ~xa"'~X2e-1/O(l-Ow/d){E ~='x'+(n-d)T}dxldx2""dxd. 

d=r 
Straightforward integration then completes the proof. 

By proceeding along lines similar to that of Theorem 2.2, we obtain the following 
density function for 0. 

T H E O R E M  3.2 .  The pdf of "0 is given by 

r 

r - 1  d 

d = l  k=0  d=r k=0 

where Ck, d and g are as defined earlier, and 

( n - d + k ) T / r  if d--O, 1 , . . . , r - 1  
ak'd= (n d+k)T/d  if d = r , r + l , . . . , n ; k = O ,  1,2, . . . ,d.  

Remark 3.1. As with Type-I hybrid censoring, the results in Theorem 3.2 also 
reduce to the case of conventional Type-II censoring. This time, we let T -+ 0 to get 

fo(x) -- g(x; ~, r), and hence the well-known result that ~-~ has a chi-square distribution 
with 2r degrees of freedom. 

COROLLARY 3.1. The mean and variance of "0 are given by 

E0(0) = e +  B, 

V~ + I E E C k , a +  E k,a~ +~~ECk,aa2k,a-B2,  
r d = l  k=O d=r k=O d=O k=O 

where 

n d 

B = E ~-~ Ck,dak,d. 
d=O k=0 
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Remark 3.2. From the above corollary, we see that,  unlike with conventional Type- 
II censoring, ~'is not unbiased in the case of Type-II hybrid censoring. Furthermore, if we 
let T -~ 0 in the above expressions, then we get the well-known results for conventional 
Type-II censoring, i.e., Be(O) = 0 and V(0") = 02/r. 

Using the same notation as in the previous section, we get 

COROLLARY 3.2 .  

n d Ck,d 
r-, d Ck,d r(r, Ar(ak,d)) + E E (d -  1)! P c ( 0 >  b) = E E  ( r -  11-----~ 
d=0 k=0 d=r k=0 

- - r ( d ,  Aa(ak,d)). 

4. Illustrative examples 

Assuming that Po(O > b) is a monotone increasing function of 0, a 100(1 - c~)~0 

lower confidence bound for 0 is obtained by solving the equation a = PoL (0 > 0obs) for 
0L. Due to the complex form of Po(~ > b), Chen and Bhattacharyya (1988) were unable 
to analytically prove monotonicity. Although we have presented a simpler form of the 
function, we are also unable to establish the required monotonicity. 

Illustration 1. Tables 2 and 3 give numerical values of p[ = 19o(0 > b) for Type- 
I hybrid censoring, and PlI -- Po(O > b) for Type-II hybrid censoring which support 
the conjecture that the function is indeed increasing for both types of hybrid censoring 
scheme. 

Table 2. Values of p = Po(~ > b) wi th  

b = 3 . 0 ,  T = 2 . 0 ,  n = 1 0 a n d r = 5 .  

Table  3. Values of  p = Po (~ > b) wi th  

b = 4.0, T = 4.0, n = 15 and  r = 10. 

0 PI PII 0 PI PII 

1 .0011 .0011 1 ~ 0 ~ 0 

2 .1416 .1523 2 .0072 .0053 

3 .4537 .4780 3 .1662 .1503 

4 .6864 .7111 4 .4846 .4681 

5 .8194 .8397 5 .7340 .7256 

6 .8922 .9079 6 .8714 .8686 

7 .9328 .9448 7 .9383 .9378 

8 .9564 .9656 8 .9698 .9701 

9 .9707 .9778 9 .9848 .9853 

Note that values of P1 were calculated by Chen and Bhattacharyya (1988) for the 
same values of b, T, n, and r given in Tables 2, a n d  3. However, possibly due to the 
algebraic complexity of their expression for Pe(0 > b), it appears that many of their 
numbers are incorrect. It is for this reason that we have included these calculations 
here. 

Illustration 2. Chen and Bhattacharyya (1988) considered data  from Barlow et 
al. (1968) which was based on n = 10 items put on test in a time censored experiment 
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with T = 50, resulting in the following observations: 4, 9, 11, 18, 27, 38. By taking r -- 4, 
T = 50; r = 6, T = 50; and r = 8, T = 50, they used this data set to obtain the 
corresponding Type-I hybrid censored data and resulting lower confidence bounds for 0. 
Again, we have repeated the calculations in Table 4 below because it appears that  some 
of their numbers are incorrect. In addition, we have included the standard errors of the 
MLE's calculated using Corollary 2.1. 

Table  4. Lower  confidence b o u n d s  for 0. 

r Oobs s.e. a = .05 a = .1 

4 37.50 19.78 19.35 22.45 

6 43.17 23.64 24.64 27.93 

8 51.17 31.11 28.46 32.12 

What  happens if a hybrid censored sample is treated as an ordinary Type-II censored 
sample? Since the analysis based on Type-II censoring is easier, this is often done; see, 
for example, Cohen (1991, 1995). In this case, a 100(1 - a)% lower confidence bound 

2r0 for 0 is given by x~-E--Z~ ~ " For the data  used in Table 4, r = 6, 0 - -  43.167, the lower 95% 
2r.~ 

confidence bound is 24.636, and the 90% lower confidence bound is 27.925 which agree 
to 3 decimals with the confidence bounds in Table 4. But suppose that  we treat the case 
r -- 8 as a conventional Type-II censored sample. Then the resulting lower confidence 
bounds are the same as for r = 6 (i.e., 24.636 and 27.925). To obtain the true (exact) 
confidence coefficient assuming thatAtheAdata came f ~ m  a Type-I hybrid censored sample 
with r = 8, we simply calculate Pa (0 > 0obs), where 0obs is the hybrid censored MLE, and 

a is the proposed lower confidence bound. In this case, since P24.636(~ > 51.17) = .0178, 
the 95% lower confidence bound is in fact a 98.22% lower confidence bound, and the 90~0 
lower confidence bound is in fact a 95.6% lower confidence bound. 

As noted earlier, as T ~ c~ the results for Type-I hybrid censoring reduce to results 
for conventional Type-II censoring. Therefore, when T is large, or equivalently when 
there is a high probability that  Xr:n < T, we would expect the results for Type-I hybrid 
censoring to agree closely with the results for conventional Type-II censoring. Indeed, 
when r -- 6 in the above example, 

10 

i - - 6  

By taking 0 ---- ~ =  43.167, we get P(X6:10 < 50) ~ 82.5%. Since this probability is high, 
it is reasonable that  the results agree quite closely with conventional Type-II censoring 
in this case. But when r = 8, P(Xs:10 < 50) ~ 20.8%. This low probability explains why 
the lower confidence bounds obtained by regarding the sample as a conventional Type-II 
censored sample gives a confidence level which differs from the exact confidence level. 
In this case, if you disregard the hybridness of the sample, then the resulting confidence 
interval becomes too liberal. 

Illustration 3. For an example using a Type-II hybrid censoring scheme, we con- 
sider the data  given by Bartholomew (1963) consisting of n -- 20 items being put on a 
life test for a prefixed time of 150 hours resulting in the following observed failure times: 
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3, 19, 23, 26, 27, 37, 38, 41, 45, 58, 84, 90, 99, 109, 138. In order to illustrate results for 
both cases of Type-II hybrid censoring, we suppose that  a censoring time of T = 50 was 
used, and we calculate a lower confidence bound for the cases r = 7, and r = 15. When 
r = 7, the experiment is continued until time T = 50 which would result in the first 9 
failure times being observed. If r = 15, then the experiment is terminated at the 15th 
failure. The resulting MLE's along with their standard errors calculated using Corollary 
3.1, and the lower confidence bounds are presented in Table 5. 

Tab le  5. Lower  conf idence  b o u n d s  for 0. 

7" 0ob s s.e. c~ = .05 ct = . 1 

7 89.89 30.96 53.56 59.54 

15 101.8 26.28 69.77 75.86 

In this case, suppose that  we treat the Type-II hybrid censored sample as a conven- 
tional Type-II censored sample. When r = 7, since 9 failure times would be observed, the 
95% lower confidence bound for 0 is given by 2x9x89.s9 = 56.046, and the 90% lower confi- 

28.8693 

dence bound is 62.256. Since P56.046(0 > 89.89) = .0684, and P62.256(0 > 89.89) = .1288, 
the resulting 95% lower confidence bound is in fact a 93.16% lower confidence bound, 
and the 90% lower confidence bound is a 87.12% lower confidence bound. When r = 15, 
the 95% and 90% lower confidence bounds agree to three decimals with the values given 
in Table 5. 
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Appendix 

To evaluate the second term in (2.1), Chen and Bhattacharyya ((1988), p. 1868) 
used the following integral expression: 

Eo( e ~ s ~  I D = d) 

c(r, d) 
pal(1 -- wr0)(~-U 

xLT~e-{1-w~O(n-r+l)}Y/O{1 _ e-O-wrO)y/O}r-1  {e-y/O _ e - T / O } d - r d y ,  

where C ( r , d )  - d! (r-1)~(d-r)!' P = 1 -- q, Wr ---- w / r .  They first evaluated this integral 
by using two binomial expansions in the integrand, and then summing the resulting 
expression over d (and multiplying by Po,c (D = d)), giving a triple summation expression 
for the second term in Theorem 2.1. However, if we calculate the second term in (2.1) 
by summing over d first (before evaluating the above integral), and then interchange the 
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summation with integration, we obtain 

n 

E o ( e  ~rs~ [ D = d ) P o , c ( D  = d) 
d=r 

: (X_qn)-l~oT~ (nd) qn-dC(r,d) 

• ~ e - { ! - w r O ( n - r + l ) } u / O { 1  _ e - ( 1 - w ~ o ) y / o } ~ - l { e - y / o  _ e-T/O}d-rdy. 

We then evaluate the sum over d, expand {1 - e - ( 1 - ~ r ~ 1 7 6  ~-1 binomially and integrate 
the resulting expression to obtain the second term in Theorem 2.1. 

An alternative way to establish the equivalence is to consider directly the triple 
summation occurring in the second term of Lemma 2.1 in Chen and Bhattacharyya 
(1988). Then we simply need to interchange the summation operators with respect to d 
and j, and simplify the resulting expression. 
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