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A b s t r a c t .  Regression function estimation from independent and identically dis- 
tributed bounded data is considered. The L~ error with integration with respect to 
the design measure is used as an error criterion. It is shown that the kernel regression 
estimate with an arbitrary random bandwidth is weakly and strongly consistent for 
all distributions whenever the random bandwidth is chosen from some deterministic 
interval whose upper and lower bounds satisfy the usual conditions used to prove 
consistency of the kernel estimate for deterministic bandwidths. Choosing discrete 
bandwidths by cross-validation allows to weaken the conditions on the bandwidths. 
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1. Introduction 

1.1 Nonparametric regression function estimation 
Let (Z ,  Y),  (Xl ,  ]I1), (X2, II2) , . . .  be independent  identically d is t r ibuted  lR d • IR- 

valued r andom vectors with E Y  2 < co. In regression analysis we want to  es t imate  Y 
after  having observed X,  i.e. we want to de termine  a funct ion f with f ( X )  "close" to  Y. 
If "closeness" is measured  by the mean  squared error,  then  one wants to find a funct ion 
f*  such tha t  

(1.1) E { l f * ( X  ) - YI 2} = m i n E { I f ( X )  - YI2}. 
f 

Let  re(x) := E { Y  I X = x} be the regression funct ion and denote  the dis t r ibut ion of X 
by it. T h e  well-known re la t ion which holds for each measurable  funct ion f 

(1.2) E { I f ( X )  - YI 2} = E { I m ( X )  - YI 2} + / I f ( x )  - m(x)  12 it(dx) 

implies tha t  m is the solut ion of the  minimizat ion problem (1.1), E { I m ( X  ) - YI 2} is 
the min imum of (1.2) and for an a rb i t ra ry  f ,  the  L2 error  f I f (x)  - m(x)12it(dx) is the  
difference between E { ] f ( X )  - YI 2} and E { ] m ( X )  - YI2}. 
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In the regression estimation problem the distribution of (X, Y) (and consequently 
m) is unknown. Given a sequence :Dn = {(X1, Y1),.- . ,  (Xa, Yn)} of independent obser- 
vations of (X, Y), our goal is to construct an estimate ran(X) = ran(x, Z)a) of re(x) such 
that the L2 error f [ma(x) - m(x)]2#(dx) is small. 

1.2 Universal consistency 
A sequence of estimators (mn)nE ~ is called w e a k l y  un ive r sa l ly  cons i s t en t  if 

E 

for all distributions of (X, Y) with E Y  2 < co. It is called s t r o n g l y  un ive r sa l l y  con-  
s i s ten t  if 

l ima(x)- a.s. m(x)[2#(dx) 0 

for all distributions of (X, Y) with E Y  2 < oc. 
C. J. Stone (1977) first pointed out that  there exist weakly universally consistent 

estimators. He considered ka-nearest neighbor estimates 

n 

(1.3) mn(x) = E Wn,i(x)" Y~ 
i=l 

where 

(1.4) Wn,i(x  ) ~- Wn,i(X , X l , . . . ,  X n )  

is one if Xi is among the kn-nearest neighbors of x in ( X 1 , . . . ,  Xn} and zero otherwise, 
and where kn ---* oo and ka/n  ~ 0 (n ~ oc). The strong universal consistency of nearest 
neighbor estimates has been shown in Devroye et al. (1994). 

Estimates of the form (1.3) with weight functions (1.4) are called local averaging 
estimates. The most popular examples of local averaging estimates are kernel estimates, 
where 

x - Xi 

EJ~=I K ( x - X j  

(0/0 = 0 by definition) for some function K : IR d --~ lR+ (called kernel) and some ha > 0 
(called bandwidth). 

The weak universal consistency of kernel estimates has been shown under certain 
conditions on ha and K independently by Devroye and Wagner (1980) and Spiegelman 
and Sachs (1980). The strong universal consistency of kernel estimates for suitably 
defined kernels and sequences of bandwidths has been shown by Walk (2002b). Various 
results concerning consistency of variants of kernel estimates can be found in Devroye 
and Krzy~ak (1989), Gybrfi and Walk (1996, 1997) and Gybrfi et al. (1998). 

1.3 Automatic kernel estimates 
The consistency results mentioned above were proven for sequences of bandwidths 

which do not depend on the data. In order to achieve the optimal rate of convergence 
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one has to choose these sequences in dependence of the smoothness of the regression 
function. UsuMly this is not possible in applications because there the smoothness of 
the regression function is unknown. 

Therefore one often uses the data to generate a random bandwith H = H(Dn)  E JR+ 
and considers the kernel regression estimate 

(1.5) ~Ytn(X ) : 

which we shall call automatic kernel regression estimate. A list of various methods to 
choose a random bandwidth H = H(:Dn) E lR+ can be found e.g. in Chapter 4 of Fan 
and Gijbels (1996). 

The aim of choosing a random bandwidth is to automatically adapt to the (smooth- 
ness of the) regression function. Usually one tries to show that one has achieved this 
goal by proving that the estimate achieves the corresponding optimal rate of conver- 
gence under various regularity assumptions (e.g. on the smoothness of the regression 
function). In the case that, unknown to the statistician, m is Lipschitz continuous with 
Lipschitz constant C and X and Y are bounded, choice of H from a finite, but  growing 
set especially by splitting the data or by cross-validation, yields the convergence rate 
O(c2d/(d+2)n-2/(d+2)), see Hamers and Kohler (2003), Walk (2002a), and GySrfi et al. 
(2002), Theorem 8.1. This rate is optimal according to Stone (1982). Unfortunately the 
results on optimal convergence rate of automatic regression estimates do not imply that 
the estimates are consistent if these conditions are not satisfied. 

In Theorem 2.1 below we prove a general result which states that  if one restricts 
the choice of the random bandwidths to some fixed deterministic intervals which satisfy 
some mild conditions then one gets for all possible choices of H a kernel estimate which 
is weakly and strongly consistent for all distributions with bounded Y. In the case that 
the bandwidths are chosen by cross-validation from (large) discrete sets, we show in 
Theorem 2.2 below that these conditions can be weakened. 

The proof of Theorem 2.1 is based on techniques introduced in Kohler (2002) in the 
context of the proof of universal consistency of local polynomial kernel estimates. As 
mentioned in Remark 3 there, these results can be extended to data-dependent band- 
widths. In this paper we show how the arguments there can be simplified in the case of 
kernel estimates. 

The concept of cross-validation in statistics was introduced by Lunts and Brailovsky 
(1967), Allen (1974) and M. Stone (1974). Strong consistency of cross-validated kernel 
regression estimates and weak consistency of cross-validated nearest neighbor regression 
estimates were obtained by Wong (1983) and Li (1984), respectively, for fixed design and 
continuous regression function. As to further literature on cross-validation we refer to 
Hs (1990) and Simonoff (1996). 

Related results concerning partitioning, least squares and penalized least squares 
estimates can be found in Nobel (1996), Kohler (1999) and Kohler and Krzyiak (2001), 
resp. In the context of density estimation and classification corresponding results have 
been shown by Devroye and Gy5rfi (1985) and in Chapter 25 of Devroye et al. (1996), 
resp. Various methods for the automatical choice of parameters of density estimates are 
described in Devroye and Lugosi (2001). 
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1.4 Notat ion 
IN, ]R and ]R+ are the sets of natural ,  real and nonnegative real numbers,  respec- 

tively. For L > 0 and z �9 IR set 

L if z > L ,  

TLZ = z if - L  < z < L, 

- L  if z < - L .  

The natura l  logari thm is denoted by log(-), the euclidean norm of x E IR d is denoted 
by Hx]I. Set S0,r = {x e ]R d : ]IX]] < r}, X e IR d, r > 0. For h > 0, z �9 IR d and 
K : IR d ---+ IR define 

K h ( z )  = K -~ . 

1.5 Outline 
The main results axe s ta ted  in Section 2 and proven in Sections 3 and 4. In the 

Appendix a list of some results of empirical process theory, which are used in the proofs, 
is given, together with specialized McDiarmid and Hoeffding inequalities. 

2. Main results 

THEOREM 2.1. Let [ (  : lit+ -~ JR+ be a monotone decreasing and left-continuous 
funct ion  satisfying 

R(+o) > o, 
t d K ( t  2) --~ 0 

Define the kernel K : IR d --~ IR by 

-- R(liulI 2) 

a s  t --~ o o .  

(u c Re). 

Let m n  be the kernel estimate defined by (1.5) with the data-dependent bandwidth H = 
H(TPn) satisfying 

(2.1) H e [hmin(n), hmax(n)] 

for  some nonnegative numbers hmin(n), hmax(n) such that 

(2.2) hmax(n) --~ 0 

and 
(2.3) nhdin(n)  ~ oc 

log n 

Then 

n ----+ o o )  

n ---o o o ) .  

and 

E / Iron(X) - m(x ) I2# (dx )  ~ 0 

Iron(X) - -  m(x)12p(dx)  -+ 0 

n --~ (x)  ) 

(n o0) a . s .  
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for all distributions of (X,  Y )  with [Y[ < L < oc a.s. for some L > O. 

The proof of Theorem 2.1 is given in Section 3. The main idea is as follows: In 
the first part of the proof we approximate [rnn(x) - rn(x)[ 2 via a generalization of the 
classical Lebesgue density theorem by 

f Imp(x) - m ( ~ ) ? K . ( x  - z)~(dz) 
f KH(X - z )p(dz)  

E { [ Y -  m ~ ( x ) [ 2 K H ( x - -  X )  [ D~} - E { ] Y -  m ( X ) [ 2 K H ( x -  X )  [ D , }  

f KH(X -- z )#(dz)  

In the remaining parts we use that  the kernel estimate minimizes an empirical version of 
the latter term, which enables us to analyze the kernel estimate similarly to least squares 
estimates. 

In Theorem 2.1 above we do not assume anything about the method used to define 
the data dependent bandwidths H besides H C [hmin(n), hmax(n)]- In particular, in 
Theorem 2.1 it is allowed that  the method chooses the worst bandwidths in that  inter- 
val. Therefore it is clear that  condition (2.2) and (up to logarithmic factor) (2.3) are 
necessary. We show next that  in case of cross-validation the conditions can be weakened 
to the assumption that  the set of possible bandwidth sequences contains a sequence (h*) 
satisfying the minimal condition h* --* 0, nh *d ~ c~ (n ~ c~) for strong consistency. 
Due to technical difficulties in the proof we assume that  the sets of possible bandwidths 
are finite. In applications minimization over a finite set of possible bandwidths is usual. 

Let Qn C (0, c~) be a finite set of possible bandwidths, and for h E Q~ set 

n X 
m(2)(x) = E~=,  K h ( x -  , ) ~  

E i = I  K h ( X  -- X i )  

(i = 1 , . . . , n ) .  

The cross-validated regression estimate is defined by m (H") (x) with data-dependent 
bandwidth 

n 

(h) 
Hn = arg min E ( m ~ #  (Xi) - Yi) 2. 

hEQn 
i=1 

THEOREM 2.2. Let K : ]R d ---+ JR+ be a boxed kernel, that is, assume that K is 
measurable and satisfies 

bIso,~ <_ K <_ PISo,R 

for some 0 < r < R < co, 0 < b < p < c~. Let rn (H~) be the cross-validated regression 
estimate with 

(2.4) IQnl = O(n ~) /or some ~ > 0, 

(2.5) h~ ~ 0, nh *a --* cx~ (n ~ c~) for some 

Then 

and 

E i Im(~H~)(x) - m(x)12~(d~) -~ 0 

h~ ~ Q,~ (~ ~ ~ ) .  

n ~ (x)) 
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(2.6) J Im(H")(x) - m(x)12#(dx) --+ 0 (n ~ oe) a.s. 

for  all distributions of (X,  Y )  with IY[ < L < oo a.s. for  some L > O. 

In the proof of Theorem 2.2, which is given in Section 4, (2.6) is shown by an 
investigation of the left-hand side of (2.6) centered by a conditional expectation term 
and of this expectation term. For the first part we use a variant of the Efron-Stein 
inequality, for the second part we use the optimality of H , ,  the Hoeffding and McDiarmid 
inequalities, and the well-known weak universal consistency of kernel estimates with 
deterministic bandwidths. 

Remark 1. We briefly compare Theorems 2.1 and 2.2. The conditions on the kernel 
are slightly different in both theorems. Theorem 2.2 deals with a special data-dependent 
bandwidth device (cross-validation) and has a restriction for the numbers of possible 
bandwidth values, but  requires with (2.5) the weakest possible condition. 

Remark 2. We want to stress that in Theorems 2.1 and 2.2 there is no assumption 
on the underlying distribution of (X, Y) besides [Y[ < L < cr In particular it is not 
required that  X have a density with respect to the Lebesgue-Borel measure or that  m 
be (in some sense) smooth. 

Remark 3. Theorem 2.1 still holds if one replaces (2.1), (2.2) and (2.3) by 

n �9 H d 
(2.7) H ~ 0 a.s. and �9 oo a.s. 

log n 

Indeed, proceeding as on pages 158-159 in Devroye and Gyhrfi (1985) one can conclude 
from (2.7) that there exists hmin(n), hmax(n) �9 1R+ which satisfy (2.2), (2.3) and 

I{Hqtlh,.i.(n),hmax(n)] } --* 0 

From this and 

Iron(x) - m(x )  12#(dx) 

a . S .  

2 / 
<_ 4L I{H~[hmi,(n),hm~x(n)] } -~ Im~(x) - m(x)[2#(dx)  " I{He[hmi.(n),h,~x(n)l} 

one gets the assertion as in the proof of Theorem 2.1. 

3. Proof of Theorem 2.1 

In the proof we use the following lemma of Greblicki et al. (1984) 

LEMMA 3.1. Assume 

cxG(llxlI) K(x) < c2a(llxll), 
a (+0)  > 0 
taG(t) --* 0 as t -~ cc 

Cl,C2 > 0 
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where G is a nonincreasing Borel function on [0, co). Then for all tt-integrable functions 

f 
lim f K ( (x  - z ) /h ) f ( z )p(dz )  
h~O f K ( ( x -  z) /h)#(dz)  = f ( x )  mod #. 

We will also need the following bound on the covering number of the class of func- 
tions 

---- {gl"g2 :gl  C ~l,g2 E ~2}, 

where 

G1 = {g:  IR d • IR--,  IR: g ( x , y )  = ITLy - a l 2 ( ( x , y )  e IR d x IR) for s o m e  a e [ - L ,  L]} 

and 

some u E IR d, h E ]R+ for 
J 

(see Definition A.1 in the Appendix for the definition of the covering number). 

LEMMA 3.2. Set (X,Y)• = ((X1,Y1), . . . ,  (Xn, Yn)). Let L > 0 and let ~ be de- 
fined as above. Then for all 0 < e < 2L2K(0) 

(?)c. 
J~fl (e, ~, (X, Y)?) < , 

w h e r e  e 3 and e4 are constants which depend only on d, L and K(O). 

PROOF OF LEMMA 3.2. The functions in ~1 and G2 are bounded in absolute value 
by 4L 2 and K(0), respectively. Hence by Lemma A.2 in the Appendix we get 

-h[I(e,G,(X,Y)7) _~J~fi ~ , ~ I , ( X , Y ) ?  -Jkfl - ~ , G 2 , ( X , Y ) 7  . 

If hi(x,y)  = ]ai - TLy] 2 for some ai E [-L,L]  (i = 1,2), then 

1 ~-~Jhl(X~,Y~)-h2(Xi ,Y~)l  1 ]al TLYi+a2 TLY~] ] a l - a 2 ]  
n n 

i=1 i=1 

< 4L.  lal - a21 

which implies 

.A/r1 , ~ 1 ,  ( X , Y  

Next we bound 

< A/'I L '  {a: lal <~ L}, X~ 

2L 16K(0)L  2 < 
- r  e 
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By Lemma A.3 in the Appendix, which uses the notion of VC dimension introduced in 
Definition A.2 in the Appendix, we get 

Hence it suffices to derive a bound on the VC dimension of the class of all subgraphs of 

for some u �9 lR d, h �9 lR+ } 

S i n c e / f  is left continuous and monotone decreasing we have 

,u 
> t if and only if h2 < r 

where 
r = sup{~  : R ( z )  ___ t}. 

Equivalently, (x, y, t) must  satisfy 

xTx  -- 2uTx + uTu -- h2r _< 0. 

Consider now the set of real functions 

63 = {g~,~,~,~ : IR ~ • IR • IR ~ IR : g~,~,7,~(x, y, s) = axTx  +/3Tx + 7S + 5 

((X, y, S) �9 IR d x IR x JR) for some a, % 5 �9 JR, ~ �9 IRd}. 

If for a given collection of points {(xi, Yi, ti)}i=l ..... n a set {(x, y, t ) :  g(x, y) > t}, g C 62, 
picks out the points {(xil, Yil, t i l ) , . . . ,  (xit, Yi~, tit)}, i.e., 

{ (x, ~, t ) :  g(x,  y) > t} n { (x~, y~, t~)}~:l  ..... n = { (z~,, y~,, t~ ) , . . . ,  (~, ,  ~,,  t~, )}, 

then there exist a , /~ ,7 ,5  such that  {(x ,y , s )  : g~,n,7,~(x,y,s) >_ 0} picks out exactly 
{(Xil,Yil,r162 from {(Xl,Yl,r162 This 
shows 

V~+ <_ V({(x,v,8):g(x,u,8)>O}:ge~}. 

63 is a linear vector space of dimension d + 3, hence we can conclude from Lemma A.4 
in the Appendix 

%+ < d + 3 .  

Summarizing the above results we get 

Afl(e ,G,(X,Y)~)<_ 16K(0)L2e " 2 (  4eK ( 0 ) ) e  

8L 2 

2(d+3) 

_ ( c _ 3 ) c 4  
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for cons tants  c3 and  C4 which depend  only on d, L and  K(0) .  [] 

PROOF OF THEOREM 2.1. I t  suffices to show tha t  

mn(X) ~ m(x) (n --~ oc) a.s. m o d  #. 

We have 

I.~n(x) - m ( x ) l  2 - f I r on (x )  - m ( z ) ? K . ( z  - z),(dz) 
f g , ( x  - z)#(dz) 

---__ iron(X)[2 _ [mn(X)[2 f KH(X -- z)#(dz) 
f KH(x z)#(dz) 

- 2ran(x) (re(x) - f ~_(z)K.(x : z),(dz) 
f K u ( x -  z)#(dz) J 

+ [m(x)[ 2 _ f m(z)2KH(x - z)#(dz) 
f KH(X -- z)#(dz) 

0 -- 2mn(X ) .,(?Tt(X) -- f m(z)gu(x~_~_~- z)p(dz) ) 

+ [m(x)[ 2 _ f m(z)2KH(x - z)p(dz) 
f KH(X - z)#(dz) 

0 a.s. m o d  # 

as H ~ 0 a.s. by L e m m a  3.1 (the condit ions there  are satisfied for Cl = c2 = 1 and  
G(z) = / ( ( z 2 ) ) .  Hence it suffices to show 

(3.1) f ]ran(x) - m(z)[2gH(x -- z)#(dz) ----, 0 a.s. m o d  #. 
f g . ( x  - z ) , ( d z )  

Let e > 0. We have 

Iron(X) - - z)#(dz) m(z)12 gH(x  

= E { [ Y -  mn(x)[2gg(x--  X) ] l),~} - E { [ Y -  m(X)[2KH(X- X) [ / )n}  
5 

= E T j , n  
j=l 

where 

n 
Tl,n = E{IY  - m~(x)[2Kfi(x - X )  [ D . }  - (1 + e) .  1 E IYi - m n ( x ) I 2 K H ( X  -- Xi) ,  

n 
i = 1  

T 2 ' n - - - - ( l ~ - ~ ) ( l ~ [ Y i - m n ( X ) I 2 g H ( X - X i ) - l ~ [ y i - m ( x ) I 2 g H ( x - X i ) )  n i = 1  

1 n 

Ta,~ = (1 + ~)- X ~ I~  - m( x ) 12K n ( x  - X~) - (1 + ~)2 
i = 1  
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T4,n -- (1 + e)2.  (E{I  Y _ m ( x ) l e K H ( x  _ X )  I 7~,,} 

- E { I Y  - m ( X ) 1 2 K u ( x  - X )  I D,~}), 

T0,. = ((1 + 0 2 1). E{IY - m(X)I2KH(x -- X) I l)n}. 

In the remainder of the proof we bound 

Tj,n 
I g g ( x  - z)v(dz)' 

We start  with showing that  

j = 1 , . . . , 5 .  

T~_ 
limsupn_~oo f KHI~-"-~p'dz k ) < 0 a.s. mod #. 

It follows from (2.2) and the proof of Lemma 2.2. in Devroye (1981) tha t  there exists a 
function g which satisfies g(x) > 0 mod p and 

f KH(x -- --+ g(x) a.s. #, z ) ~ t ( d z )  mod 

and thus we only need to show that  

(3.2) l imsupTl ,n  < 0 a.s. rood #. 
Tt ----~OO 

To prove (3.2), fix t > 0. Then by Lemma A.1 in the Appendix and by Lemma 3.2 we 
have for n sufficiently large 

P{Tl,n > t [ TPn} 

E{IY - mn(x)12KH(X -- X) I 79n} - 1 E l L 1  [Yi - m n ( X ) [ 2 K H ( x  - Xi) 
n 

= P t + e. E{IY - mn(X)[2KH(x -- X) [ Vn} 

< P {3a E [-L,L],3h e [hmin(n),hm~x(n)]: 

E { I Y - a I 2 K  ( ~ h X ) }  - 1  ~-~in__l IYi -a[2K (x--_hXi) 

hdin(n) " t + "E { lY - al2K ( ~ h X )  

~ h d m i n ( n ) ' t , ~ , ( X , Y ) r ~ )  .exp ( -  < 4.EJkfl ix, 8(1+e) 

nhdmin(n)  . t . s 

it} 

> ~ "Dn 

( t" hdmin (n) e 
n �9 

64K(0)L  

f 8c~(1 + 
< 4 \ ~ n )  ! ~ ) c '  " exp ( 6 4 L 2 K ( 0 ) ( l +  e)2)  " 
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This together with (2.3) and the Borel-Cantelli lemma implies (3.2). 
It is easy to see tha t  the kernel es t imate  satisfies for all x E 1~ d 

1 n . 
Elmn(X ) _ yil2KH(x - Xi ) = alDa3a3acl~ 1 E l a _  yil2gH(X_ Xi), 
i=1 i=1 

which implies 
T2,n <_ 0 a.s. 

Furthermore,  using a similar argument  as for TI,n we get 

Next by Lemma 3.1 

lim sup T3,~ < 0 
f K H ( x  - z)#(dz)  - 

1 T4,n 

(1 + e 2) f K H ( X  -- Z)l.t(dz) 

- ~  I r a ( x )  - m ( x ) l  2 = 0 

a.s. mod #. 

f Ira(z) - m(x)12KH(x - z )# (dz )  

f KH(X - z)p(dz)  

a.s. mod #. 

Finally, 
Ts,n 

f KH(X - z )#(dz)  

as ~ --, 0. Thus (3.1) has been shown. [] 

_< 4L2((1 + ~2) _ 1) --* 0 

4. Proof of Theorem 2.2 

In the proof of Theorem 2.2 we need the following two lemmas. 

LEMMA 4.1. a) There is a constant c > 0 depending only on the boxed kernel 
K : IR d --~ IR+ (in Theorem 2.2) such that 

(4.1) 

n-1 K (  x i -xn  ) 

i=l E j E { 1  ..... n}\{i} K (xi -s xj)  - 

for  each n >_ 2, ( x l , . . . ,  xn) ~ lR dn, h > O. 
b) For each q C IN, there is a constant c > 0 depending only on q and on the boxed 

kernel K : IF{, d ----* IR+ such that 

[ /  K(X---hXn) ~(dx~ 
2q 

0 < 
- n2q 

for each n > l, h > O. 

PROOF OF LEMMA 4.1. We use a known covering argument  from kernel regression 
estimation, see Devroye and Wagner (1980), Spiegelman and Sacks (1980), Devroye and 
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Krzyiak (1989). Let Zl +S0,r/2, �9 �9 �9 ZM +Sox/2 be a finite cover of So,R. Assume without 
loss of generality that  K < 11 

a) The left-hand side of (4.1) is bounded above by 

M n-1 Izk-~So,~/2 (Xi ~Xn) K (xi hxn ) 
E E  

. . . . .  

M n--1 ixn+hzk+So,~h/2(Xi ) 
< ~ ~ 1 + b E j ~ I  ..... ~_1~\~ Ix,+~o,~(xj) k = l  i=1 

(because z/(z + w) <_ 1/(1 + w) for 0 < z < 1,w _> 0) 

M n-1 Ix,+hzk+So,~h/2 (Xi) 
-< E E 1 + b }-~je{1 ..... n-l}\{/} Ixn+hzk+So,rh/2(XJ) k = l  i=1 

(because xi C Xn + hzk + SO,~h/2 implies x,~ + hzk + So,~h/2 C xi + So,~h) 
M 

- b 
b) Let n >_ 2q + 2, 0 < b < ~ without loss of generality. Using similar arguments 

as in a) we can bound the left-hand side of (4.2) above by 

/ 
1 + b ~j=2q+l  Iso,~ -h- 

{ blZkl+S~ E~.21q+l [" "~ = E E f 
kl ..... k2qE{l ..... M} 1-t- ISo,,. ~ x i X j )  ~t(dx)''" 

Izk2~+s~ tt(dx) } 

/ 1 +  g..~j=2q+ 1 __ -XJ_h. ) bV'n-1 Iso,~ ( x  

kl,...,k2qE{1,...,M} 
( X1 -Xn '' Q X2q-Xn) 

Izkl +S~ h ] Izk2q +S~ 

(by independence of X1,..., X2r X2r Xn) 

1 I~k~ +So,./~ -~ " "" I~k2~ +So,./2 h 

kl,...,k2qE{1,...,M} " "  ~ j = 1  Iso A.~j= 1 So,~ h ' ~t" 
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because 

b 2 q ( n -  1) 

I zk  1 +So,~/2 

2q ) 
l > 2qb'2q> E I s ~  < X l -  X J )  (1=1 ' ' ' "  

j = l  

1 
E . . .  (n - 2q) 

kl, . . . ,k2qC{1,. . . ,M} tl ..... t~q~{1 . . . . . . .  1) 
li~li! 

~-I - Xj ( - X~] }-]~j=l ISo,~ ( Xh  -~ ) m~n-l I "'" ?--~j=l So ~ \Xt~q f~ 
/ 

(by exchangeabili ty of X1, �9 �9 �9 X~_ 1) 

1 n-1 Izkl+So,~/2 -s 

Z 
kl ..... k2qe{1 ..... M} i----1 A--Jj----1 So,,- ~- 

n - 1  Iz~2q +So,./2 h 

Z--~j = 1 So,,- ~- 

M 2 q  < 
- b2q(n -  1 ) - . .  ( n -  2q)" 

[] 

The following lemma contains an inequality of Efron-Stein (1981) and Steele (1986) 
type for higher central moments  in the case of identically dis tr ibuted random variables 
and symmetr ic  statistics. 

LEMMA 4.2. Let Z 1 , . . . ,  Z~, 2~ be independent identically distributed random vari- 
ables with values in some Borel set A C IR "~, and let the functions f = f,~ : A m ~ IR be 
measurable and symmetric (i.e., the function values are not changed by a permutation of 
the arguments). Let q C IN. I f  f (Z1, .  . . , Zn) E s then a constant C 6 IR+ (dependent 
only on q, but not on n or f )  exists such that 

(4.3) E { l f ( Z x , . . . ,  Z , )  - E f ( Z l , . . . ,  Zn)l 2q} 

<_ C n q E { [ f ( Z l , . . . ,  Z~) - f (Z~ , . . . ,  Z~-I ,  2~)12q}. 

PROOF OF LEMMA 4.2. We use arguments  from Devroye et al. (1996), pp. 136, 
137. First  we notice existence of a constant  C = C(q) > 1 such tha t  

(2;) 
(4.4) E c(2q-j)/2qn(2q-J)/2 + Cnq < C(n + i) q 

j=2 

for all n E IN, since this relation holds for C > (2q - 1)q, if n is sufficiently large, say 
n > no(q), and for each n E {1 , . . .  ,no(q)}, if C is sufficiently large. Now let n E ~ be 
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fixed. Set 

V (n) : f n ( Z l , . . . , Z n )  -- E f n ( Z l , . . .  , zn) ,  

v (n) = E(V(n)lZ  } 

U (n) _~ E { v ( n ) I z 1 , . . .  , z k } -  E { V ( n ) l z i , . . .  , z k _ l ) ,  

dn = E{I fn (Z1 , . . . ,  Zn) - f ~ ( Z i , . . . ,  Z,~-I, Z,~)12q}. 

k �9 { 2 , . . . , n } ,  

= E{II l (21)  - f l ( Z 1 ) 1 2 q } .  

We notice 

---- / l u  -- E fl(Z1)12qp fl(21)(du ) 

~- / E{lu - fl  (Z1)12q)Pyl(21)(du) 

E{]fl(Z1) - Efl(Z1)I 2q} 

(by Jensen's inequality) 

Assume (4.3) for fixed n. To show (4.3) for n 4- 1 rather than for n we use the martingale 
property and HSlder's inequality and obtain 

~.~ lf(nq-1)~-~ u/(n--ki) 2q ) i = 1  : S / ~ n+l -~- 

(2q) (n-I-l) j 
j=2 i=1 

j=2 

o 2q} 
~-~ V/(nq-l) 
i=1 

]k-, f I1?'(nq-1) 2ql~j/2q ~-'~ 1. I Vnq-1 11 

/__~1 y/(nq_1 ) [2q } 

= E{[E{ fa+l (Z1 , . . . ,  Znq-1)[Z1,..., Zn} 
-- E E ( f ~ + i ( Z 1 , . . . ,  Z,~+I)IZ1,... ,  Z~)l 2q} 

<_ CnqE{ IE{ f~+l (Z i , . . . ,  Zn+I ) IZI , . . . ,  Zn} 

- E{f~+l  (Zl,..., Zn, Zn+l ) lZ l , . . . ,  Zn-1, Zn}l 2q} 
(by the induction assumption applied to 

Then V (n) = V1 (n) + - . - §  V (~) and VI(~),..., V (~) form a martingale difference sequence 
with respect to Z1, . . . ,Zn .  We prove (4.3) for the above C by induction on n. (4.3) 
holds for n = 1, because 
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g(zl , . . .  , Z n ) :  E { f n + l ( Z l , . . . ,  z.+,) I z, = Z l , . . .  ,Zn = Zn}) 

{I = CnqE fn+l(Zl , . . .  ,Zn,z) -- fn+l(Zl , . . .  ,Zn_l,2,~,z)dPz,. 

<- CnqE i Ifn+l ( Z 1 , . . . ,  Zn, z) - fn+l (Z1,. . . ,  Zn-1, Zn, z)12qdPz,~ (z) 

(by Jensen 's  inequality) 

-- CnqE{Ifn+l(Z1,. . . ,  Zn+I) - fn+l(Z1,. . . ,  Z,~-I, Zn, Zn+l)l  2q} 

= Cnqdn+l, 

further  

= E { I f n + l ( Z 1 , . . . ,  Z n + i )  - E { f n + l ( Z 1 , . . . ,  Zn+l) I zl , . . . ,  Z,}l ~"} 
= E E { I f n + l ( Z l , . . . ,  Z~+l) 

- E{ fn+I(Z1, . . . ,Zn+I)[Z1, . . . ,Zn}I  2q I Z1,...,Z,~} 

<_ EE{I fn+I(Zi , . . . ,  Zn+l)  - f n + i ( Z l , . . . ,  Zn, 2.+~)12q I z 1 , . . . ,  Zn} 
(see above proof  of (4.1) for n = 1) 

= dn+l. 

These results together  with (4.4) yield 

< C(n + 1)qdn+l, 

i.e., (4.3) for n + 1. [] 

PROOF OF THEOREM 2.2. It suffices to show (2.6). Set 

and 
"<') = i ~'~:)(')--(.)i'.(..~- ,~ i "<:)(')--~.)i'.(..) 

Ap) = E i Ira(x) - m(nh) (z)I'~(dx), h > 0. 

Now it remains to show 

(4.5) F (H') ~ 0 (n ~ ~ )  a.s., 

and 
(4.6) A (H~) ---* 0 (n ---* cx~) a.s. 

In order to show (4.5) we choose q C IN satysfying q > T + 1 with ~- from (2.4). To 

obtain  an upper  bound  for E{IF,(U) I2a}, h �9 Qn, we use Lemma 4.2. Let rh (h) be  obta ined  

from m(n h) via replacing (Xn,Y~) by (.~n,l>n), where (X1,Y1), . . . , (Xn,  Yn),(X,,Y',~) 
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are independent identically distributed random vectors. A straightforward computation 
shows 

(4.7) Im(2)(x  ) - ~(2) (~)1  

< 2L h + 2L 

- ( 7 )  E i = I  K x i (7) 
Thus we obtain by Lemma 4.2 

E{lF(h)]2q } 

<_ c*nqE [ I m ~ h ) ( x )  - m ( z ) p  2 - Irh~h) (x )  --  m(x)12l.(dx) 

1 
C $ $  - -  

n q 

with suitable constants c*, c** E IR+, where the latter inequality follows from Lemma 
4.1b). Now for some c ~ IR+ and for all e ~ > 0 we obtain 

O O  

E P[F(Hn) >- e'] <_ 
n = l  

O(3 

E eEF  h) -> 
n = l  h C Q ~  

- -  c i2q t l  n , J 
n = l  h c Q n  

- ~ IQ= < c o  
n = l  

(the latter via (2.4)), which yields (4.5). 
For the proof of (4.6) choose h~ C Qn such that  h~ ~ O, nh~ d ---* oc (n ~ oc). We 

first show 

(4.8) lim sup (A(H]) A(h: - ' )  - - n - 1  ) < 0  a . s .  
n - - - ~ O O  

For arbitrary fixed e r > 0, we notice 

p[A(U~) A (h:~_ ~) 
- -  - -  ~ n - - 1  ~ 8t] 
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I n 
< p A ( n " _ ] ) -  I _ y~)~ _ ( r e (x0  - ~ )  ~) 

i=1 

_ _  A(h;-~)  + I~--~((m(h:-')(XA--Y~)2A...,', n# , ,, -- (m(X~) - Yi) 2) - " ~ - 1  > r , 
T~ i=1 

because of the optimali ty proper ty  of HA, and thus 

h* p[A(H_~) A ( ~ - ~  ) 
- - -  ~ n - 1  ~ CA] 

n 
_< P [2 max 1 E ( ( m ( h ~ ( x i  ) _ y i ) 2 _ ( m ( X i ) _  y~)2) 

L hcQn Tt i=1 

E/~ (h) - ( tm~# (Xi) - Yi) 2 - ( m ( X  0 - Y02), 

[ln 
<- E P E( (m(h~(x~)  _ yi)2 _ ( m ( X  0 _ y~)2) 

hEQn i=1 

< 

_l] 

- I  

hEQ~ n i=1 

- - ~ m ~ # ( x { )  - y ~ ) 2 )  > 

hEQn i=1 
=Cn + D,~. 

By Hoeffding's inequality (Lemma A.5 in the  Appendix)  

Cn < 2[Q,~le -n~2/(12sL'). 

To bound the summands  of Dn we use McDiarmid 's  inequality (Lemma A.5 in the 
Appendix).  Let ~h(h! be obtained from re(h! via replacing (Xn, Yn) by (2(~, lT'n), where 

(X1, Y1), . . - ,  (X,,, Y~), ()(n, Y~) are independent  identically dis tr ibuted random vectors 
(i = 1 , , . . , n -  1). We set 

n _ y/)2 [n-l~ ] 
v~  = z._,~ ~ , ~  - - ( m ~ #  ( x o  - ~ ) ~  + ( m ~ , , , ( R , O  - ?, , )~ . 

i=1 L i = I  

In order to be able to apply L e m m a  A.5, we show next 

]V~$ _< c 

for some c > 0 independent  of n. Let 

(h) Ui = m,~# (Xi) - Yi 
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]~K  ( X i  - Xl 
: ) 

/E{1 ..... n}\{i} ~jE{1 ..... n}\{i} K ( xi -~)Xj 
~, (h) (X. Wi = " ~  ~ ~ j  - Y i  

YzK ( Xi - -~ x~ ) 

+ - 

for i = 1 , . . . , n -  1. Thus  

n - - 1  

V .  = ~ _ . ( U /  - W ? )  + m (h).,.,rx,,,~ - Y . I  u - m (h)n,.,r2,w~ - 12-12, 
i=1 

.--1 12 V 2 _< 3 i~=l(U 2 - W 2) + 3 m (h).,n ( X . )  - Ynl  4 + 3 J m ~ ) ( ) ( . ) ,  - 12.14. 

We obta in  

lUll < 2L, IW~I < 2L, 

g(XihZn ) 
IUi - Wil  <_ 2L  

~e{, ..... .}\{~}K/(Xi x~ 

+ 2L 

( i  = 1 , . . .  , n  - 1) (for the  lat ter  compare  (4.7)), thus, by Lemma 4.1a), 

~-~ lsi - w~l < c* i=l 
for some c* > 0, therefore 

< 16L2c .2 
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which implies 

Now by Lemma A.5 

Thus 

Vn 2 < c 2 = 48L2c .2 + 96L a. 

Dn <_ 2]@nle -n~'2/(scb. 

o<) oo 

E P[A(H-~) A(h*-l) - - - ' ~ n - - 1  >c']~-E(Cn+Dn)<Cx)  
n = l  n = l  

for each e' > 0, which yields (4.8). Now by the weak universal consistency result of 
Devroye and Wagner (1980) we have 

(4.9) A~ h:) -~ 0. 

We notice 

(4.10) A(/~o) - A(.;]) -~ 0 (n - -  ~ ) ,  

which follows from 

I A(n h) _ A(h) / ~,,_1 I s  4LE Im(nh)(x)-m~,(x)l~(dx) 

2...,i=1 lkh[X - -  .Ai) 

(by a straightforward computation as in (4.7)) 

=8L21ff.~=1/E Kh(x--Xj)  n Ein__, Kh(X -- X~)#(dx) 

(by exchangeability of X 1 , . . . ,  Xn) 
8L 2 

_ < - -  (h>0,ncIN). 
n 

From (4.8), (4.9), (4.10) we obtain (4.7). [] 
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Appendix 

A. Some results on empirical process theory 

In this section we list the definitions and results of empirical process theory which 
we have used in Section 3. We also formulate specialized versions of the inequalities of 
Hoeffding and McDiarmid used in Section 4. An excellent introduction to most of these 
results can be found in Devroye et al. (1996). 

We start with the definition of covering numbers of classes of functions. 
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DEFINITION A.1. Let 9 v be a class of functions f : I a d  - 4  JR. The covering number 
All (c, 9 v, z~) is defined for any e > 0 and z~ = ( z l , . . . ,  z~) E lR d~ as the smallest integer 
k such that  there exist functions g l , - - - ,  gk : IRd ~ IR with 

min -1 ~ ]f(zj) - gi(zj)] <_ 
l<i<k ?2 

j = l  

for each f E ~ .  

If Z~ = (Zl, �9 �9 �9 Zn) is a sequence of IRd-valued random variables, then fill(e, 5 r ,  Z~) 
is a random variable with expected value EArl (~, ~', Z~). 

LEMMA A.1. (Haussler (1992), Theorem 2) Let .T be a class of functions f : IR d -* 
[0, B], and let Z~ = (Z1 , . . . ,Zn )  be ]Rd-valued i.i.d, random variables. Then for any 

P 
[ l~-]i~---lf(Zi)-Ef(Z1) ] s u p  \ " \ ] ] ~  ( nc~2 )16----B- 

> e  < 4E (A/', ( ~ - , ~ , Z ~ e x p  - 
]E.r a + Ef(Z1) - 

The following lemma is useful for bounding covering numbers of products of func- 
tions. 

LEMMA A.2. (Devroye et al. (1996), Theorem 29.7) Let 61 and G2 be two families 
of real functions on IR d with Igl(z)l < B1 and tg2(z)t < B2 for all z E IR d, gl E ~1 and 
g~ E G2. Then for any z~ E IR dn and e > O we have 

~fl(5,{gl "g2 :gl E ~l,g2 E 62},Z~) ~_ J~fl (2-~2,Gl,Z~) "J~fl (2-~1,~2, Z~) �9 

To bound covering numbers we use the following definition of the VC dimension. 

DEFINITION A.2. Let 7) be a class of subsets of IR d and let F C_ ]R d. One says 
that  i/:) shatters F if each subset of F has the form D N F for some D in ~ .  The VC 
dimension Vz) of 7:) is defined as the largest integer k for which a set of cardinality k 
exists which is shattered by 7). 

A connection between covering numbers and VC dimensions is given by the next 
lemma, which uses the notation V~-+ for the VC dimension of the set 

. r  + :=  { { ( x , t )  c • t < f ( z ) }  : f E . r }  

of all subgraphs of functions of ~'. 

LEMMA A.3. (Haussler (1992), Theorem 6) Let • be a class of functions f : IR d 
[0, B]. Then one has for any z'~ ~ ]R d'n and any 0 < e < B/4 
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The following result is often useful for bounding the VC dimension. 

LEMMA A.4. (Dudley (1978)) Let ~ be a k-dimensional vector space of functions 
f : IR d ~ IR. Then the class of sets of the form {x E lR d : f ( x )  > 0 } ,  f E9 v, has VC 
dimension less than or equal to k. 

The following lemma states the inequalities of McDiarmid (1989) and Hoeffding 
(1963) in the special case of identically distributed random variables and symmetric 
statistic. 

LEMMA A.5. Let Z 1 , . . .  ,Zn,  Z n be independent identically distributed random 
variables with values in some Borel set A c lR m, and let the functions f = fn : A n ---* IR 
be measurable and symmetric.  

I f  I f ( Z 1 , . . . , Z n )  - f ( Z 1 , . . . , Z , ~ - I , 2 n ) I  <_ c < co, then for  e a c h r  0 

P [ [ f ( Z 1 , . . . , Z n )  - E f ( Z 1 , . . . , Z n ) [  >_ ~] ~_ 2e -2e2/(nc2). 

I f  especially the Z~s are real-valued with IZ~] <_ ~, then for  each ~ > 0 

P Zi - E ~-~ Zi 
i= l  i=1 

>- r ~- 2e-2e2/(nc2)" 
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