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A b s t r a c t .  In this paper we estimate the parameters of a regression model using S- 
estimators of multivariate location and scatter. The approach is proven to be Fisher- 
consistent, and the influence functions are derived. The corresponding asymptotic 
variances are obtained and it is shown how they can be estimated in practice. A 
comparison with other recently proposed robust regression estimators is made. 
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1. Introduction 

Consider the classical regression model  

y~ = a + ~tu i  + ~ ,  

i = 1 , . . . ,  n where the error  terms ~ 1 , . . . ,  cn are i.i.d, and independent  of the  p-dimen- 
sional carriers u l , . . . , u n .  The  least-squares (LS) es t imators  ~LS and /~LS are defined 
as the minimizers of the sum of squared residuals 

(1.1) 
n 

-n ~(Yi= - c~ - ~tui)2.  

Since the least squares es t imator  is very sensitive to  the presence of outliers, robust  
al ternatives need to be looked for. Many of these robust  regression methods  consist of 
minimizing a robust  loss function of the  residuals, instead of a quadrat ic  loss function. 
Main examples here are the Least  Median of Squares (LMS) and Least  Tr immed Squares 
(LTS) es t imator  (Rousseeuw (1984)), who can a t t a in  the max imum breakdown value. 
T he  breakdown value is the  smallest f ract ion of d a t a  points  t ha t  needs to  be  replaced 
to carry  the es t imator  arbi t rar i ly  far away (for a formal  definition, see Rousseeuw and 
Leroy (1987), p. 117). Generalized S-est imators  (Croux et al. (1994)) and T-est imators 
(Yohai and Zamar  (1988)) combine this high breakdown value with a high efficiency. 
However, their  unbounded  influence funct ion is sometimes seen as a drawback.  

Another  way of robust ifying LS consists of robust i fying the first order  condit ions 
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associated to the minimization of (1.1): 

n n 

(1.2) 1 i~1( 1 E (  - Y,i - a - ~ t u i ) u i  = 0 and - Yi - ee - 13tui)  = O. 
R n i = 1  

This lead to the construction of M and gM-estimators which are defined as solutions of 
robustified versions of the first order equations (1.2). Unfortunately, they have no high 
breakdown point (see e.g. Hampel e t  al. (1986)). To remediate this, MM- (Yohai (1987)) 
and one step GM-estimators (Simpson et  al. (1992), Coakley and Hettmansperger (1993), 
Simpson and Yohai (1998)) were proposed. One-step GM-estimators combine a high 
breakdown point with a bounded influence function. Other high breakdown, bounded 
influence estimators have recently been proposed by Ferretti e t  al. (1999) and Chang e t  al.  

(1999). The latter paper proposes a class of high breakdown rank regression estimators, 
extending the class of Generalized R-estimators of Naranjo and Hettmansperger (1994). 

In case of the LS-estimator, the solution of the normal equations (1.2) is explicit: 

= - p u ) ( u ,  - 

i = 1  

^ t  ^ = & - 

- -1  ) 
i = 1  

and 

1 n with flu = ~ ~ i : 1  ui and l~y : ~ Y~-:=I Yi. With the use of the empirical covariance 

matrices Suy and S u u ,  we may rewrite the above equation as 

( 1 . 3 )  ^ - ' ^  ^t^  = S u u  S u y  and & =/~y - #u~3. 

The idea now is not to robustify the normal equations, but its solutions. Therefore, we 
will replace the empirical mean and covariance in (1.3) by robust equivalents. Many pro- 
posals for robust location and covariance matrices have been made, such as M-estimators 
(Maronna (1976)), the Stahel-Donoho estimator (Stahel (1981)), the Minimum Volume 
Ellipsoid and Minimum Covariance Determinant estimator (Rousseeuw (1984, 1985)) 
and S-estimators (Davies (1987), Rousseeuw and Leroy (1987)). 

Maronna and Morgenthaler (1986) used multivariate M-estimators to insert into 
(1.3) and showed that the resulting estimators have all the desired equivariance prop- 
erties. They also gave an expression for the influence function of this approach based 
on M-estimators, but only for a regression without intercept. Visuri e t  al.  (2002) used 
rank based covariance matrices and derived results at elliptically symmetric models. 
In this paper, S-estimators of location and scatter will be used. For a finite sample 
{ Z l , . . .  , Z n }  C J~R p+I the S-estimates are defined as the couple (/~, S) which minimizes 
det(S) under the constraint 

n 

(1.4) -1 ~ - ~ , p ( v / ( z  i - # ) t S - l ( z i  - # ) )  <_ b, 
n 

over all # E /R  p+I and S E PDS(p+ 1), where PDS(p+ 1) is the set of all positive definite 
symmetric matrices of size p + 1. The function p is chosen by the statistician and b is a 
selected constant. 

At first sight, this approach based on robust covariance matrix estimators seems to 
be restricted to regression models with elliptically symmetric carrier distribution. In- 
deed, consistency of robust covariance matrices is always proven under this symmetry 
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assumption. Results on the behavior of & and/~ using any affine equivariant location 
and covariance matrix estimators in (1.3) have been obtained by Croux et al. (2001), 
but  only under the severe assumption of elliptical symmetry�9 In practice, this restriction 
cannot be retained�9 Even an ordinary quadratic regression would then not be covered by 
the hypothesis of the model�9 An important contribution of this paper is therefore that  
we prove the approach based on S-estimators to be valid for arbitrary carrier distribu- 
tions. Moreover, we will show that the resulting estimator is a high breakdown bounded 
influence estimator, combining good efficiency and robustness properties. 

In Section 2 we define the regression functionals based on robust S-estimators of 
location and scatter. The corresponding influence function is computed in Section 3 and 
shown to be bounded for p functions with bounded derivative�9 An estimator for the 
covariance matrix of the estimator is presented in Section 4, where we also construct 
studentized residuals�9 Section 5 presents a simulation study to compare the estimator 
with other existing high breakdown, bounded influence estimators�9 We compare bias, 
mean squared error and stability of the estimators under investigation. Section 6 gives 
a real data example, while Section 7 concludes�9 The Appendix contains all the proofs. 

2. The functional 

The functional form of S-estimators of multivariate location and scatter is defined 
as follows. Let K be an arbitrary (p + 1)-dimensional distribution. For our purposes, 
K represents the joint distribution of the carriers and response variable. Define now 
the S-estimator (M(K), S(K)) as the couple (M, S) which minimizes det(S) under the 
constraint 

/ p(v/(z - M) tS- l ( z  - M))dK(z) <_ b, (2.1) 

over all M C ~ p + l  and S E PDS(p + 1). The function p satisfies 
(R) p is even, continuous, non decreasing on [0, +cx)[ with p(0) = 0, and almost 

everywhere twice differentiable with derivative pt = r 
The constant b satisfies 0 < b < p(c~) and determines the breakdown point of the 

�9 b (see Lopuhag (1989)). The vector M(K) estimator which equals mm(p-~) ,  1 - p--V~-7) 

corresponds with the location S-estimator, and S(K) with the scatter S-estimator. 
Let u contain the first p components of the variable z ~ K and y the last component, 

so z = (ut, y)*. The variable y will be the dependent variable of the regression equation 
while u contains the explanatory variables. Split up the vector M(K) and matrix S(K) 
accordingly, that is 

\My (X) ]  
and 

\Syu(g)  Syv(g)] �9 

The functional of interest is now defined as T(K) -- (a(K), b(K)t) t where 

(2.2) b(K) = S{J (K)Suv(K) 

is called the regression slope functional and 

(2.3) a(K) = Mv(K ) - b(K)tM~,(K) 
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the intercept functional. One has that  T = (a, bt) t is regression, scale, and carrier 
equivariant (Maronna and Morgenthaler (1986)). This means that, using the notation 
a(K) -- a(u, y) and b(K) = b(u, y) whenever (u t, y)t ~ K,  

a(Au, cy + Itu + d) = ca(u, y) + d 

b(Au, cy + Itu + d) = (A-1)t(cb(u,y) + l) 

for every l E / R  p, c, d E /R  and nonsingular (p • p) matrix A. 
Consider now the regression model 

y = a + utl3 + c 

where u is the vector of random explicative variables and ~ the error term. We suppose 
that  r is independent of u and that F(t) = P(r < t) satisfies 

(F) The distribution F has a strictly positive, symmetric and unimodal density f .  
We denote by H the distribution of z = (u t, y)t, and call it the model distribution. A 
regularity condition (to avoid degenerate situations) on the distribution G of the carriers 
u is that 

(G) Pc(utv  = 5) <1 b for a l l v � 9 1 4 9  

When using a 50% breakdown estimator, this means that not more than half of the mass 
of the distribution of G is lying on the same hyperplane. For unbounded p functions it 
implies that  the distribution of G is not completely concentrated on a hyperplaae. A 
first result is that the functionals a and b defined in (2.3) and (2.2) are Fisher-consistent 
for the intercept and slope parameters a and ~. 

THEOREM 1. The functional T is Fisher-consistent for the parameter ~ = (a, ]~t)t 
at the model distribution H, that is 

T ( H ) =  (a(H)~  = ( ~ )  

Note that  no symmetry conditions for the distribution of the carriers have been 
required. We do require that  the distribution of the errors is symmetric which is often 
assumed in robust linear regression. One of the exceptions is Chang et al. (1999), whose 
method is based on differences of residuals. Now instead of computing the S-estimator 
from the sample {z l , . . .  ,zn}, we could also compute an S-estimator from the set of 
differences {zi - zj I 1 <<_ i < j << n}. This corresponds with the Generalized S-estimators 
of Croux et al. (1994), and yields a method not requiring symmetry of the error terms. 
Since computing Generalized S-estimators of regression is much more time consuming, 
we will stick to the class of ordinary S-estimators and keep restriction (F). 

3. Influence function 

Before deriving the influence function we recall that S-estimators satisfy the follow- 
ing first-order conditions (Lopuha;~ (1989)): 

(3.1) . / w l  (daK(Z))(z -- M ( g ) ) d K ( z )  = 0 

(3.2) M(K))(z- M(K))tdK(z) ---- f w2(d (z))dK(z)S(K), 
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where the weight functions equal wl (t) = r and w2(t) = r and p + l  
d~(z) = (z - M ( H ) ) t S ( H ) - I ( z  - M(H))  is a squared Mahalanobis distance. It will be 
shown that  wl determines the form of the influence function. 

The influence function of the functional T at the distribution H measures the effect 
on T of adding a small mass at z = (u t, y)t. If we denote the point mass at z by Az 
and consider the contaminated distribution H~,~ = (1 - e)H + eAz then the influence 
function is given by 

IF(z; T, H) = lira T(H~,z) - T(H) _ Or(H~,z)j~=o. 
~ 0  C 

(See Hampel et al. (1986).) The next theorem gives an expression for the influence func- 
tions of the regression functional b and intercept functional a at a model distribution. 

THEOREM 2. Let y = c~ + ut~ + e, where c is independent of u, and e ~ F satisfies 
condition (F). Let H be the distribution of z = (u t, y)t, Ho the distribution of (u t, e) t 
and denote x = (1, ut) t and 0 = (c~, t3t) t. Then the influence function of the functional 
T at the distribution H is given by 

(3.3) IF(z; T, H) = C(Ho)-~wl (d2H (z))x(y -- xtO) 

where 

f 2 fw~(d5 o(z))~2Jdgo(z). (3.4) C(Ho) = w l ( d 2 ~ 1 7 6  + Syy(Ho~) 

Moreover, if the score function A/(t) = - f ' ( t ) / f ( t )  associated to the density f exists, 
then 

(3.5) C(Ho) = / xx twl  (d2Ho (z))yAf(y)dHo(z).  

From the above theorem, it is seen that the influence function is bounded as soon 
as Wl is redescending to zero, which is the case for bounded C-functions. 

Remark. Let z .-~ H the model distribution and denote 

Then Az + c ..~ Ho and by affine equivariance of the S-estimator 

Syy ( H ) - ~ Suy ( ~I ) " 

The scale functional e ~ ( H ) : =  Sy~(Ho) equals therefore 

~ ( H )  = ~ / S ~ ( H )  - ~ S u ~ ( H ) ~ .  (3.6) 
u 



2 7 0  C H R 1 S T O P H E  C R O U X  E T  A L .  

Since det(A) = 1 we can rewrite (3.4) as 

/ 2 fwi(d:.(z))( y-xt~ (3.7) C(Ho) = wl(d2H(Z))xxtdH(z) + a~(g-----) 

which is an expression in terms of the observed distribution H. Equivalently, 

= / x x t w l  (d2H (z))(y -- xtO)Ai (y - xtO)dH(z) .  (3.s) C(Ho) 

4. Estimating the asymptotic variance 

At the sample level, we estimate the parameters c~,/3 by & = a(H,~) and ~ = b(Hn), 
where H~ is the empirical distribution function of the data  zi = (x~, y~)t (1 < i < n). 
With ft = M ( H n )  and S = S(Hn)  we retrieve the estimators defined in the introduction 
(equations (1.3) and (1.4)). Now asymptotic expansions and the asymptotic normality 
property were obtained for S-estimators of location and scatter by (Lopuha~ (1989, 
1997)) under very general regularity conditions. These conditions cover the case when 
the data  zi are generated from our model distribution H satisfying conditions (F) and 
(G). Since 0 = (&, ~t) t  i s  a differentiable function of the elements of (/t, S), the estimator 
^ 

0 will also be asymptotically normal with corresponding asymptotic variance obtained 
from the influence function by means of 

ASV(T, H) -- / IF(z; T, H)IF(z;  T, H ) t d H ( z )  

(see e.g. Barndorff-Nielsen and Cox (1989), p. 47). Together with expression (3.3) this 
yields 

ASV(T, H) = C(Ho)-~  D(Ho)C(Ho)  -~ 

with 

(4.1) 

The covariance matrix of 0 is now estimated in a natural  way by replacing H by Ha 
in the right hand side of expressions (3.7) and (4.1): 

Cov(~---~) _- 1ASV~-~, H) _- 1 ~ - 1  ~ ~ - 1  n O ( S o )  D(Ho)C(Ho)  
n 

(4.2) 

with 
n 

_ 2 2 2 t 1 E w i  (d i ) r i  XiXi '  
) = n 

i----1 

-- Wl (d~) + -~" -W 1 (d i )r  i x i x i ,  
C ( H ~  -~ n i = 1  (:re,n J 

ut~ t t 
/ 

where xi (1, ~/ = = - u i ~ - & , d i  ~j , ri Yi = (zi - f t ) t S - l ( z i  - ft) is the robust Maha- 
lanobis distance of zi (Rousseeuw and van Zomeren (1990)), and 

t̂ 
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Alternatively C(Ho) can be estimated, by using (3.8), as 

(4.3) 
n 

C(Ho)~ = -~1E xiX~Wl(d2)rii]~ (ri) ' 

which requires however a nonparametric estimate ]~ of the density f .  If f is specified 
to be N(0, cr 2) then we have Ay(t) -- - ~  logf ( t )  = t /a  2. The parameter a can be 
estimated from the residuals by a consistent scale estimator 5~ ( r l , . . . ,  rn). For Gaussian 
errors (4.3) then results in 

n 2 i ~ t d 2 r i  
- x i z i w , (  C(Ho)  = n 

yielding 

(4.4) Cov(0) ^4 2 2 t 2 2 2 t = wl(d )r x x  

\ i = 1  / i : 1  \ i = 1  ] 

- 1  

If the function p becomes constant for values larger than a certain c*, then the function 
wl is redescending to zero. It follows that in this case the estimators for Coy(0) are 
robust since outliers are downweighted to zero in expressions (4.2) and (4.4). 

A ^  

Remark on studentized residuals. The obtained expressions for Cov(0) axe also 
useful for constructing studentized residuals. Using the asymptotic representation 

0 = 0 + 1 ~ IF(zi; T, H) + Op(n -1/2) = 0 + ( n C ( H o ) ) - l X t W e  + Op(n -1/2) 
n 

i=1 

where X = (Xl , . . . ,  Xn) t, W = diag(wl(d2H(Z2)),..., W l ( d 2 i t ( Z n ) ) )  a n d  e = @1, . . . ,  ~n) t, 
a first order approximation of the variance of the residuals can be obtained. Following 
the approach of McKean et al. (1990, 1993) one gets 

var(ri) "- a2(1 - 2Wl(d~(zd)x~(ne(go)) - lx~  + x~ (nC(Ho) ) - lX tW2X(nC(Ho) ) - l x , )  

where ~2 is the variance of the errors, which is supposed to be finite. An estimate for 
the variance of the residual ri = Yi - O'xi = Yi - ~'ui - & is therefore given by 

(4.5) var(~"ri) = ~ ( 1  - 2Wl (d2)x~(nC~(Ho))-lxi 

+ x~(nC-('Ho))-lXtW2X(nC~(Ho))-lxi),  

A 

with W = died(w1 (dl~),..., Wl (d 2)), yielding as studentized residual 

. ?~i (4.6) r i 

These studentized residuals are adjusted for the variance of the errors and for location, 
as is the case for studentized residuals from the least squares estimator (see MeKean et 
al. (1993)). 
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5. Simulation study 

To study the finite-sample behaviour of the regression estimator based on the S- 
covariance matrix estimator, we compare it with other high breakdown, bounded in- 
fluence estimators. We consider the one-step GM estimator of Simpson et al. (1992), 
which uses Mallows weights and Hampel's three-part redescending g; function and which 
will be denoted as M1M. Another one-step GM estimator, proposed by Coakley and 
Hettmansperger (1993), uses Schweppe weights and the Huber r function (S1M). We 
also compare with the High Breakdown Rank (HBR) estimator of (Chang et al. (1999)) 
which is a kind of weighted version of the Wilcoxon rank estimator. All these 3 esti- 
mators need an initial estimator, for which the Least Trimmed Squares (LTS) estimator 
was taken. For computing the weights to downweight leverage points, the Minimum 
Covariance Determinant (MCD) estimator was chosen. All other tuning constant where 
selected as suggested in the cited papers. Note that the breakdown point of the three 
above estimators is determined by the breakdown point of the initial LTS and MCD es- 
timates, which we set equal to 50% (or 25%) such that all estimators under comparison 
will have the same breakdown point. 

To compute the S-estimates of location and scatter we use the Tukey biweight p- 
function 

(5.1) 
/ t~  t 4 t 6 c 2 ) 

pc(t) ---- min 2-C5 + 6c--4, ~ . 

The constant b determines the breakdown point: taking b = p(co)/2 yields the maximal 
breakdown point of 50%, while b = p(cc) /4  gives a 25% breakdown point estimator. The 
resulting S covariance based regression estimator, abbreviated as S-CovReg, inherits this 
breakdown point. The choice of the tuning constant c is arbitrary in this regression setup, 
but  it is customary to select it such that EH[p(dH(z))] = b for H = N(O, Ip+l). The 
function Pc is bounded and sufficiently smooth, with an associated weight function Wl 
being redescending. For computing the S-estimator of location and scatter, the fast and 
accurate algorithm of Ruppert  (1992) has been used. 

To compare the efficiency and robustness of the estimators we simulate under 5 
different sampling schemes. In every situation, we generate m = 1000 samples of size 
n -- 100 according to the regression model 

Yi = ~ + ~lUi l  -~- /~2Ui2 ~- /~3Ui3 ~- ~4Ui4 -~- gi, 

for i ---- 1 , . . .  ,n. The true regression parameters c~,/~1,... ,~4 were set equal 0, without 
loss of generality due to regression equivariance. First we consider standard normal 
distributed data, where no outliers are present (NOR). For the second (VO10) and 
third (V020) sampling scheme contamination is inserted in the samples by generating 
10%, respectively 20% of vertical outliers. These vertical outliers correspond to responses 
generated according to a normal N(5Xp+l,0.99, 0.1), where Xp+l,0.99 stands for the square 
root of the 1% upper quantile of a chi-square distribution with (p+ 1) degrees of freedom. 
In the last situations bad leverage points are introduced by generating both the carriers 
and the response according to a N(5Xp+1,o.99, 0.1). We consider 10% and 20% of bad 
leverage points, and name these sampling schemes (BL10) and (BL20). 

We focus on the results for the slopes, which are of primary interest (in fact, the 
intercept can always be estimated afterwards by computing a univariate location estimate 
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Table 1. MSE and Bias for the S-CovReg, M1M, SIM, HBR and LTS estimators of the slope 
parameters in a regression model with p = 4 and n -- 100, once for the 50% breakdown point 
and once for the 25% breakdown point versions of these estimators. Samples were generated 
without outliers (NOR), with 10% and 20% of vertical outliers (VO10 and VO20) and with 
10% and 20% of bad leverage points (BL10 and BL20). 

MSE Bias (X10 -3) 
BDP NOR VO10 VO20 BL10 BL20 NOR VO10 VO20 BL10 BL2O 

50% 

25% 

S-CovReg 1.51 1.51 2.05 1.46 1.57 5.8 2.0 4.4 3.3 5.0 

M1M 1.92 1.79 1.60 4.56 7.57 3.2 2.3 3.5 106.1 179.0 

S1M 1.63 2.24 3.34 5.65 8.04 3.1 5.1 5.0 44.9 35.1 

HBR 1.16 1.60 2.46 6.91 7.54 4.1 4.1 4.6 231.1 249.4 

LTS 6.98 6.81 5.74 12.45 12.68 7.6 4.3 7.1 225.4  250.0 

S-CovReg 1.14 1.93 63.66 1.20 7.42 4.6 3.4 14.3 3.6 249.4 

M1M 1.20 1.29 1.41 2.87 4.82 4.2 2.0 3.8 120.7 184.5 

S1M 1.19 1.86 3.11 3.02 4.26 4.1 5.2 5.1 15.2 17.2 

HBR 1.15 1.64 2.56 7.09 7.57 4.1 4.2 4.6 236.8 249.4 

LTS 3.51 2.84 1.92 9.66 10.22 5.1 1.2 4.3 234.6 250.0 

from the residuals Yi - 13tui) .  To compare the est imators  we computed  the Bias and 

Mean Squared Error  (MSE) for every component  ~ 1 , . . - ,  ~4 over all m simulation runs. 

These numbers  are then summarized by (ave4=lBias(~j)2)l/2 and ave4=lMSE(~j) ,  and 
reported as Bias and MSE in Table 1. 

A first remark is the bad performance of the LTS est imator,  witnessing its weak 
efficiency properties. However, the LTS is well suited as an initial est imator,  as can 
be seen from the much lower MSE of the S1M, M I M  and HBR estimator.  Compar ing  
the latter three est imators  is difficult: H B R  is more efficient than  M I M  and S lM if no 
outliers are present, bu t  sacrifices bias in presence of bad  leverage points. Let us now 
compare the es t imator  S-CovReg with its competi tors.  For the 50% breakdown point  
versions of the est imators,  the S-covariance based est imate comes out  as the best in 
this simulation s tudy:  for Normal  da t a  and for da ta  with vertical outliers the S-CovReg 
est imator  is comparable  with M1M, S1M, and H B R  but  in si tuations with bad leverage 
points it outperforms the other  estimators.  

The same conclusion holds for the 25% breakdown point versions of the estimators.  
Only in the case of 20% outliers the S-CovReg e s t i m a t o r ( w i t h  25% breakdown point)  
does not perform well. However, 20% of outliers occur rarely in practice and if such 
high level of outliers can be expected choosing a 50% breakdown es t imator  is more 
appropriate.  

In general we see tha t  the S-CovReg est imator  behaves very well compared to the 
other  three high breakdown, bounded influence estimators.  Unless the da t a  are expected 

to contain enormous amounts  of outliers, we recommend to use the 25% breakdown S- 
covariance es t imator  to obtain  a bet ter  compromise between robustness and efficiency. 

It has been shown tha t  high breakdown est imators as Least Median of Squares 
are very sensitive to slight changes in the da ta  (Het tmansperger  and Sheather  (1992), 
Sheather e t  al. (1997)). High breakdown, bounded influence est imators  are expected to  
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Table 2. Maximal difference of the slope estimate under slight changes of the data points, over 
all 100 simulations, for the S-CovReg, MIM, SIM, HBR and LTS estimator. 

S-CovReg M1M S1M HBR LTS 
Maximum 0.065 0.125 0.140 0.077 0.689 

be much more stable (see e.g. Simpson and Yohai (1998), Chang et al. (1999)). To study 
the stability of the S-covariance estimator we use the simple linear regression model 

(5.2) Yi = a +/~ui + r i = 1 , . . . , 5 0  

where both the errors and predictors are i.i.d, standard Gaussian and a = ~ = 0. We 
will slightly change a data point, and compute the effect of this change on the estimate. 
If the estimator is stable, small changes in the data should lead to small changes in 
the estimate. For every data point (ui, Yi), four changes are considered: ui :I: 0.i and 
ui :I: 0.2. The maximal effect of any of these 4 x 50 changes on the estimate of j3 is then 
recorded. Table 2 shows the maximal difference for the 25% breakdown point versions of 
the S-CovReg, MIM, SIM, HBR and LTS estimators over all i00 simulations. First of 
all, we see that the stability of all bounded influence estimators is much better than for 
the LTS estimator. Moreover, the S-CovReg and HBR estimators are seen to be much 
more stable than the one-step GM estimators. A theoretical justification of the stable 
behavior of S-CovReg can be found in the smooth and bounded character of its influence 
function (3.3). 

Note that high breakdown estimates may have problems in detecting or fitting cur- 
vature. See e.g. Cook et al. (1992), McKean et al. (1993), and Chang et al. (1999) for 
simulations and examples that illustrate the problem. This implies that one has to be 
careful with the interpretation of residual plots from high breakdown fits. McKean et al. 

(1996) proposed diagnostics based on a highly efficient estimator and a high breakdown 
estimator that can expose discrepancies due to curvature in the data. 

6. Example 

As an example we consider the famous Hawkins-Bradu-Kass data  (Hawkins et al. 
(1984)), which is an artificial data set with n -- 75 and p -- 3. The first 14 observations 
are known to be outliers. We used the S-covariance based estimator with Tukey biweight 
function and 50% breakdown point, since the data  set contains a huge amount (almost 
20%) of outliers. In Table 3(a), we report the estimates obtained with the classical 
estimator, the S-covariance based estimator and the MM-estimator (Yohai and Zamar 
(1988)) with 50% breakdown point. We have chosen to make a comparison with robust 
MM-estimators, since this is an established robust regression method with high break- 
down point and good efficiency properties. It is standard implemented in S-plus and also 
reports standard errors and correlations between the estimates (as described in Yohai et 
aS. (1991)). 

We see that  the two robust methods give quite similar results, while the classical 
estimates are very different since they are highly influenced by the outliers. Note that  
none of the variables is declared as significant by the robust approach, while the sec- 
ond and third slope parameter are significantly different from zero according to the LS 
method. It is instructive to compare these results with those based on the clean data-set 
with the 14 artificial outliers deleted. From Table 3(b), we notice that  the results for the 
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Table 3. Estimates of the intercept and regression parameters for (a) the Hawkins-Bradu-Kass 
data and (b) the clean Hawkins-Bradu-Kass data. Standards errors are reported between 
parenthesis, correlations between estimated coefficients are in the right panel of the table. The 
estimators considered are the Least Squares (LS) estimator, the estimator based on the robust 
S-estimator of location/scatter, and an MM-estimator. 

(a) 
31 35 3~ ~ 31 
LS-estimator 31 -0.637 

-0.388 0.239 -0.335 0.383 32 --0.180 -0.084 
(0.405) (0.255) (0.015) (0.125) 33 0.470 -0.540 -0.775 

Robust Covariance Based /31 -0.360 

-0.018 0.097 0.004 -0.130 32 -0.635 -0.009 
(0.226) (0.079) (0.078) (0.077) 33 --0.386 --0.316 --0.086 

MM-estimator 3x -0.648 
-0.181 0.081 0.040 -0.052 32 -0.164 -o.o84 
(0.114) (0.073) (0.044) (o.039) 3z 0 . 4 2 6  -0.487 -o.795 

31 ~ 3~ ~ 31 32 
LS-estimator 31 -0.456 

-0.010 0.062 0.012 -0.107 32 -0.527 -0.031 
(0.190) (0.067) (0.066) (0.069) 33 -0.481 -0.102 -0.123 

Robust Covariance Based 31 -0.328 
-0.021 0.123 -0.001 -0.147 32 -0.672 --0.020 
(0.253) (0.087) (0.088) (0.082) 33 -0.371 -0.354 -0.058 

MM-estimator 31 -0.463 
-0.011 0.062 0.012 -0.107 32 -0.533 -0.008 
(0.245) (0.086) (0.086) (0.090) 33 -0.451 -0.127 -0.149 

(b) 

m e thod  based on the robust  covariance ma t r ix  hardly  change, nei ther  for the est imates,  
nor  for the covariance mat r ix  of the estimates.  Th e  MM-es t imator  appears  to  be less 
stable for the correlat ions between the  coefficients.  Note that ,  on the basis of the  clean 
data,  LS finds none of the variables to  be significant. 

Several diagnostic plots can be produced.  We will i l lustrate t h em  for the  es t imator  
based on the robust  S-covariance ma t r ix  def ined above. In Fig. l (a) ,  the  s tudent ized 
residuals r*, as given by (4.6), are represented versus their  index. The  scale of the  errors 
&n in (4.5) was es t imated by an A-es t imator  of scale (see Iglewicz (1982), p. 417), which 
has the maximal  breakdown point ,  a redescending influence funct ion (like the regression 
and intercept  est imators)  and is s t anda rd  implemented in S-plus. From Fig. l (a)  we 
immedia te ly  observe tha t  the  first 10 observations are not  following the  linear relat ion 
imposed by the major i ty  of the data.  

The  robust  distance di of an observat ion zi -- (xi, yi) indicates how far the da t a  point  
is from the bulk of the da t a  cloud. In Fig. 1 (b) the robust  distances di are compared  
with the constant  c of (5.1). If di is bigger than  this critical value then  wl(d 2) will 
vanish, result ing in a zero influence on the es t imator  according to (3.3). We see tha t  all 
14 outliers were above this critical value, and therefore  are complete ly  downweighted. 



276 CHRISTOPHE CROUX ET AL. 

(a) 
S t u d e n t i z e d  R e s i d u a l s  

a) 
CE 

" o  

N ~ 
c 

" 0  
;2) o .  

0~ 

~0ae0eoe 

(c) 

,.'. �9 �9 �9 � 9 1 4 9  
�9 �9 �9 . �9 �9 " � 9  

�9 �9 % �9 

.- . . . .  ".." �9 " . - ' . .  �9 
�9 % e = . = ~  

�9 % �9 

z0 40 eo 

Index 

K e r n e l  D e n s i t y  

[ . . . .  
-2 "1 O 1 2 

Residuals 

(b) 
R o b u s t  D i s t a n c e  

9 

0 
IIQO~Q0600000 

660 66666~Q~l16114eQ QQ el4 O0~090~qqO~O000ggg g 909Qggq~ g Q 0100 

20 4O eO 

Index 

(d) 
Q Q p l o t  

3- 

G) 
r r  

-2 -1 O t 2 

Quantiles of Standard Normal 

Fig. 1. Diagnostic plots for the residuals of the regression estimator based on an S-estimator 
of multivariate location/scatter for the Hawkins-Bradu-Kass data: (a) studentized residuals 
(b) robust distances versus their index (c) kernel-based density estimate (solid line) and its 
symmetric, unimodal version (dashed line) (d) QQ-plot of the residuals. 

To verify whether condition (F) on the residuals is reasonable, a diagnostic plot 
will be used (cfr. Fig. l(c)). The solid line is the kernel density estimate ]h(t) of the 
distribution of the residuals. To put emphasis on the central part  of the data, the density 
estimate has been restricted to the interval [-3(~n, 3~n]. The Gaussian kernel has been 
used and the bandwidth h was selected using maximum-likelihood cross-validation (see 
e.g. H~rdle (1991), p. 93). Afterwards, a symmetric unimodal version of this density 
has been added to this plot. It has been constructed as follows: first we computed 
]~(tj) -~ (]h (tj) + ]h (--tj))/2 for a grid of equidistant positive points starting from zero. 
Then a classical monotonic regression algorithm (see e.g. Cox and Cox (1994), p. 51) 
has been applied on the ]~(tj) to o b t a i n  /~m(tj). Putting ]~m(-t j )  = ]~m(tj) and 
connecting all the obtained values results in the dashed line of Fig. l(c), which is a 
symmetric and unimodal function. Note that the initial density estimate is reasonably 
close to the unimodal symmetric version, so it seems reasonable to assume that condition 
(F) is satisfied. Of course, more formal tests for unimodality and symmetry could be 
applied. 

Finally, a classical QQ-plot is presented in Fig. l(d). Once again, since we do not 
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Table 4. Estimates of the intercept and regression parameters for the Hawkins-Bradu-Kass data 
by the method based on a robust covariance S-estimator, as in Table 3. Now, for computing 
standards errors and correlations between estimated coefficients, the hypothesis of normality 
was used. 

Complete data set ~1 -0.538 
--0.018 0.097 0.004 --0.130 ~2 -0.457 -0.028 
(0.297) (0.102) (0.101) (0.111) /33 --0.572 0.063 --0.114 

Clean data set /~1 -0.530 
--0.021 0.123 --0.001 --0.147 ~2 -0.461 -0.002 
(0.231) (O.OSO) (0.079) (0.089) ~3 -0.534 0.003 -0.150 

want the outliers to dominate this picture and make the interpretation harder, the plot 
is based on all residuals with absolute value smaller than 3&n. Figure l(d) suggest 
that normality will not be rejected. This is confirmed by a Kolmogorov-Smirnoff test 
(P-value > 0.2). 

Supposing normality of the error terms allows us to use formula (4.4) to estimate 
the covariance matrix of the estimator. Results are reported in Table 4. We see that 
estimates, standard errors, and correlations between the coefficients remain robust: the 
outcomes based on the whole data set and just on the clean data are not too different 
and close to the LS result computed from the data with the outliers deleted. 

7. Conclusions 

In this paper we discussed properties of regression estimators based on high break- 
down S-estimators of location and scatter. We proved Fisher consistency of the method, 
without making the hypothesis of elliptical symmetry on the distribution of the explana- 
tory variables. We derived the influence function, which appears to be bounded for the 
usual choices of p functions in robust statistics. Moreover, it can easily be shown that  
the resulting regression estimator inherits the breakdown point of the location/scatter 
S-estimator. 

S-estimators of location and scatter have very attractive properties. It was shown 
that  they are asymptotically normal (Davies (1987)) with a quite high efficiency also in 
higher dimensions (Lopuhai~ (1989), Croux and Haesbroeck (1999)). At the same time 
they are extremely robust and have a smooth influence function. Moreover, there exist 
very fast algorithms to compute them (Ruppert (1992), Woodruff and Rocke (1994)), 
even in high dimensions. They seem to be an excellent choice as robust covariance matrix 
estimators in multivariate analysis. In the context of principal components analysis, they 
have been successfully applied by Croux and Haesbroeck (2000) and in diseriminant 
analysis by Croux and Dehon (2001). 

Although many robust regression approaches have already been proposed in the 
literature, we think that  the approach based on robust covarianee matrices merits to be 
added to the list of the better robust regression estimators. Let us mention some impor- 
tant advantages. First of all, the estimator combines good robustness (high breakdown 
point and bounded influence function) and good efficiency properties. The simulation 
study has shown the good performance of the estimator in terms of efficiency and sta- 
bility properties, in comparison with other recent high breakdown, bounded influence 
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regression estimators. Also, a robust estimate for the covariance matrix of the estima- 
tor is available. This allows to construct reliable standard errors around their robust 
estimates, which is important in practice but often neglected in the robustness litera- 
ture (among the exceptions are the bounded influence regression estimators proposed by 
Chang et al. (1999) and Ferretti et al. (1999)). Moreover, the method is quite simple and 
easy to explain: once the S-estimator of scatter is computed, which can be done using 
the fast algorithm of Ruppert (1992), the estimators of regression are explicitly com- 
putable without extra work. Finally, a similar approach can be applied to more general 
regression models, like multivariate regression (Rousseeuw et al. (2000)) and calibration 
models (Cheng and Van Ness (1997)). 

Acknowledgements 

We wish to thank the referee for his remarks, which lead to a considerable improve- 
ment of the paper. 

Appendix 

To prove Theorem 1 we will use the following lemma. 

LEMMA A.1. I f  the funct ion  p satisfies condition (R) and the distribution F sat- 
isfies condition (F), then the funct ion 

..,.(,)=i.(.l(.-,)..§ 
is symmetr ic  and increasing on [0, +co I for  every a > O, c > O. Moreover, f o r  c < c* = 
inf{t > 0 I p(t)  = p(oo)}, Aa,c(t) is strictly increasing on [0, +col. 

PROOF OF LEMMA A.1. The symmetry of Ao,c follows from the symmetry of F: 

)~ ,c( - t )  

Now A~,c has a positive derivative A'~,~(t) on ]0, +c~[ which can be seen as follows: 

o/ 
/k;,c(t) ---- -~ O(((Y - t) 2a + c ) l /2 )dF(y )  

t) 
-- -" f ((y _ + c)1/. - t ) ' .  + 

{ L  (y-t) 
= - a  ((y _ t)2a + c)1/2 r  - t )2a + c ) W 2 ) f ( y ) d y  

f ~  ((y _ (u- + } Jr- 5 ) 1 / 2  ~ / ) ( ( ( y  - -  t ) 2 0  - -~- c ) l / 2 ) f ( y ) d y  . 
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By transforming the integrat ion variables in these last two integrals, we obtain 

{/5 ; c ( t ) = - , ,  - - - ,  

/o + 

s ~b((s~a + c) l /2) f ( t  - s)ds 
s2 cr --t- c 

s cr a + c)l /2)f(  t + s)ds}  
s2a + 

s cr + c)U2)[f( t -  s) - y(t  + s)lds. s2a + 

For every s, t > 0 we have f ( t  - s) - f ( t  + s) > 0 from the unimodal i ty  of F .  Condit ion 
(R) ensures tha t  r  + c) :/2) >_ 0 implying tha t  ,V~,c(t ) _> 0. Moreover, if c < c*, 

then  {s > 0 I ~(( s2a + c) :/2) > 0} has a non-zero Lebesgue measure, so tha t  in this case 
A'~,~(t) > 0 for t > 0. [] 

PROOF OF THEOREM 1. First  of all, due to equivariance, we may suppose tha t  
a = 0 and /3  = 0, so y = e. Lopuhag (1989) has shown tha t  a solution ( M( H) ,  S(H))  
of problem (2.1) always exists. It  is now sufficient to prove tha t  My(H) = 0 and 
Suu(H) = 0, which will imply immediately tha t  T(H)  = 0 = (a,~t)  t. Denote M - 
M(H) ,  S =_ S(H)  and 

s _ l =  ( s  
\ u ] 

where 0 < S yu < oo since S is a positive definite matrix.  Suppose tha t  (i) S uy ~ 0 or 
(ii) (s  ~y = 0 and My r 0). Wi th  S ~  -- S ~ - (S"uSU~)/S uy, define S by 

(.:) ~--1 = 0 and put  ~ / =  . 
Syy 

Now by definit ion of T(H)  = (M(H) ,  S(H)) ,  and using independence of y and u, we 
may write 

b >__ f f  p(~u(y)l /2)aF(y)aC(u) 

with 

au(y) = (u - M~)tsUU(u - Mu) + (y - My)2S yy + 2(u - Mu)tsUy(y - My). 

( u - M , , ) t S  "u 
With  t(u) = M y -  s ~  �9 /R, we have tha t  a~(y) = ( y - t ( u ) ) 2 S  y y + ( u -  
M ~ ) @ ~ ( u  - M~). From L e m m a  A.1 it follows tha t  the function 

t ~  / p ( ( ( y - t ) 2 S  yy + ( u -  M~)tS~'u(u - M~) ) ' / 2 )dF(y )  

is symmetr ic  and increasing on [0, +c~[. Therefore, it holds for every u tha t  

/ p(O~u(y)l/2)dF(y) >_ J f p((y2SYY + ( u -  Mu)tSUU(u-  Mu))l/2)dF(y),  
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with strict inequality if t(u) # 0 and cu < c*, where c~, = ~/(u - Mu)tSuu(u - Mu) and 

c* defined as in Lemma A.1. Denote  A = {u [ t(u) = 0} and B = {u [ c~ > c*}. Since 
for all u C B, a~(y) 1/2 > c* for every y, we have that  

b > EH[p(a~(y)l/2)] >_ Eu[p(a~(y)W2)I(u e B)] = p(oo)P(B). 

If Pc(A U B) = 1, then we would have tha t  P(A) > 1 - P(B) _ 1 - ~ contradict ing 

hypothesis  (G), since A forms a hyperplane i n / R  p. Therefore, we have Pc(A U B) < 1 
and 

b > //p(au(y)W2)dF(y)dG(u) 

> / / p ( ( y 2 S y ~  + (u - M~) tS '~(u  - M~,)) l /2)dF(y)da(u)  

: /p( ( (Z  -- J~)ts--I(z - -  M))l/2)dg(z), 

while at  the same time de t (S)  = de t (S) .  Therefore there exists a constant  c < 1 such 
tha t  EH[p(((z -- M)t (cS)- l ( z  - 57/))1/2)] < b while det(cS)  -- cp+ldet (S)  < de t (S) ,  
hereby contradict ing the definition of T(H) = (M(H), S(H)). We conclude tha t  case 
(i) and (ii) are excluded, and therefore My = 0 and S ~u = 0 (which implies S~,y = 0). [] 

To prove Theorem 2 we need the following two lemmas. 

LEMMA A.2. From the first order condition (3.2) for the scatter matrix functional 
S, it follows that 

(A.1) [ Syy~Ho) / w~ (d2H~163176 IF(z; My, Ho) 

2 

�9 S~-~ (Ho)XF(z; S, , ,  Ho) 

= ~ ,  ( d ~  o ( z ) ) y ~ .  

where s = u - M~(Ho). 

PROOF OF LEMMA A.2. Consider the contaminated  dis t r ibut ion He = ( 1 - ~ ) H 0 +  
CAz. Lopuha/i  (1989) has shown that  a solution of problem (2.1) exists for contaminated  
distr ibut ions of this type  when ~ is sufficiently small. From the (u, y) component  of 
equat ion (3.2) we obtain 

- ~) / wl (d2H~ (z))(u -- Mu(H~))(y - iy(U~))dUo(z) (1 

+ ewl (d2 (z))(u - Mu(He))(y - My(He)) 

= (1 - e) [ w2(d2H~ (z))dHo(z)Suy(H~) + ew2(d2H~ (z))S~y(H~). 
J 



ROBUST REGRESSION USING SCATTER MATRICES 281 

Differentiat ing bo th  sides of the above equat ion w . r , t ,  e and evaluating at 0 yields 

- f wl (d2Ho (z))(z(y -- My(Ho))dHo(z) 

f 2 0 2 + -- M. (Ho) )dHo(z )  

- fw (d o(Z))IF(z; M . ,  Ho)(V - M (Ho))dHo(z) 

- fWl(d o(Z)) IF(z; My, Ho)dHo(z) + wl(d2Ho(Z))~t(y -- My(Ho)) 

= - / w2 (d2Ho (z))dHo (z)Suy (Ho) + w2 (d~o (z)) Suy (go) 

+ f w2 (d2Ho (z))dHo(z)IF(z; Suy, Ho), 

where (t = u - M~(Ho). From (3.2) it follows tha t  the first term on the left hand side 
equals the  first te rm on the right hand side in the above equation. Since My(Ho) = 0 
and S~v(Ho ) = 0 and using tha t  

_~edg~(z)lr 2 = (z - M(Ho))tIF(z; S -1, Ho)(z - M(Ho)) 

- 2(z - M(Ho))ts-l(Ho)IF(z; M, Ho) 

the previous equat ion becomes 

(A.2) / w~ (d2Ho (z))(z -- M(Ho))tIF(z; S -1 , Ho)(z -- M(Ho))~tydHo (z) 

- 2 / w~(d2Ho(Z))(z -- M(Ho))ts-I(Ho)IF(z; M, Ho)~tydHo(z) 

-/Wl(d~.o(Z))ydHo(z) IF(z; Mu, Ho) 

-- / Wl (d2Ho (z) )~tdgo(z) IF(z; My, go) + Wl (d2o (z) )~ty 

---- f w2 (d2Ho (z))dHo (z)IF(z;  Suy, Ho). 

Now IF(z; S -1 , Ho) = -S(Ho)-IIF(z;  S, Ho)S(Ho) -1 (this inequality follows immedi- 
ately from matr ix  derivation rules see e.g. (Pul lman (1976), p. 120)), so 

(A.3) (z - M(Ho))tIF(z; S -1, Ho)(z - M(Ho)) 

-- (z - M(Ho))tS(Ho)-IIF(z; S, Ho)S(Ho)-~(z - M(Ho)) 
- ~tIF(z;  S~ -1, H0)~ + IF(z; Syy, go)(y/Syy(go)) 2 

+ 2(ttS~ 1 (Ho)IF(z;  S,,~, go)y/Syy(Ho) 

since My(Ho) = 0 and S,,y(Ho) = 0. Also d2Ho(Z) = y2/Syy(Ho) + fitS~l(Ho)~. There- 
fore, using (A.3), the first integral in expression (A.2) can be split up into three parts .  
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The first part  equals 

J ~tXF(z; Su- j , Ho)~t {/W~l (y2/Syy(Ho)§ (Ho)(t)ydF(y)}~tdG(u)=O, 

since the inner integral is zero thanks to symmetry of F.  For the same reason we have 
for the second part  

/ { f w'l (y Syy(Ho) + ~ttS~J(Ho)~t)(y/Syy(Ho))2ydF(y) ~ ~ dG(u)IF(z; Syy, Ho) = O. 

Therefore, the first integral of equation (A.2) becomes 

f 
(A.4) ] W~l (d2Ho (Z) )(z - M(Ho) )tIF(z; S -1, Ho)(z - M (Ho) )~tydHo(z) 

_ 2 /w~(d~Ho(Z))y2~tdHo(z)SjJ(Ho)iF(z;Su~,,Ho)" Sy~(Ho) 
The second integral of equation (A.2) can be split up into two parts by using 

(z - M(Ho))tS-l(Ho)IF(z; M, Ho) 
- -  e~s~3 (Ho)IF(z; Mu, H0) + IF(z; My, g o ) y / S y y ( g o ) .  

The first part  equals 

/ {/ } ~tS~d (Ho)IF(z; M~,, Ho) w I (y2/Syy(Ho) + u S(~. (Ho)~t)ydF(y) ~dG(u) = O, 

by symmetry of F.  Therefore, the second integral of equation (A.2) reduces to 

(A.5) /w~(d2Ho(Z))(z -- M(Ho))ts-l(Ho)IF(z;M, Ho)~tydHo(z) 

_ 1 /w~(d2o(Z))y2~dHo(z)iF(z;My,Ho)" Syy(Ho) 
The integral in the third term of expression (A.2) also equals zero by symmetry of F.  
From the u component  of (3.1) it follows that  also the fourth term of (A.2) equals zero. 
Using the (u, u) component  of (3.2) the right hand term of (A.2) can be rewritten as 

(A.6) lw2(d2Ho(Z))dHo(z)IF(z;Suy,Ho) =/Wl(d2Ho(Z))~t~ttdHo(z)S~ul(Ho). 

Substituting (A.4), (A.5), and (A.6) in expression (A.2) yields the desired result. [:] 

Starting from the y component  of (3.1), with similar computat ions as in Lemma A.2, 
the next lemma can be proven. 
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follows that 

(A.7) 
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A.3. From the first order condition (3.1) for the location functional M, it 

2 f w' (d o(Z))y2dHo(z)] IF(z;M ,go) [/Wl(d2o(z))dSo(z) -~" ~yy(Ho---~) 

2 J w i (d2Ho (z))y2~tdHo ( z )S~  (Ho)iF(z; S~y, Ho) + 

= wl(d2Ho(Z))y 

(A.IO) 

where 

2 / w~ (d2Ho (z))y2ycyrtdHo(z). (A.11) A(Ho) = Wl(d2H~176 + Syy(Ho------) 

Now we can easily check that Q(Ho)t& = (1,ut) t = x. It follows from (A.10) and 
Q(Ho) -1 = -Q(Ho) that  

(A.12) IF(z; T, go )  = -Q(go)-ZA(Ho)- lQ(go)twl  (d2Ho (z))xy 

= (Q(Ho)tA(Ho)Q(Ho))-lwl (d2Ho (z))xy 

= C(go)-awl (d2Ho (z))xy 

rp ] '  
and Ip the identity matrix. Since My(Ho) = 0 and Suy(Ho) = 0 it follows that 

IF(z;Mu, Ho ) 
(A.8) IF(z; T, Ho) = Q(Ho) -1 Su_:(Ho)IF(z; S,~u, Ho)] " 

We can combine Lemmas A.2 and A.3 in one single equation: 

(A.9) Wl(d2H~176 + Syy(Ho----~ Wl 

�9 
~Sj:(go)IF(z; Suy,Ho)] 

= wl  (40(z))y  

with 5: = (1, ~tt) t and where we used fwl(d2Ho(Z))~tdHo(z) = 0 (which follows from (3.1)). 
Together with expression (A.8) this yields 

IF(z; T, Ho) = Q(Ho)-lA(Ho)-lwl(d2Ho(Z))~y 

with 

where (t = u - Mu ( Ho ) . 

Using Lemmas A.2 and A.3 given above we can prove Theorem 2. 

PROOF OF THEOREM 2. We first derive the influence function at Ho. We write 

T(Ho) -- \b(Ho)] = Q ( H ~  S(7•(Ho)Suy(Ho)] ' 
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where C(Ho) = Q(Ho) tA(Ho)Q(Ho)  equals, using (A.11), 

(A.13) 2 fw'l(d .o(Z))y2xxtdHo(z). C(Ho) = Wl(d2H~176 + Syy(Ho--) 

Using integration by parts, expression (A.13) can be rewritten as (3.5). 

note that if z = ( u t , y ) t ~ H ,  t h e n A z + c ~ H o  w i t h A  = ( J ~ , o ) ,  , and Finally, 
\ - -  J 

c ---- ( ~  By equivariance of the functional T we have T ( H )  = T(Ho) + (~)  and 
therefore 

(A.14) I F ( z ; T , H )  = IF(Az + c;T, Ho) = IF((u ,y  - xtO);T, Ho). 

Due to the affine equivariance of the S-estimator, we have 

d2H(Z) = (z -- M ( H ) ) t S ( H ) - I ( z  - M ( H ) )  

= (Az  - (M(Ho)  - c ) ) t S ( H o ) - l ( A z  - (M(Ho)  - c)) 

= d2Ho(Az + c) 

for all z E /R  p+I. Therefore, it follows from (A.14) and (A.12) that 

IF(z; T, H)  = C ( H o ) - l w l  (d~H(Z))x(y -- xtO). [:3 
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