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Abstract .  Computation of one-sided simultaneous confidence bands is detailed for 
a simple linear regression under interval restrictions on the predictor variable, using 
a method due to Uusipaikka (1983, J. Amer. Statist. Assoc., 78, 638-644). The case 
of a single interval restriction is emphasized. A WWW-based applet for computing 
the bands is described. 
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I. Introduction 

In many experimental situations the response variable, Y, is observed along with a 
non-stochastic predictor variable, x. Often, the mean response is assumed linear in x: 
E l Y  I x] =/30 +/31x. A common model for this simple linear regression setting assumes 
that  the observations are sampled from a normal distribution: Yi ~ indep. N(/30 + 

/~lXi, O'2), i : 1 , . . . ,  n. In this case, least squares estimators/~ = [/~0 ~1] ! of  the unknown 
parameter vector ~ = [/30/31]' correspond to those achieved under maximum likelihood, 
and exact inferences on E l Y  ix] are readily available (Neter et al. (1996)). 

Often, analysis of such data is restricted to a limited range of predictor x-values. 
Herein we direct attention at construction of simultaneous 1 - c~ confidence bands for the 
underlying mean/30+/31x over all values of x in some relevant restriction set. We consider 
hyperbolic bands based on Scheff@'s S-method (1953). (The hyperbolic shape derives 
by setting the band's width proportional to the standard error of the estimated linear 
predictor (Working and Hotelling (1929)).) Many authors have worked on building exact 
or conservative Scheffd-type bands with restrictions on the predictor variable, including 
Halperin et al. (1967), Halperin and Gurian (1968), Wynn and Bloomfield (1971), Casella 
and Strawderman (1980), and Naiman (1983), among others. Of particular note is an 
article by Uusipaikka (1983). He applied a novel geometric approach--which has since 
come to be known as Uusipaikka's method-- to the determination of critical points for 
exact, two-sided, Scheffd-type bands when the restriction on x is taken as an arbitrary, 
finite union of intervals or points. (For the latter case, also see Lane and DuMouchel 
(1994).) This might be useful, e.g., when x is distance from a pollution source along a 
transect and Y is pollutant deposition in the soil along the transect line. In this case no 
soil pollutants would be recorded over bodies of water, so inferences on E l Y  [ x] would 
be restricted to the disjoint intervals representing land/soil along the transect. 

Less work has appeared for producing one-sided (lower or upper) simultaneous con- 
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fidence bounds on E[Y I x]. With no restriction on x, Hochberg and Quade (1975) 
described a one-sided method for calculating Scheff6-type critical points in the multiple 
regression setting. Under a single interval restriction, say, A < x _< B, Bohrer and 
Francis (1972) gave a method for computing critical points for the simple linear case we 
study here. To our knowledge, however, no method has appeared for deriving one-sided 
Scheff~-type bands under an Uusipalkka-type restriction (i.e., over an arbitrary, finite 
union of intervals). Herein we extend Uusipaikka's (1983) work to construct such an 
exact one-sided simultaneous band. We also detail use of the one-sided critical points 
for the special case of a single interval restriction, and we describe briefly a Java applet 
for computing one-sided or two-sided critical points on the World Wide Web (WWW). 

2. Construction of the one-sided band 

We base our construction on Uusipaikka's method. Begin by writing the simple 
linear regression model in matrix form: y = X/3 + e, where y is the n x 1 response 
vector [I11 "'" Yn]', X is a n x 2 design matrix whose first column is all ones and whose 
second column is the recorded predictor values [Xl.-. xn] I, and e is an n-variate mul- 
tivariate normal disturbance vector with zero mean and covariance matrix a2I.  The 
variance parameter a 2 is assumed unknown. Then, the least squares estimators are 

= ( X ' X ) - I X ' y  and the usual unbiased estimator of a 2 is the mean squared error, 
S 2 = (y - X ~ ) ' ( y  - X ~ ) / ( n  - 2) (Neter et aL (1996)). 

A one-sided (upper) Scheff6-type band on/30 +/31x corresponds to the set of param- 
eters 

(2.1) ~ :  ~0 + ~lX < 80 + BlX + ~ v ~ s  + (~ - ~)~ vx e B 

n X where B is a pertinent restriction set for x and S ~  = Y']~=I( ~ - 2) ~- (A lower band is 
formed by replacing w~ with -w~.)  Following Uusipaikka (1983), B can be any finite or 
infinite closed interval, a union of disjoint intervals, or a finite number of isolated points 
on the real line. 

Of interest is computation of the critical point w~ > 0 that  gives (2.1) exact 1 - a 
coverage over all x E B. (The notation for the 1 - ct critical point w~ is simplified here 
for presentation purposes. As we will see below, the point also depends on n, X ,  and 
B.) Let C = {[1 x] ' :  x E B} and denote by e any element of C. With this, express (2.1) 
a s  

(2.2) {/3:c'I3 < c '~ + wav '2S(c '  Vc) 1/2, Vc ~ C}, 

where V = ( X ' X )  -1. It is clear that  

~,(~ - ~) ] 
P[c't3 < c '~ + w,~v/2S(c ' Vc) 1/2, Yc E C] = P sup w~ 

Lc C is /2 -< 

(Halperin and Gurian (1968); Uusipalkka (1983)). Thus (2.2) defines an exact 1 -  a level 
confidence set if w~ is taken as the upper-a point from the c.d.f., Fwc ('), associated with 
the random variable 

c ' (~  - ~) 
Wc ---- sup 

c~c v~S(c' Vc)'/2" 
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a A Formally, take 13 = [.Jj=l[ J, By], where we assume - o o  < A1 _< B1 _< A2 _< B2 _< 
. . .  < A j  < B j  < ~ .  For simplicity, define the vectors aj = [1 Aj]' and bj = [1 Bj]' and 
write 

aj+ 1 Vbj 
( 2 . 3 )  p j  = , 

V/a3+l Vaj+lb~ Vbj 

for j = 1 , . . . ,  J and a j+l = an. Notice tha t  each pj -metameter  is the correlation 

between ~ ^ aj+l/3 and bj/3. We can use Uusipaikka's method to manipulate  Fwc (') into 
the expression 

L (2.4) Fwc (w) = F(2,n-2)(w 2) + 2 FT qf(2,n-~) (q2)dq, 

when w _> 0. Here, F(2,~-2)(') and f(2,n-2)(') are the c.d.f, and p.d.f., respectively, of 
an F(2,  n - 2) random variable, and FT(.) is the c.d.f, of a random variable, T, which 
is based on Wc. (It is the specification of T and of its c.d.f, t ha t  lies at  the heart  of 
Uusipaikka's elegant derivation. For our one-sided setting, we give corresponding details 
in the Appendix.) Note tha t  when w < O we find 

/? (2.5) Fwc(w) 2 FT u = qf(2,n-2)(q )dq, 
I 

but  this expression will not be used since we require w > 0 in (2.1). Indeed, forcing 
w > 0 restricts our implementat ion of the confidence band, since it obligates us to 
require a < 1 - Fwc (0) = 1 - FT(O). In practice, however, this is not a hindrance, as 
we illustrate in the next section. 

The results in the Appendix show tha t  we can write FT(t) as a function solely of 
the p-metameters:  1{ ) } 
(2.6) FT(t) =- ~ 271- n c cos- l{p(j)}  -- 2[Mt + 1] cos - l ( t )  - c o s - l ( p j )  , 

\ j = l  

where P(1) _< P(2) _< "'" -< P(J-1) are the ordered values of P l , - - .  ,PJ-1, and Mt is an 
index satisfying 

(2.7) cos-l{p(1)} _> Cos-l{p(2)} > - . -  > COS-I{R(Mt)} 
> 2COS-I(t) > COS-I(p(I+Mt)} ~__-.. ~ COS-I{p(3-1)} 

for any argument  t > 0. The critical point for the exact 1 - ~ upper confidence band 
over B is then  the upper-a  point of Fwc (') from (2.4). 

Uusipaikka (1983) notes tha t  his method  can also be used in the multiple linear 
regression setting, provided tha t  the restriction subset C remains two-dimensional. 

3. Single-interval restriction (J  -- I )  and W W W  access 

One impor tant  special case also emphasized by Uusipaikka ( 1 9 8 3 ) ~ c c u r s  when 
J = 1, i.e., B = [A, B]. For this setting, (2.3) simplifies to the single metameter  

?)11 ~- (A + B)v12 + ABv22 
Pl : v/(VI1 -~ 2Av12 q- A2v22)(Vli + 2Bv12 -t- B2v22) ' 
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where vii is the ( i , j ) - t h  element  of V.  Note tha t  Pl is not  the correlat ion between xi 
and Yi, a l though it does rely upon the predictor  variables th rough  its dependence  on the 
vijs .  

The  expression for F w c  (') in (2.4) remains valid, wi th  F T ( t )  from (2.6) simplifying 
to 

1 
(3.1) F T ( t )  = ~-~ {27r -- 2COS-I(t) -- Cos- l (p l )} .  

Using (3.1) in (2.4) and set t ing F w c ( W )  = 1 - a yields a solution, wa, which allows 
us to wri te  (2.1) as an exact  1 - a upper  band Vx E [A, B]. Of course, we must  still 
require 1 - a >_ Fwc(O)  = FT(O).  Using (3.1), we find this is equivalent to  1 - a _> 
1(1 - c o s - l { p l } ) .  Table 1 gives values of this lower bound  for 1 - a as a funct ion of the 
single me tame te r  Pl- As can be seen, the bounds  are always below 0.5, and hence do 
not  impose any pract ical  h indrance  to implementa t ion  of the one-sided bands.  

To find uppe r - a  critical points  wa for this single-interval setting, we have cons t ruc ted  
W W W - b a s e d  software tha t  is available over the Internet .  The  software was created by 
linking together  a front-end Java applet  tha t  serves as a user interface, and a back-end 
F O R T R A N  program tha t  calculates w~ from informat ion supplied by  the user. T h e  
applet  was const ructed  using Java  classes from the WebSta t  analysis p rogram (West and 
Ogden (1997)). 

The  applet  is accessible via any Java-compat ible  Internet  browser, and requires 
the user to enter  the da t a  in two columns (first x, then  Y; a cu t -and-pas te  opt ion  is 
provided),  and also to supply the required band  const ruct ion parameters  a ,  A, and B.  
The  correlat ion me tame te r  Pl is calculated direct ly from the data.  If desired, the user can 
resort  to the default  values a = 0.05, A = r a i n { x 1 , . . . ,  xn}, and B = m a x { x 1 , . . . ,  x n } .  
Access the W W W  applet  at the URL h t t p : / / w w w ,  s t a r .  s c .  e d u / r s r c h / g a s p / b a n d s /  

The  critical points for one-sided bands available from our  W W W  applet  may  be 
compared  to earlier crit ical points  given for this special case by Bohrer  and Francis 
((1972), Table 1). We performed this comparison,  and found tha t  in general  our  values 

Table 1. Minimum values, FT(O), of confidence coefficient, 1 - a, for one-sided Scheff4-type 
bands under a single interval restriction, as a function of the pl metameter. 

p~ FT(O) 

-I .0 0.0000 

-0.8 0.I024 

-0.6 0.1476 

-0.4 0.1845 

--0.2 0.2180 
0.00 0.2500 
0.20 0.2820 

0.40 0.3155 
0.60 0.3524 
0.80 0.3976 
0.90 0.4282 
0.95 0.4495 

0.99 0.4775 
1.00 0.5000 
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agree to the 10 .2 accuracy found in Bohrer and Francis' table. The only discrepancies 
we encountered were in the case of v = 1 (i.e., n = 3); there, our critical points were 
slightly but consistently higher than the previously-tabled values. To check this, we 
evaluated the actual coverage of the previous points and of our own; we found that  the 
points in our tables exhibited correct, nominal coverage. For the previous points at 
n = 3, however, we found that  coverage generally dropped below the nominal level by 
a small amount, and was only correct in the single point (A = B) case. (At a = 0.10, 
the average coverage over a range of input values using the previous points was 0.887; 
at c~ = 0.05 it was 0.948; and at a = 0.01 it was 0.989. Obviously these are not major 
discrepancies, but we do caution that  the previous tables may be slightly undervalued 
when u = 1.) 

4. Example 

To illustrate use of these one-sided bands consider the following data, discussed 
by Dalgs et al. (1994). Their study concerned mercury (Hg) toxicity in pregnant 
Faroe islanders, where potentially high mercury body burdens occur due to the islanders' 
large consumption of pilot whale meat. The response was taken as Hg concentration in 
the woman's umbilical cord blood (in #tool/l, recorded immediately after giving birth), 
viewed as a function of average daily Hg ingestion (in #g). The study involved n -- 12 
observations with an average Hg ingestion of �9 = 195.867 #g, and with S~x -- 366,189.947 
#g2. The data appear in Table 2. 

Mercury exposure to the women's gestating fetuses or neonates may present a risk 
of malformation or other toxic damage to the offspring, so public health officials are 
often interested in assessing the nature of the maternal Hg ingestion/exposure (Mahaffey 
(2000); Sh ippe t  al. (2000)). Regulatory interest only concerns the severity of the Hg 
outcome, thus for purposes of risk assessment only upper confidence statements are 
required. This leads to use of only an upper simultaneous bound on E[Y I x]. Here, we 
take J = 1 and set the restriction interval as the range between zero and slightly past 

Table 2. D a t a  on mercury  concent ra t ion  in umbilical  cords (Y) in p o s t p a r t u m  women after  
ingest ion of mercury (x) in the  diet. Source: Dalgs et al. (1994). 

Daily mercury  Mate rna l  cord 

ingest ion (/zg) mercury  (#mol / / )  

1.4 0.007 

49 0.23 

90 0.43 

96 0.46 

108 0.52 

125 0.60 

146 0.70 

153 0.73 

233 1.12 

324 1.56 

354 1.70 

671 3.22 
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the highest ingestion level, 0 < x < 675. 
Fitting a simple linear model to these data yields the least squares estimates ~0 = 

-0.0012 and/~1 = 0.0048, with root mean square error S = 0.0027. At a = 0.05, the 
corresponding one-sided critical point is w0.05 = 1.718. This is used in constructing a 
simultaneous upper confidence band for these data  over 0 < x _< 675. From (2.1), we 
find 

i I (x - 195-867) 2 
130 + ~lX _< -0.0012 + 0.0048x + 0.0066 + 366189.947 

This suggests, e.g., that at very low ingestion levels--say, x -- 0.5 pg- -mean  cord blood 
concentrations go no higher than about 0.004 #mol// ,  while at very high levels--say, 
x = 650 #g- - the  concentration can reach up to 3.124 #mol// .  Since these inferences are 
derived from simultaneous upper bands they both hold with 95% confidence, as would 
any other upper confidence statement(s) made for ingestion levels between 0 < x _< 
675 #g. 

Acknowledgements 

Thanks are due to Drs. Ralph L. Kodell, Obaid M. Al-Saidy, and an anonymous 
referee for their helpful comments during the preparation of this work. The research 
was supported by funding under grant #R01-CA76031 from the U.S. National Cancer 
Institute. Its contents are solely the responsibility of the authors and do not necessarily 
reflect the official views of the National Cancer Institute. 

Appendix: Derivation of the distribution of Wc 

Our proof of the construction in (2.4) and (2.6) mimics that given by Uusipaikka 
for the two-sided case. Similar to that work, we outline the derivation by dividing it into 
two parts. First, we show that the c.d.f, of Wc for w _> 0 has the integral representation 
given in (2.4). Then, we find that the c.d.f. FT(.) has the explicit expression given in 
(2.6). 

To begin, take any nonsingular matrix B such that the covariance matrix V is 
V = B i B .  With this, define z = a -1 (B')  -1 (f~ - /~ ) ,  which is bivariate normal with 
zero mean vector and Var(z) -= I .  Next, express z in polar coordinates: z = R u  
where u [cosO s ine] ' .  It is well-known that R 2 -- z~ + z~ ~ X2(2) is independent of 

~ Unif.[0, 27r]. Thus u is also independent of R 2. We can write Wc in the form 

(A.1) W c s u p  (Bc ) r z  / ~ R 2 }  1/2 (y2 
-- -- - -  sup{c 'u} ,  

cec v~(r-lS(c' vc)l/2 ~ s 2  cec. 

where C* = {(c '  V c ) - l / 2 B c  : c E C} is a subset of the unit circle (a finite union of 
J consecutive, disjoint arcs) in Euclidean two-space; we detail C* more fully below. 
Notice that Q2 -- { (R2/2) / (S2/cr2)}  ~ F(2,  n - 2) and that Q is independent of T = 
SUPcec. { c' u }. 

We will see below that since C* is a subset of the unit circle, it can be expressed as 
C* = ([cos r sin r : r E F* }, where F* corresponds to a finite union of angles swept 
out by the finite union of disjoint arcs defining C*; again, we detail F* more fully below. 
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There, we will write T = supcec.  {c 'u}  as T = suPcer .  {cos(C) cos (O)+s in (C)  sin(O)} = 
suPcep.  {cos(q5 - O)}; recall tha t  O ~ Unif.[0, 27r]. 

Now, since We = QT, from (A.1) we have 

(A.2) Fwc (w) = P[QT <<_ w] = P T <_ fQ(q)dq 

= 2 FT qf(2,n-2)(q2)dq. 

a~ Vbj  
PJ = v/a~ Val b~j V b j '  

- Q) /2} ,  j -- 1 , . . . ,  J ,  then the c.d.f, of T can be wri t ten as 

1 
---- ~ E {r  - ~j q- 2Cos - l ( t ) }  

rj<t 

and Tj = cos{(r  

FT(t) = P[T < t] 

_ 1 (27r 
27r 

O r  ( 0 , r 1 6 2  if r  

O • ( r  c o s - l { t } , r  cos - l { t} )  if r > cos - l ( t ) .  

Now, define r  -- 2% so that  if ~j + cos -1 (t) < ~2j+ 1 --COS - 1  ( t ) ,  the event {T _< t} can 
be wri t ten as {O E U J j=l [~J + Cos--l{t}' r  -- COS--I{t}]}- Notice that  cos ( r  - Q)  is 
simply pj as given in (2.3). If we also define 

-- COS-1 pj  _ 2 COS-1 t + E 
J -1  

j= l  
cos 1 pj~>2cos-1 t 

{COS -1 (pj) -- 2 COS -1 ( t ) } )  

(or zero, whichever is greater).  If we denote the ordered values of P l , - . . ,  P J-1 by P(1) -< 
P(2) _< "'" _< P(J-1),  and let Mt be the index satisfying (2.7) for any t > 0, then we can 

Notice that  P [ - 1  < T < 1] = 1. Thus,  whenever q < Iwl, FT(w/q) = 1 if w > 0, and 
FT(w/q) = 0 if w < 0. Hence for w > 0, (A.2) corresponds to (2.4), while for w < 0, 
(A.2) corresponds to (2.5), as desired. 

Next,  consider the c.d.f. FT(.). Recall tha t  B = [-JY-1 [Aj, Bj],  and with this, define 
the vectors aj = [1 Aj]' and bj = [1 Bj]'. Translating B (and thus C) to the polar- 
t ransformed space is equivalent to using the J disjoint intervals in B to define J consec- 
utive, disjoint arcs on the unit  circle, each with endpoints  a] = (aj Va j ) - l / 2Ba j  and 

b] = (bj Ybj ) - l /2Bb j ,  j = 1 , . . . ,  J .  (Note in part icular  tha t  al  maps  to a~* = [1 0]'.) 
These define the set C*. Thus  we can express C* as C* = {[cosr  s ine] '  : r E F*}, 
where F* is the set of corresponding angles defining each arc's endpoint  in polar space. 
Tha t  is, F* J * * --~ Uj=I[~)j ,  ~j] for aj = [cos(r s in(r  and bj = [cos(Q) sin(~j)]', where 
0 ---- ~31 ___~ ~1 --~ ~32 --~ ~2 ---~ "'" --~ ~)J --~ ~J --~ 71". 

This construct ion allows us to write T as T = supecc .{C 'U} = 
supr  {cos(C) cos(O) + sin(C) sin(O)} = supr  {cos(r  - O)}. Now, the event {T < t} 
may be expressed as {cos(r - O) < t ,Vr  E F*}; but ,  notice tha t  for all r E F*, when 
t k cosr  0 < O <_ r  c o s - l ( t )  or r + cos - l ( t )  < O < 27r, while when t < cosr  
~b + cos - l ( t )  < O < 27r + r  cos - l ( t ) .  Thus {T < t} is equivalent to 
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simplify FT(t)  into 

(~-]~/=~1COS-I{p(J)}) -- 2 M t c ~  2 ~ -  cos  -1  p j -  2 C o s - l t  

FT(t)  = 2~ + 2~ 

(or zero, whichever is greater). This corresponds to the expression given in (2.6). 
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