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Abstract .  In this paper we propose a flexible continuous parametric shape model 
for star-shaped planar objects. The model is based on a polar Fourier expansion 
of the normalized radius-vector function. The expected phase amplitudes are mod- 
elled by a simple regression with parameters having nice geometric interpretations. 
The suggested generalized p-order model is an extension of first- and second-order 
Caussian shape models, and in particular the Gaussian assumption is relaxed. The 
statistical analysis is straightforward, as demonstrated by an application concerning 
shape discrimination of two cell nuclei populations. 
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radius-vector function, shape, star-shaped objects. 

I. Introduction 

Recently, shape modelling of featureless objects has attracted much attention in the 
statistical literature. The Gaussian model with cyclic invariance properties, described 
by Grenander and Miller (1994), has played a predominant role. One line of research 
is concerned with the application of the Gaussian model as a prior in Bayesian object 
recognition. Such an application is discussed in Grenander and Miller (1994). The group 
around Hs Rue has also contributed significantly to this research, cf. e.g. Rue and 
Syversveen (1998) and Rue and Hurn (1999). In Hansen et al. (2002) a similar Bayesian 
analysis is performed where also the time aspect is taken into account. 

Another line of research treats likelihood analysis of the Gaussian model and is 
useful for describing rather than finding the objects. A very important contribution 
is the paper by Kent et al. (2000) where the model is used for the standardized edge 
transformation vector, see also Kent et al. (1996). (The standardized edge transformation 
vector only contains shape information.) In particular, the eigendecomposition of the 
circulant covariance matrix is described. In the follow-up paper Hobolth et al. (2002a) 
the corresponding theory is developed for the standardized vertex transformation vector. 
Likelihood analysis has also been considered in Hurn et al. (2001). 

In Hobolth and Jensen (2000) a continuous approach is used, which may have a 
general appeal because the model and its parameters do not relate to a particular number 
of vertices. Furthermore it appears natural to represent the boundary of an object 
continuously. The continuous counterpart of the standardized vertex transformation 
vector is the normalized residual process, as introduced in Hobolth and Jensen (2000). 
Continuous models are also mentioned in Kent et al. (2000) and Hobolth et al. (2002a). 

In this paper we represent the shape of a random planar star-shaped object in 

227 



228 ASGER HOBOLTH ET AL. 

terms of the normalized radius-vector function R = (R(t))te[O,ll and suggest a flexible 
continuous statistical model for R. The model relies on a polar Fourier expansion of the 
normalized radius-vector function 

oo 

R(t) = 1 + 2v/-~-cos(2~-(t - d~)) + 2 ~ v/-~ cos(27rs(t - Ds)), 
8 : 2  

t E  [0, 11. 

We show that the first phase amplitude Cl and the first phase angle dl play special 
roles as parameters of asymmetry and discuss in detail how the remaining random phase 
amplitudes Cs and phase angles Ds characterise the shape of the random object. Under 
the proposed generalized p-order model the expected phase amplitudes As = E(Cs) 
satisfy the simple regression equation 

A~ - i  = a + 3 ( s  2p - 2zP),  s > 2, 

where a > 0, /3 > 0 and p > 1/2. We show that p determines the smoothness of the 
object boundary while the parameters a and/3 determine the 'global' and 'local' shape, 
respectively. Thus, an important new feature of the proposed model is that  the statistical 
parameters relate directly to the geometry of the object and not to, say, the covariance 
function of R. The phase angles Ds are assumed to be uniformly distributed, but there is 
no restriction on the distribution of the phase amplitudes Cs. Exponentially distributed 
amplitudes correspond to a Gaussian model and generalized gamma distributed ampli- 
tudes offer a simple extension which allows for both heavier and lighter tails than the 
exponential ones. The generalized p-order model is an extension of the models used 
in Kent et al. (2000) and Hobolth et al. (2002a) where exponentially distributed phase 
amplitudes are used and p = 1 or 2. Hobolth et al. (2002b) in a follow-up paper consider 
an application with p = 2.5. 

Fourier expansion of the radius-vector function has been used in many applications 
and a statistical introduction can be found in Stoyan and Stoyan ((1994), pp. 80-88). 
We refer the reader to Lestrel (1997) for a review of biological applications and Loncaric 
(1998) for a survey of the engineering literature. Common to the usual approaches is 
that statistical models are not formulated, but instead parameters of global structure and 
roughness are defined directly from the Fourier coefficients. Stoyan and Stoyan ((1994), 
p. 83) also define shape parameters in a non-statistical context. 

In Section 2 we review some well-known properties of the radius-vector function 
and analyse the geometry of the Fourier coefficients. This analysis is the basis for 
the construction of the generalized p-order model proposed in Section 3. Statistical 
inference is discussed in Section 4, and the model is applied to a data  set of normal 
mantle cell nuclei and cell nuclei from a mantle lymphoma in Section 5. The analysis 
shows that cell nuclei from the mantle lymphoma are more 'irregular' than normal cells 
(significantly different ~-values in the two groups). Shape discrimination of the two cell 
nuclei populations was the original motivation for studying the continuous shape model. 
Finally Section 6 contains ideas for future research. 

2. Geometry of the radius-vector function 

Let K be a compact subset of R 2 and suppose K is star-shaped with respect to 
z r K,  i.e. the intersection between every line through z and K is a line segment. We 
will describe K in terms of its radius-vector function (rg(t; z))tr where rg(t; z) is 
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the distance from z to the boundary  of K along a ray with angle 2~rt relative to a fixed 
axis. 

The radius-vector function is invariant under  t ranslat ion and rotation.  To be more 
specific, let Zo �9 R 2 and 

A =  (c~176 -sin27rt~ ) t o E [ 0 , 1 ] .  
sin27rt0 cos27rt0 ' 

Then, 
rAK+zo(t; Az + Zo) = rK((t -- to) mod 1; z), t �9 [0, 1]. 

A scaling t ransformation yields 

= z ) ,  t �9 [0,11, > 0. 

The shape of K is thus, up to shifts in t, represented by the normalized radius-vector 
function 

rK(t; z) 
KK(t; z) = f3 rK(U; z)du' t �9 [0, 11. 

Note  tha t  the normalized radius-vector  function is a continuous analogue of a s tandard-  
ized vertex t ransformation vector,  cf. Hobol th  et al. (2002a). Below we simply write r(-) 
for rK ('; z) in cases where it causes no confusion. 

A detailed shape description of K can be obta ined from a Fourier series expansion 
of the normalized radius-vector function r, 

oo  oo  

r(t) = 1 + v/2 E ascos(27rst) + v/2 Ebssin(27rst),  t �9 [0,11, 
s = l  

where the Fourier coefficients are 

(2.1) as = v ~  r(t) cos(27rst)dt, 

s = l  

~0 
1 

bs = v~  r(t) sin(2~rst)dt, s > _ l .  

The Fourier coefficient at  phase 0 is 1 because of the normalization of the radius-vector 
function. Let t ing 

as = 2v/~cos(27rsds) ,  bs = 2v~ssin(27rsds),  s _> 1, 

we obtain  the  polar  form 

oo  

(2.2) r(t) = 1 + 2 Z V ~  c~ - as)), t E [0, 1], 
8 = 1  

where cs = (a2s +b2s)/2 > 0 and ds �9 [0,}[, s > 1. (If as = bs = 0, let d8 = 0.) 
The coefficient cs is called the s- th phase ampli tude and ds the s- th phase angle. It 
is immedia te  from (2.2) that  cs is rotat ion invariant since it remains unchanged under  
shifts in t. 

Writing z = (Zl, z~) the boundary  of K can be represented as 

(f l  (t), f2 (t)) = (Zl, z2) + qr(t)(cos(27rt), s in(2r t ) ) ,  t �9 [0, 1], 
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Fig. 1. The  values of the  phase  ampl i tudes  Cs are shown as a funct ion of s for an  asym- 
metr ic  objec t  (left) and  a fairly symmet r ic  objec t  (right).  An objec t  is called symmet r ic  if 
r ( t )  = r ( t  + 1/2) for all t E [0, 1/2[. 

where q is the integral of the radius-vector function. Combined with (2.1) it follows that 

(el b l ) = V r 2 ( ~ 0 1  ~01 ) , ~ [fl(t) - Zl]dt, [f2(t) - z2]dt . 

Thus, if K is symmetric (with respect to z) then al = bl = Cl = 0. Here symmetry means 
2-fold symmetry, cf. (2.4) below with s = 2. Conversely, a high value of cl indicates a 
high degree of asymmetry relative to z, cf. Fig. 1. In the Appendix we show that the 
Fourier coefficients al and bl can also be expressed as integrals on the interior of K.  

To analyse the geometry of the higher order phase amplitudes let us consider an 
object where all but the s-th phase amplitude are zero such that 

(2.3) r(t) = 1 + 2v~s  cos(27rs(t - ds)). 

For such an object z is the centre of mass, see the Appendix, and furthermore r(t) 
possesses s-fold symmetry in the sense that 

(2.4) r ( t ) = r ( t + l )  . . . . .  r ( t + s - 1 )  [ 1 [  , t E  0 , -  . 
8 8 

In Fig. 2 we have plotted objects with radius-vector function of the form (2.3), corre- 
sponding to different values of s, d8 = 0 and varying values of c8. In Fig. 3 we have 
illustrated how the s-fold symmetric objects contribute for small s to the 'global' shape 
of a given object K and for large s to the 'local' shape. 

To sum up, we can interpret cs, s >_ 1, as shape parameters. For s ---- 1, cs is an 
asymmetry parameter. For s _> 2 small, cs determines the 'global' shape of K while for 
s large c~ affects the 'roughness' of the boundary of K. Up to a shift in t, d~, s _> 1, 
are also shape parameters. For s > 2, they determine the relative orientation of the 
s-fold symmetric objects associated with K. In Zahn and Roskies (1972) the geometric 
interpretation of a Fourier expansion of the tangent-angle function is studied in a similar 
way. 

Let us conclude this section by discussing how z can be chosen. In some applications 
z is 'given by nature'. An important example comes from local stereology where K 
is actually a planar section through a biological cell, passing through the nucleus or 
nucleolns of the cell, cf. Jensen ((1998), Chapter 7). In other cases z is defined from K,  
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Fig. 2. Objects  wi th  radius-vector function of the  form (2.3) wi th  ds = 0. In each row the 
value of s is constant  (s = 2, 3, 4, 5). The value of logcs is indicated in the interior of the  object .  

Fig. 3. The upper  row shows the objects  of the form (2.3) for s = 1 , . . . , 6  (left to right) 
associated with the objec t  K shown in the  lower row. The  values of loges are indicated in their  
interior. In the lower row, the  reconstruction of K from the  first s Fourier coefficients is also 
shown. 

typically as the centre of mass, cf. Loncaric (1998) and Hobolth et al. (2002a). In the 
latter paper it is used that with z equal to the centre of mass the first phase amplitude of 
rK('; z) is approximately zero when K is a small deformation of a circle. In the Appendix 
it is shown that the centre of mass of K can in fact be characterized by the property 
that  the first phase amplitude of rK('; z) 3 is zero. 

3. The generalized p-order model 

In this section we introduce the parametric statistical model for the normalized 
radius-vector function (R(t))t~[o,1]. The starting point is the polar expansion (2.2) of 
the normalized radius-vector function. As argued in the previous section the first phase 
angle dl and phase amplitude Cl play special roles as asymmetry parameters. In this 
paper we treat cl and dl as non-random nuisance parameters. The expansion of the 
normalized radius-vector function in polar form therefore becomes 

(3.1) R(t) -- 1 + 2v/~cos(27r(t - dl)) + 2 f i  V/-~ cos(27rs(t - D~)), t �9 [0, 1]. 
8=2 
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The remaining phase amplitudes Cs and angles Ds, s > 2, should be modelled by 
distributions on R+ and [0, l /s] ,  respectively. 

The expansion (3.1) makes it possible to construct a variety of shape models. A 
generalized p-order model is a parametric model satisfying 

(3.2) Cs ,-~ AsZ~, Ds ~ U[0, 1/s], s > 2, 

where the error variables Zs have mean 1 and U[0, 1/s] is the uniform distribution on 
the indicated interval. Furthermore, Cs, D~, s > 2, are all independent and the expected 
phase amplitudes As = E(Cs) decrease as 

,~1 = ao + 3s 2p, s >_ 2. 

The parameters satisfy a0 > -/322v and/3 > 0 such that As > 0 for all s > 2. We further 
assume p > 1/2, which implies that  R has finite variance, as discussed below. 

In order to facilitate a geometric interpretation of the regression parameters we use 
the reparametrization 

(3.3) ,,~s I = Ot - Jv /3 (8  2 p  - -  22P), s ~ 2, 

where a > 0, t3 > 0, p > 1/2. The parameter a determines the 'global' shape of the 
object. If a is high, objects of circular shape are expected while a low value corresponds 
to an elongated or, in the extreme, a 'peanut-shell' shape. The reason is that  under (3.3), 
a determines the expected phase amplitudes A~ = E(Cs) for small s and Ca governs the 
global shape for small s, cf. Section 2. As discussed below p determines the smoothness 
of the boundary of K.  For fixed p the parameter 13 determines the 'local' shape of the 
object since it controls the behaviour of As when s is high. Precisely, as s --* c~, we have 
that (log s, log )~-1) behaves as a line with slope 2p and intercept log/3. For small values 
of/3 rather irregular objects are expected while high values yield regular objects. 

The random phase angles D~ determine the relative orientation of the s-fold sym- 
metric objects associated with K, cf. Section 2. The uniform distribution on the angles 
implies that these objects do not have a 'preferred orientation'. A generalized p-order 
model is therefore expected to be appropriate for describing a population of objects 
which does not have a predominant non-circular shape. The shape variability of K is 
influenced by the variation of the error variables Zs. 

In Fig. 4 simulations from the model (3.1)-(3.3) with exponentially distributed error 
variables, p = 2 and Cl = 0 are shown. The values of a and/3 are typical for the objects 
studied in the data  section. It is seen that in the corner corresponding to high values of 
a and/3 the simulated objects are smooth and 'circle'-like, while in the opposite corner 
the simulated objects are irregular. 

To study the distribution of the radius-vector function let 

o o  

R , ( t ) = 2 E V Z - ~ c o s ( 2 7 c s ( t - D ~ ) ) ,  t e [0,11, 
8.-~2 

contain all the random Fourier terms of R(t). Using (3.2) and independence of the phase 
angles and amplitudes it follows that R1 is a stationary process with covariance function 

o o  

(3.4) o-(t) = c o v ( n l ( t ) ,  R l ( o ) )  = 2 cos(2 st), t e [o, 11. 
8 ~ 2  
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Fig. 4. Simulated objects  under  the  second-order  model  wi th  Cl = 0, exponent ia l ly  d i s t r ibu ted  
error variables and  the  indica ted  values of a and /3. 

The process R1 has zero Fourier coefficients at phases 0 and 1. Similar constraints were 
used by Hobolth et al. (2002a) and Kent et al. (2000) in a discrete time model. Properties 
such as continuity and differentiability of R1 (and hence also of R) are determined by 
the parameter p as follows from Cram4r and Leadbetter ((1967), Section 4.2 and 4.3). 

Equation (3.4) gives the relation between the expected amplitudes and the covari- 
ance function. As an alternative to parametric specification of the Ass as in (3.3) one 
may suggest a simple parametric form of the covariance function a, cf. e.g. Rue and 
Syversveen (1998). Since the amplitudes relate to the random geometry of the object 
we believe it is more natural to specify directly a parametric model for the expected 
amplitudes. Furthermore, the constraints on R1 are easier to handle and interpret in the 
spectral domain. 

In the shape literature a random object is often modelled by a multivariate normal 
distribution with a circulant covariance matrix or by a stationary Gaussian process in 
continuous time, cf. Grenander and Miller (1994), Hobolth et al. (2002a), Rue and Hurn 
(1999), Hobolth and Jensen (2000), Kent et al. (2000). We now show that a Gaussian 
model is obtained by letting the error variables Zs be exponentially distributed. This 
model will therefore be called the Gaussian p-order model. Using (2.2) and (3.2) it 
follows that if Zs is exponentially distributed then 

o o  o o  

Rl( t )  = v ~  E Ascos(2rs t )  + v ~  E Bssin(27rst), t 6 [0,11, 
S ~ 2  s ~ 2  

where As, Bs, s > 2, are all mutually independent and As ~, Bs "~ N(0,)~s). This 
representation shows that R1 is a stationary Gaussian process. By (3.3) and Rogers and 
Williams ((1994), Theorem 1.25.10), it follows that for the Gaussian p-order model the 
sample paths of R1, and hence also of R, are k - 1 times continuously differentiable where 
k is the integer satisfying p E ]k - 1/2, k + 1/2]. In particular, if p is an integer then 
p = k. In the Gaussian first-order model, the sample paths of R are continuous and in 
the Gaussian second-order model the sample paths are continuously differentiable. The 
first- and second-order Gaussian models have been studied in the literature (most often 
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without the constraint A0 = A1 = 0). In particular, these models appear as limits of 
discrete time first- and second-order Markov models, cf. e.g. Grenander ((1993), pp. 476 
and 484). 

4. Statistical inference 

If only a digitized version of the object is available, the radius-vector function cannot 
be determined accurately. To avoid this obstacle a low-pass filter, cf. Bloomfield (1976), 
can be used. The idea is to determine the parameter estimates from the low frequency 
Fourier coefficients only since they are robust to digitization effects. For the Gaussian p- 
order model, the analysis is particularly simple. Recall that  in this case the phase angles 
Ds are uniform in [0, 1/s] and the phase amplitudes Cs are independent exponentially 
distributed with mean As. In particular the distribution of the phase angles does not 
depend on unknown parameters. Using the first S phase amplitudes the likelihood 
function becomes 

S 
(4.1) L()%;cs)--~ H )~:ie-A~-lcs" 

8=2 

Defining the expected amplitudes by (3.3) the maximum likelihood estimates for (c~, 8, P) 
can be found by standard numerical methods. A likelihood function of the same form is 
considered in Hobolth et al. (2002a) and Kent et al. (2000). 

If the normalized radius-vector function is only known at the data  points t = 
O, 1 / n , . . . ,  (n - 1) /n,  the phase amplitudes cs =- (a 2 + b2)/2 can be approximated by 
discrete versions of the integrals (2.1). The specific value of n is not important, just as 
long as it is reasonably high. That  is, different values of n give approximately the same 
value of cs. 

5. Data analysis 

The data set consists of 50 normal mantle cell nuclei and 50 cell nuclei from a mantle 
lymphoma (tumour in the mantle zone of a lymph node), cf. Fig. 5. The nuclei from 
each of the groups are sampled from a microscopic section among those with sectioned 
boundary in focus, using a semi-automatic segmentation procedure. The normalized 
radius-vector function r(t) is determined at t -- O, 1 / n , . . . ,  ( n -  1 ) /n  by tracing rays 
from the centre of mass to the boundary. Unless otherwise stated we use n -- 100. The 
nuclei are rather homogeneous in size (about 15 #m in diameter), so the normalization 
factor is almost the same for all the nuclei. 

5.1 Analysing each nuclear profile individually 
First, each nuclear profile is analysed individually using the likelihood function 

(4.1). The cut-off value S is important. If S is too small we are not using important 
shape information, but  on the other hand if S is too large the results are influenced by 
digitization effects, see Fig. 3. Unless otherwise stated we use S = 15. 

For each object we determine the estimates of (c~,/~,p) as explained in Section 4. 
In both samples the estimates of p are close to 2 for all nuclei. For the normal sample 
the average is 2.07 with a standard deviation of 0.21 while for the lymphoma sample the 
average is 2.02 and the standard deviation 0.28. Therefore we fix p -- 2 and consider the 
Gaussian second-order model only. 
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Fig. 5. The  50 normal  man t l e  cell nuclei (upper  panel)  and  the  50 
l y m p h o m a  (lower panel).  
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Fig. 6. The  es t imates  of (a, /9) under  the  Gauss ian  second-order  model.  T h e  ha tched  nuclei 
are from the  normal  man t l e  cells while the  whi te  nuclei are from cells in the  man t l e  lymphoma.  
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Table  1. 
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The  average, s t a n d a r d  devia t ion and  correlat ion of (log &, log ~)  for each sample.  

log & log/3 

av. s.d. av. s.d. corr. 

normal  5.35 0.84 2.26 0.72 0.27 

l y m p h o m a  4.94 1.11 1.09 0.81 0.03 
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The  es t imates  of/3 as a funct ion of S for 11 nuclei. 

The estimates of ((~, 13) under the second-order model are shown for each nucleus 
in Fig. 6 and summarized in Table 1. The estimates of the local shape parameter/3 are 
on average lowest in the lymphoma sample, which is to be expected from the geometric 
interpretation of/3 given in Section 3. A t-test for identical f~s, based on the distribution 
of log ~, shows a significant difference between the two samples (p-value less than 0.05%). 
On average the estimates of the global shape parameter ~ axe also lowest in the lymphoma 
sample, but  the difference is not as significant (p-value close to 5%). Furthermore we see 
that  the estimates of c~ from the lymphoma sample vary over a somewhat larger range 
than the estimates from the normal sample. 

We also investigated how the choice of cut-off value S influences the analysis. Since 
the estimate of c~ is determined by the first few amplitudes the estimate of this parameter 
only changes slightly when S is larger than 8, say. From Fig. 7 it is seen that the estimate 
of ~3 does change with S, but  the changes are rather small. 

The number of data points n should be high compared to S, but  otherwise the 
specific choice is less important. In Fig. 8 we see that for S -- 15 the estimates are 
stable, and the analysis is robust to the specific choice of n > 50. 

5.2 Analysing the profiles under an iid-assumption 
We now investigate whether the profiles within each of the groups can be regarded as 

independent and identically distributed realizations of a Gaussian p-order model. Let the 
indices (i , j)  denote the j - th  nucleus (j -- 1 , . . . ,  N = 50) in the normal sample (i -- 1) or 
the lymphoma sample (i = 2) and let csij be the corresponding phase amplitudes of the 
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Fig. 8. The estimates of/3 as a function of n for 7 nuclei. 

normalized radius-vector function. If we let Exp(A) denote the exponential distribution 
with mean A we want to investigate whether 

(5.1) Csi3 "~ Exp(Asi), j = 1 , . . . ,  N, 

for each s -- 2 , . . . , S  and i = 1, 2. 
We now examine (5.1) by considering the more general model 

C s i j  '~ F('ysi, Psi, 5~i), j = 1 , . . . ,  N, 

where F(% p, 6) denotes the generalized gamma distribution with density 

5y5~/_ 1 ( ( y ) 5 )  
f ( y )  - F(.y)p~ exp - y > 0 .  

Here, % 5 > 0 are shape parameters while p > 0 is a scale parameter. The ordinary 
gamma distribution is obtained for 5 -- 1, the Weibull distribution for "7 = 1 and the 
exponential distribution corresponds to 5 = "7 -- 1. 

The class of generalized gamma distributions is in fact rather flexible. When 5 < 1 
(> 1) the tails are heavier (lighter) than the exponential tails. When 5~/< 1 the density 
f ( y )  is strictly decreasing in y. Moreover limy_.0 f ( y )  exists and is finite if and only if 
5"7 _> 1. When 5"7 > 1 the density has a mode. 

Plots of the empirical survival functions of cs i j  for fixed s and i show that the distri- 
butions of the phase amplitudes have somewhat heavier tails than expected under (5.1) 
(the estimated values of 5 were less than 1). However in each sample the tendency is only 
significant for a few high values of s, and thus it is reasonable to consider exponentially 
distributed error variables, at least for low frequencies. The same conclusion is obtained 
by testing (5.1) using Bartlett  tests. 

Assuming the phase amplitudes csi j  are Exp(Asi)-distributed, the next step in the 
analysis is to fit a p-order model within each group, 

(5.2) A-~ l = a i  + 3 i ( s  2p~ - 2 2p~), s = 2 , . .  . , S ,  i = 1 , 2 .  
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Fig. 9. The  est imated regression ks = [& +/3(s  2~ - 22r~)] -a  in the Gaussian p-order model 
(solid) and the est imated regression under the Gaussian second-order model (dashed) is shown 
together with the average phase amplitudes as a function of s for the normal sample (lower 
curve) and the lymphoma sample (upper curve). The error bars are 95% confidence limits. 

Table 2, The  est imates and approximate confidence intervals, standard errors and correlation 
of (log &, log ~). 

log & log/~ 

est. conf. int. s.e. est. conf. int. s.e. corr. 

normal 5,08 4.81-5,35 0.14 1.97 1.89-2.05 0.04 --0.10 

lymphoma 4.52 4.27-4.77 0.13 0.82 0.74-0.90 0.04 -0 ,13  

The likelihood function is given by 

L(Asi; c~ij) = H H ~ 1  exp(-A~/'csij) = A~x exp(-As-~aSsi.) , 
j = l  s=2 

where ~ .  = ~N=I cs~j/N is the average of the amplitudes within the i-th group at 
phase s and A~i is given by (5.2). As expected the estimated value of p is close to 2 
in both samples (2.0 in the normal and 1.8 in the lymphoma sample), and again we 
consider the second-order model. The estimated regression lines are shown in Fig. 9 and 
in Table 2 the estimates and approximate standard errors and correlation coefficients 
based on the observed information are summarized. As in the previous subsection we 
observe a significant difference between the two samples in the value of/3. The difference 
in (~ is not as significant. 

5.3 Simulations f i rm the Gaussian second-order model 
In the Gaussian second-order model truncated at S = 15 we have 

Cs ~ Exp(As), s = 2 , . . . ,  15, independent, 

with 

(5.3)  ,~s I ----- OL ~- /3(84 -- 24).  
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Fig. 10. Simulated distribution of (&,/3) under the normal second-order model is shown for 
the normal sample (e) and the lymphoma sample (o). 

Table 3. The  average, standard deviation and correlation of (log &, log/3) for each sample. 

log & log/3 

av. s.d. av. s.d. corr. 

normal 5.36 1.01 2.28 0.30 -0 .14  

lymphoma 4.89 0.95 1.10 0.30 0.03 

In order to investigate the model more carefully we conducted the following simulation 
study. For each sample we calculated As according to (5.3) with (c~, [3) replaced by the 
average estimated value from Table 1 and simulated C s  '~ Exp(As), s = 2 , . . . ,  15. From 
the values of Cs we calculated the maximum likelihood estimates of c~ and /3. This 
procedure was repeated 500 times for each of the samples and the result is shown in 
Fig. 10 and summarized in Table 3. 

When we compare Figs. 6 and 10 it is seen that the variation in log & is almost 
the same for the observed and simulated data  for both groups. The variation range of 
log/3 is smaller in the simulation study than in the samples. One explanation is that  the 
local shape variability in the data is somewhat higher than predicted from the Gaussian 
model, i.e. the assumption that the error variables are exponential distributed is not 
appropriate at high phases. Another reason could be that a well located 'blob' results 
in many high phase amplitudes. 
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6. Perspectives 

The generalized p-order model is useful for describing a population of approximately 
circular objects. Let us stress, though, that the Fourier expansion (3.1) of the normalized 
radius-vector function makes it possible to construct a variety of shape models. If, for 
instance, one considers a population of objects with dominant triangular shapes, it would 
be natural to apply a model where on average C3 is the highest amplitude. A more 
challenging task is modelling approximately elliptical objects. Ellipses have vanishing 
amplitudes at odd phases and decreasing amplitudes at even phases. Thus, to model 
approximately elliptical shapes one should probably let the odd and even amplitudes 
decrease at different rates. Moreover, the even phase angles should have approximately 
the same values. Elliptical models are studied in Hobolth and Jensen (2000) and Hobolth 
et al. (2002b). 
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Appendix 

Characterization of asymmetry and centre of mass 
Let x -- (Xl, x2) denote a generic point in R 2 and let [[x[I = (x 2 + x2) 1/2. 

PROPOSITION. Let z = (Zl, z2) be an interior point of  a compact subset K of R 2. 
Let K be star-shaped with respect to z and let the radius-vector function rK(t;z)  be 
continuously differentiable in t. 

(i) We have 

(A.1) / K  x l - z l  fo 1 i[ x _ zl]2 dxldz2 = 27r rg(t;  z) cos(2rt)dt 

[~-~-- ~[[2dxldX2 = 27c rK(t;z)sin(27rt)dt. 

(ii) I f  z is the centre of mass of K then 

]o I ]o 1 (A.3) rK(t; z) 3 cos(2rt)dt = rK(t; z) 3 sin(2~t)dt = O. 

Conversely, i f  z is such that (A.3) is satisfied then z is the centre of mass of K .  
(iii) Let rK(t;z)  = 1 + 2vr~scos(27rs(t- ds)), where s >_ 2, 0 < Cs <_ 1/4 and 

d8 E [0, 1[. Then z is the centre of mass of K .  

PROOF. Let F : [0, 1] ~ ~ t/2 be defined by 

F(v, t) = (Zl, z2) + vrK(t; z)(cos(27rt), sin(2~rt)). 
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Then F is onto K and Idet(F'(v,  t)) I = 27rvrK(t; z) 2. In order to prove (A.1) note tha t  
if x = (Xl, x2) E K is such tha t  x = F(v, t) then  

Xl -- Zl cos(27rt) 
IJx-zH 2 

and from the t ransformat ion theorem we get 

Xl -- Zl - -  1 1  
d x l d X 2  = /o 

The result (A.2) is proved similarly. 
The same kind of arguments  show tha t  

(A.4) 

rK(t; Z) cos(27rt)dt. 

I / K  (xl - z l )dxldX2,  / K ( x 2  - z2)dxldX2 ) 

/o ) = -~- rg(t; z) 3 cos(27~t)dt, rg(t; z) 3 sin(21rt)dt . 

The left-hand side is zero if and only if z is the centre of mass of K.  Therefore (ii) is an 
immediate  consequence of (A.4). 

To prove (iii) one has to show tha t  rK(t; z) = 1 + 2v~s  cos(27rs(t -- ds)) satisfies the 
condition (A.3). This follows from elementary calculations, and is left to the reader. 
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