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A b s t r a c t .  This paper concerns prediction and calibration in generalized linear 
models. A new predictive procedure, giving improved prediction intervals, is briefly 
reviewed and further theoretical results, useful for calculations, are presented. In- 
deed, the calibration problem is faced within the classical approach and a suitable 
solution is obtained by inverting the associated improved prediction procedure. This 
calibration technique gives accurate confidence regions and it constitutes a substan- 
tial improvement over both the estimative solution and the naive solution, which 
involves, even for non-linear and non-normal models, the results available for the 
linear Gaussian case. Finally, some useful explicit formulae for the construction of 
prediction and calibration intervals are presented, with regard to generalized linear 
models with alternative error terms and link functions. 
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diction, prediction limit, predictive density. 

1. Introduction 

Predic t ion and 'cal ibrat ion are usually viewed as related problems and, within the  
classical approach,  cal ibrat ion is considered as a kind of inverse prediction. In fact,  cal- 
ibrat ion regions are usually obta ined by inverting a suitable predict ion procedure.  This  
paper  concerns predict ion and cal ibrat ion in generalized linear models. In part icular ,  
some recent results on predict ion in generalized linear models are studied in more detai l  
in order to obta in  improved solutions for the predict ion and the cal ibrat ion problems. 

Statist ical  cal ibrat ion is, broadly  speaking, an inferential  procedure  useful whenever  
two types of measurements  or observations m ay  be given for the same subject .  Usually, 
the observations (x, ~) and (y, z) refer to an accurate  bu t  expensive measure and to  a 
cheap bu t  less accurate  measure,  respectively, and the cal ibrat ion procedure  consists in 
the following two stages. In the first stage, called calibration stage, a t ra ining experi-  
ment ,  with bo th  y and x available, is per formed with the aim of defining a model  for the  
relation between these two types of measurements .  In the  second stage, called estimation 
(prediction) stage, the  observations z are used as indirect  measurements  of ~, which is 
not  available. T h a t  is, the  model  is considered in order  to es t imate  the unknown values 
of ~ associated to fur ther  available observations z. Stat is t ical  cal ibrat ion is extensively 
applied in Chemistry,  Biology and Engineering. In this paper ,  we focus on univariate 
(y and x scalar) controlled calibration; namely, x is considered as fixed (non-random 
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and controlled) by design in the training experiment. Osborne (1991) provides an ex- 
haustive review on statistical calibration; further general references are Brown (1993) 
and Sundberg (1999). 

The classical approach to calibration goes back to Eisenhart (1939) and it aims to 
derive a suitable confidence interval for the unknown 4. These confidence intervals are 
usually obtained by inverting prediction intervals, associated to the further available 
observation z. The coverage level of a confidence interval for ~ is equal to the coverage 
probability of the corresponding prediction interval for z. A serious problem, related to 
this approach, is that its use is mainly confined to normal linear models. Within different 
models, the confidence intervals for ~ are usually computed mimicking the normal linear 
case or using a simple estimative prediction procedure. However, the coverage level may 
be remarkably different from the target nominal value and then the calibration procedure 
is usually rather inaccurate. In this paper, the classical approach is extended in order 
to define a proper prediction-based calibration approach. This approach involves an 
improved prediction procedure and it gives a satisfactory solution to the above mention 
problems. There are different approaches to calibration, not considered here, based on 
likelihood methods (see Brown (1993), and Bellio (2000)) and on bootstrap techniques 
(Gruet et al. (1993)), which may provide good alternative solutions in a number of 
different models. 

Within generalized linear models, Vidoni (2001) has recently defined a procedure, 
based on the notion of a predictive density, for the construction of prediction intervals 
with coverage probability equal to the nominal value to a close approximation. In this 
paper, we shall consider these recent results in order to obtain improved classical solutions 
for the calibration problem, useful as well for non-linear and non-normal models. 

The paper is organized as follows. Section 2 gives a brief introduction to the predic- 
tion and the calibration problems and reviews the above mentioned results on prediction 
in generalized linear models. In Section 3, these results are complemented by giving 
a formal expression for the improved prediction limit and the associated distribution 
function and by considering the case with an unknown dispersion parameter. Finally, 
Section 4 presents some explicit formulae useful for calculation of improved prediction 
and calibration intervals for models with normal, gamma and Poisson distributed error 
terms. 

2. Prediction and calibration in generalized linear models 

2.1 Preliminaries on prediction 
The prediction of the value of a future random variable, based on an observed 

sample, is usually expressed in terms of prediction intervals, or, equivalently, in terms 
of the predictive density which generates the required prediction intervals through its 
quantiles. 

Let us assume that the observable random vector Y = (Y1 , . . .  ,Yn)  consists of 
random variables having marginal probability density functions pi(y; w), i = 1 , . . . ,  n, w E 

_C ~ d ,  d E ZW +, with respect to a suitable dominating measure. The future random 
variable Z = Yn+I, independent of Y, has density Pn+l (z; w), depending on the unknown 
parameter w. Its observed value z is the interest quantity and prediction statements are 
usually based on Pn+l(Z; W) or, since w in unknown, on a suitable estimator involving 
the observable sample Y. More precisely, we are interested in the definition of an (~- 
prediction interval for z or, in particular, of an s -pred ic t ion  l im i t  za(y), such that, 
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exactly or approximately, 

(2.1) pr{Z < z~(Y);w} = a,  

for all w C t2, where a C (0, 1) is fixed. The above probability is called coverage 
probability and refers to the joint distribution of (Y, Z). At least from the frequentist 
viewpoint, the goodness of an a-prediction limit is measured by the discrepancy between 
the associated coverage probability and the target value a. 

In some particular cases, such as the normal linear regression model, it is possible 
to find prediction limits satisfying (2.1) exactly. This is usually done by considering 
suitable pivotal functions, that is functions of Y and Z, whose distribution is free of 
w. In general, this is not possible and we define prediction limits which constitute 
approximate solutions to (2.1). Since w is unknown, the simplest procedure is that  one 

e ^ giving the estimative prediction limit z~̂ e = z~(w), obtained by substituting w with an 
asymptotically efficient estimator & = &(Y) in z~(w). Hereafter, & is the maximum 
likelihood estimator. Furthermore, za(w) is the a-quantile associated with pn+l(z;w), 
while 2~ is the a-quantile associated with the estimative predictive density Pn+l(Z; &). 

For continuous random variables, Barndorff-Nielsen and Cox (1996) emphasize that 
the coverage probability associated to ~ is a + O (n-1) and define a procedure giving pre- 
diction limits which satisfy (2.1), in the conditional form, to order 0(n-3/2).  However, 
these limits are implicitly defined and the associated predictive density is usually not in 
a closed-form. Vidoni (1998) introduces a prediction limit, expressed as a modification 
of the estimative one, which is asymptotically equivalent, up to terms of order 0(n-3/2),  
to that of Barndorff-Nielsen and Cox (1996) and hence meets the same asymptotic prop- 
erties. Moreover, the associated predictive density has a relatively simple closed-form 
expression, which may be useful for computations. Vidoni (2001) shows that this pre- 
dictive density gives improved prediction limits for discrete random variables as well. 

2.2 Improved prediction in generalized linear models 
Let us suppose that Y1, . . . ,  Yn, Yn+l, with Z = Y,+I, are mutually independent and 

such that Y/, i = 1 , . . . ,  n + 1 has probability density function, with respect to a suitable 
dominating measure, 

pi(yi;w,)O = c()~,yi)exp(A{yiOi - K(0i)}), Yi e Y c_/R, 

where the parameter 0i is a linear function O~ = xTw, called linear predictor, of a 
d-dimensional vector w = (wl , . . .  ,OJd) T of unknown parameters and a d-dimensional 
vector xi = (xi,1,. . . ,  Xi,d) T of known covariates. The parameter )~ C A C_ ~R + is the 
index parameter, whereas a 2 = 1/A is the dispersion parameter. Thus, Y/ follows 
a reproductive exponential dispersion model (see Jcrgensen (1997), Chapter 3) with 
mean #i = #(Oi) = dK(Oi)/dOi and variance a2V(#i),  where the variance function 
V(#i) = d2K(Oi)/dO~]oi=o(,,), with 0(.) the inverse of #(.). A generalization of this 
model, giving the class of generalized linear models (see McCullagh and Nelder (1989)), 
is obtained by considering a monotonic differentiable link funct ion g(.) such that g(#i) = 
xTw. Moreover, #i = g-I(xTw) and 0i = O(g-l(xTw)), with g - l ( . )  the inverse of g(.). 
The simplified model with Oi = xTw is obtained whenever the canonical link function 
g(.) = 0(-) is considered. 

Let us consider a 2 known or estimated. Since the parameters a u and w axe or- 
thogonal, this assumption does not influence the maximum likelihood estimator &. The 
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extension to the case with both w and (r 2 unknown requires an additional computational 
effort and it will be presented in Subsection 3.2. Hereafter, we use index notation and 
Einstein summation convention, according to which if an index occurs more than once in 
a summand then summation over that  index is understood. The convention is suppressed 
only for the index i = 1 , . . . ,  n + 1, which labels the observations. 

The predictive density, which gives improved prediction limits both in the continuous 
and in the discrete case, may be specified as follows (see Vidoni (2001), for a complete 
derivation) 
(2.2) P++I (z; 5;,, A) = Pn+I (z; 5;,, .k){1 + H,~+I (z; 5;,, ,~)}, 

where H~+l(Z; &,, ~) is 

: - -  - -  ~ n + l )  On+l,rOn+l,s -- (Z--  ~ n + l )  

{ On+ l,r( Vs,tu -~- Vs,t,u)i TM -- On+ l,rs } -- On+ l,r/~n+ l,s]i rS, 

computed at w = 5;, and 

^ ^T8 
5;.r : 5;r -~- ,~(~e _ ~n_[_l)Xn+l,s, ~ r = 1 , . . . ,  d.  

V (ftn..I_l )gt (ftn+ l ) ' 

Here, irs --- iTs(w), r, s = 1 , . . . ,  d, is the (r, s)-element of the inverse of the expected 
information matrix, vs,tu = E(gsgtu) and vs,t,~ = E(gsgtgu), s , t , u  ---- 1 , . . . , d ,  where 
gs -- 0g(w; y)/cgws and gt~ -- 02g(w; y)/OwtcOwu, with g(w; y) the loglikelihood function. 
In this case, 

n n 

Vs'tu : "~ Ei=I Xi'sOi'tUg'(/s ' Vs't'u : ~ E K"t(O("i))Oi,sOi,tOi,u' $rs" ~_ ~ {g ' ( /~ i ) I2V(~i)  
i = l  i=1  

Furthermore, K ' "  (O(#i) ) = d3 g(od /aoflo,=o(.,) and 

~ti, s ---- O l t i / O W  s = Xi,s{gl(.i)} -1, Oi,r ---- OOi /Oo)  r = X i , r { V ( ~ Q ) g t ( ~ t i ) }  - 1 ,  

= o2 / = - [K ' "  ( o( #d  ) { v (#d  } -  a { g' (#d  } - 2 

+g"(t,d {v(t,d }- '  

with i = 1, . . .  ,n  + 1, where g'(.) and g"(.) are the first and the second derivatives of 
g(-). With the canonical link function, we have that vs,tu = 0, i ts = }-]~i=1 V(#i)Xi ,rXi ,s ,  
vs,t,~ = )-~.i=1K'"(O(pi))xi ,sxi , txi , t ,  #i,8 = x i ,~V(#i ) ,  O~,r xi,T and 0i,~ 0. The 

--1 T above quantities are evaluated at #i = g (xi w), i = 1 , . . . ,  n + 1. Note that, when- 
ever the order of the expected likelihood quantities i~s, %,t~ and vs,t,u is O(n) ,  then 
Hn+l(Z;5; , , . ' \ )  is  O(n -1) and 5;,r = 5;~ + O(n-1),  r = 1 , . . .  ,d. In (2.2), Hn+l(Z;5;~,.'~) 
may be substituted by H~+I (z; 5;, A) without a change in the order of approximation. 
Here and in what follows, a hat indicates evaluation at w = 5;, and a tilde evaluation at 
w = 5 ; . .  

Function (2.2), which is a modification of the estimative density P~+l(Z; 5;,, ,~), de- 
pends, through the estimator 5;,, on the specified ~. The predictive procedure proposed 
by Barndorff-Nielsen and Cox (1996) does not present this drawback. However, this is 
the price to be paid in order to obtain a simplified predictive density. Since the aim 
here is to derive suitable prediction limits for a fixed value c~, the predictive density (2.2) 
turns out to be useful as well, especially for computations. 
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2.3 Preliminaries on calibration 

Let us consider the controlled calibration problem for generalized lineax models. 
More precisely, we adopt for YI , . . .  ,Yn ,Z ,  with Z = Yn+l, the general assumptions 
of Subsection 2.2. Furthermore, we suppose that  the calibration stage consists of a 
training experiment giving the observations y = (y l , . . - , yn ) ,  with the corresponding 
covariates xi, i = 1 , . . .  ,n, known and fixed by design. In the prediction stage, an 
additional observation z = Yn+l is available, while the associated covariate ~ = xn+l 
is unknown. Thus, Xn+l is here the interest quantity and the aim is to derive suitable 
estimators or confidence regions for Xn+l, based on the observations (y, z). We focus 
on the univariate case, by assuming w = (w1, ~2) T and xi = (1, xi,2) T, i = 1 , . . . ,  n + 1; 
for ease of exposition, sometimes we consider the simpler case with scalar w and xi, 
i =  1 , . . . , n + 1 .  

Within the classical approach, confidence intervals for Xn+l are obtained by invert- 
ing prediction intervals for Z. More precisely, if (Zl(&, a; Xn+l), Z2 (~, 0-; Xn+l) )  is an 
a-prediction interval for z, a confidence region for the unknown covariate Xn+l is given 
by {Xn+l  C ~ : Zi (~ ,0 - ;Xn+l )  ~_ Z ~ Z2(~),6r;Xn+l)}, where z is now available. The as so -  

c i a t e d  coverage level is equal to the coverage probability of the corresponding prediction 
interval. Sometimes, the inversion procedure may not result in an interval; moreover, the 
confidence region may be unsatisfactory or even meaningless, but  this usually happens 
when the model is weakly confirmed by the data. 

Let us start by reviewing the well known results on calibration for simple linear 
regression models. We assume that Yi, i = 1 , . . . ,  n + 1, follows a N(wl + 022xi,2, 0 "2) 

distribution, with 0-2 known. The random variable { Z -  (&l + &2xn+l,2)}/{0-c(xn+l,2)} 
is a pivotal quantity with a N(0, 1) distribution�9 Here, &l and &2 are the maximum 
likelihood estimators for wl and w2 and C(Xn+l ,2)  ---- {1 + 1/n + (Xn+l,2 - x ) 2 / S x x }  1/2, 
with 2 and Sx,  the sample mean and the sample deviance of xi,2, i = 1 , . . . ,  n. Whenever 
a is unknown, it can be substituted by &v/n/ (n  - 2), with 5 the maximum likelihood 
estimator, giving a t-distribution with n - 2 degrees of freedom�9 An exact a-prediction 
interval for Z can be easily defined by means of the above pivotal quantity�9 In order 
to derive a confidence interval for xn+l, with an exact confidence level a, we need to 
invert this prediction interval, by considering the actual available further observation 
z. The inversion procedure usually gives a suitable coxffidence interval for x,~+l. It is 
well-known that this procedure may result in unsatisfactory confidence regions, but  this 
is mainly confined to the case when the slope parameter w2 is not statistically different 
from zero, namely, when 1&2 Sv/-~xx/(~l <: U(l+a)/2, with U(l+a)/2 the (1 + a)/2-quantile 
of the standard normal distribution, or, in general, when the model does not provide a 
good description of the data available (see Brown (1993), w 2.3). 

This approach holds for the linear Gaussian case. In non-linear and non-normal 
models, confidence intervals for Xn+l are usually derived by mimicking the results avail- 
able for the normal linear case. For example, in generalized linear models with normal 
error and link function g(#), different from the canonical one, we can consider an ap- 
proximate pivotal quantity { Z - g - l ( x T & ) } / ( a 2  + ~/g)l/2, with Vg a suitable estimator 
for the variance of g-1 (xTo~). As a general alternative, an estimative predictive proce- 
dure can be taken into account. That  is, an a-confidence interval for xn+l is derived by 
�9 " e ^ Z e ^ l n v e r t l n  z a; 0-, Xn 1 o2 g ( (1-a)/2( , " + ), ( 1+a ) /2 ( , a ;xu+ l ) ) ,  namely the estimative a-prediction 
interval for Z based on the the maximum likelihood estimator &. However, the estima- 
tive solution is usually rather inaccurate, since the coverage probability of the prediction 
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interval, and therefore the actual confidence level of the associated confidence interval, 
may be remarkably different from the nominal value a. Indeed, the solution based on an 
approximate pivotal quantity may present unsatisfactory results as well, especially for 
highly non-linear regression models. 

In the following, we shall consider an improved classical solution for the calibration 
problem. More precisely, this procedure consists in inverting an a-prediction inter- 
val based on the predictive density (2.2), which presents coverage probability closed 
to the target value a. Thus, the associated confidence region for Xn+l, which has 
an actual confidence level closed to the nominal value a, is given by {xn+l E ~ : 
z + - " z + - " + x +l (1_~)/2(w(1_,~)/2, a, xn+l) < z < O+,~)/2(W(l+,~)/2,a, x~+l)}, where ) is 
the v-quantile of a distribution with density (2.2). When an explicit expression for the 
confidence region does not exists, a solution may be obtained by means of a suitable 
numeric inversion procedure. Moreover, as in the linear normal case, the confidence re- 
gion may be unsatisfactory or even meaningless, but  this usually occurs when the model 
is weekly confirmed by the data  or concerns an asymptotically negligible subset of the 
region, outside the design of the training experiment. 

A final point regards calibration within a discrete model. Vidoni (2001) emphasizes 
that, in this case, the coverage probability of the estimative prediction interval consists 
of an unavoidable part due to discreteness and a further part related to the estimative 
procedure. Indeed, prediction intervals based on (2.2) improve the estimative ones, 
since, neglecting the error term due to discreteness, their coverage probability equals the 
target value to third order accuracy. Therefore, the same improvement maintains for 
the actual level of the associated confidence region for x~+l. In this framework, besides 
interval estimation, it may be of interest to estimate the value (or the set of values) for 
Xn+I, such that a fixed potential observation z E Y corresponds to the a-quantile of 
the future random variable Z. For example, given a suitable observation z E Y, the set 
{Xn+l E ~ : z1~2(&1/2, a; Xn+l) = z} defines the covariate values for which z may be 
reasonably considered as the median observation in the prediction stage. With regard 
to bioassay applications, these estimates for xn+l can be viewed as a general alternative 
to the notion of a-level effective or lethal dose. 

3. Further theoretical results on improved prediction 

3.1 Useful formulae for prediction intervals and distributions 
In this section we consider the problem of calculation of prediction intervals in 

generalized linear models. In particular, we focus on the derivation of explicit expressions 
for the improved a-prediction limit and the associated distribution function. 

Let us start by noticing that the modifying term Hn+l(z;w,)~) can be rewritten 
as a linear combination of the first two orthogonal polynomials (see Barndorff-Nielsen 
and Cox (1989), w 1.6) associated to pn+l(Z;W, )~), with coefficient express in terms of 
cumulants, given by 

(3.1) 

(3.2) 

Bl(Z,  Xn+l;O2,0.) = (z - / in+l)  
o'{V(~tn+l)} 1/2' 

(z - IAn+l) 2 o'Km(0(lAn+l)) (Z -- ~n+ l )  
B2(z,  Xn+l;02,0" ) -- ~ - ~  {Y(lAn+l)}3/2 o'{V(l-tn+l)} 1/2 - 1 .  

More precisely, we have that 
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(3.3) 

where 

g n T  1 (Z; 02,/~) = H ( z ,  Xn+ 1 ;~,  o') 
1 

= hA1 (Xn+ 1 ; ~d, a)BI (z, Xn+I;W, a) 

~ A2(x~+ I ; w, a)B2(z, Xn+l ; O), 0"), 

I !  "r8 8~t,u ) Xn+l,rXn+l,sg (~n-kl)$ XnTl,r(Vs,tu + v ~i~i rs 
(3.4) A l ( X n + i ; w , a  ) : (7{U(~n+i)}l /2{gl(]An_ki)} 3 -~- 6r{U(~n_kl)}l/2gt(]~n.kl ) , 

Xn+l,rXn+l,s i  rs 
(3.5) A2(xn+i ;w ,o ' )  : 0.2U(~n..kl){g,(~tn+l)}2 , 

with the obvious simplification whenever the canonical link function is considered. 
The a-prediction limit, based on the modified predictive density (2.2), is defined as 

the quantity 2 + = z+(~a, a; Xn+l) such that, in the continuous case, F++I (2+; wa, A) = a 
- + - A) _> a}. Here, J) is the support or, in the discrete case, z + -- inf{z E J; : Fn~+l(Z;Wa, 

of Z and F:_kl (z; ~c~, )~) is the distribution function associated to (2.2). If the modifying 
term is considered in the alternative form (3.3), we have that, in the continuous case, 

(3.6) F2+ 1 (z; O2oz, ~) = Fn+ 1 (z; ~uo~, ~) /: +l  Al(Xn+l ; ~ , a )  Sl(U, Xn+l;&,~,a)pn+l(u;&,~,1)du 

-~A2(Xn+l;CO~,cr) B2(u, xn+l;CO~,a)pn+l(u;Co,~,1)du, 
o o  

where Fn+i (z; ~ ,  I) is the estimative distribution function based on ~ and B1 (.), B2(-), 
AI(.) and A2(.), are (3.1), (3.2), (3.4) and (3.5) computed at a~ = ~ , .  The discrete ease 
is recovered by substituting the integration sign with the summation sign. 

From (3.6), it is easy to show that, to the relevant order of approximation, the 
improved a-prediction limit 5 + for continuous random variables, may be expressed as 
a suitable modification of the estimative prediction limit based on ~ ,  namely 2~, = 
z~(&~, a;x,~+l). That  is, to third order accuracy, 

(3.7) ~ __ ~e _ 2 {Pn+l (Zc~, Wa, ~) } - 1 A 1  (xn+l ; &a, a) 

( ) ) �9 B1 z, xn+l;&~,a pn+1(z;53~,A dz 
o O  

1 - ~ -  1 - a )  +5{p,~+l(Z.;W,~, A)}- d2(Xn+l;W., 

" /-~c~ U2(z 'Xn+l;~a'cr)Pn+l(Z;~ 

Expression (3.7) holds for continuous random variables. Maintaining the same order for 
the error, F++I (z; &a, 1) and 2 + can be further approximated by suitable modifications 
of the estimative distribution function and the estimative prediction limit based on &. 
We obtain, respectively, the approximations 
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(3.s) 

and 

(3.9) 

F~ ;~, a) = F=+l(z;~, ~) 

X A2(Xn+l;(['d,~ /zor U2(~,XnT1;~,or)PnA-l(U;~,)k)d~ 

+ ~ l(X.+l;~,or)+Bl(~X,xn+~;Co, or)A2(:c,~+~;Co, or) 

f �9 Bl(u,  xn+l;&,a)Pn+l(U;dO, A)du 
o o  

^e XnTl,s ~rs 
Zo l̂o = Z o (~d, or; Xn+l) = Zo t̂e .3t_ zct/rB 1 (~e, Xn+l ; ~d, or) or{V(i~nT1)}l/2g, (f~n+l) 

^ e  

1 e 1 /.._Zo~ -- ~{Pn+l(Za;~ ,A)}-  Al(Xn+l;~,or) Bl(Z,  Xn+l;GJ, or)Pn+l(Z;~,A)dz 

~ e  

1 ^e 1 J_"'~ + -~{Pn+l(Za;~,A)}- A2(Xn+l;~,o') B2(z, xn+l;~,or)pn+l(Z;~,~)dz. 
O o  

Here, Fn+l(z; &, A) and z,~ ^~ = z~(&, a; xn+l) are the estimative distribution function 
and the estimative prediction limit based on the maximum likelihood estimator dJ and 
z~/r = Oze~/O&r, r = 1, . . .  ,d. Indeed, BI(.), B2(.), AI(-), A2(.), are (3.1), (3.2), (3.4), 
(3.5) computed at 09 = &. As before, the discrete case is recovered in (3.8) by sub- 
stituting the integration sign with the summation sign and then, to the relevant order 
of approximation, 5+ equals ~o = inf{z E Y :  F~ &, A, a) > a}. Expression (3.9) 
holds for continuous random variables. Formula (3.8) is obtained by means of a Taylor 
expansion for Fn+l(Z; &a, A) around &~ = & and it implicitly requires that the order of 
integration and differentiation can be interchanged in OFn+l(Z; d~, A)/0dJr, r = 1 , . . . ,  d. 
Formula (3.9) is a consequence of a general result given by Vidoni ((1998), w 3). 

Relations (3.6)-(3.9) are useful for the computation of improved prediction intervals 
and distribution functions. However, since the above formulae involve integration or 
summation, a final closed-form expression is usually not available. In Section 4, we shall 
consider some generalized linear models where simple explicit results may be obtained. 
Finally, a further important point concerns the order of the error term in the improved 
predictive density (2.2) and in the expressions for prediction limits and distribution 
functions given in this section. If the order of the expected likelihood quantities its, 
vs,t~, vs,t,~ is not O(n), it is not necessarily true that  the prediction limits based on 
(2.2) present coverage probability equal to the target value to third order accuracy. 
Moreover, the error term, which usually depends on the future covariate xn+l, may 
not be negligible, especially when the position of Xn+l is far from the center of the xi, 
i = 1 , . . . ,  d, considered in the training experiment. Thus, a careful investigation of the 
size of the error term is useful at least in more problematic situations. 

3.2 The case with unknown dispersion parameter 
In this section we complement the results on prediction in generalized linear models, 

by computing the modified predictive density + Pn+l(') in the general case where the 
dispersion parameter a 2 is unknown. Following Vidoni (1998), the predictive density, 
which gives improved prediction limits both in the continuous and in the discrete case, 
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is 

(3.m) 

where Sn+~ (z; &a, ~a) is 

1 
S n + l ( Z ;  (..d, ,~) : - -2[ (en+1;o .2)2  --  en+l;a2{(Vr -Jr- Va2t,u)i  TM 

computed at (w, A) (&a, Aa), with Aa = -2 - = 62 = l / a s  ' 0-2 +~n+~;~(d ; ,1 /b2 ; s  -1 and S )  0"20 "2 

52 the maximum likelihood estimator for 0 -2. Here, H~+l(Z;&~, A~) is the modifying 
term given is Subsection 2.2 computed at (w, A) = (&a, Aa), with &a the well-known 
modification of the maximum likelihood estimator for w. In this section, the index 
notation is considered only for the components of the d-dimensional parameter w, which 
is orthogonal to a 2. Moreover, 

gi;o2 = gi.~2(w, 1 /a2 ;y i )  = O l o g p i ( y i ; w ,  1/a  2) = yiOi - K(Oi)  c ' (1/0-2,yi)  
' 00-2 0-4 0-4C(1/0-2, Yi) '  

for i = 1 , . . . ,  n + 1, where c'(1/0- 2, Yi) and c " ( 1 / a  2, Yi) are, respectively, the first and 
the second derivatives of c(A, Yi), with respect to A, computed at A = 1/0- 2. The above 

E ~ E " n likelihood quantities are ia2a= = - ()-~i=1 ~i;a=a~), VaLtu = (~i=1 gi;== )-~'~i=* ~i;,u), 
V~a a~a2 E ( ~ i = l  s 2 n n n n 

v~2,~2,~2 = ()-~i=] gi;~2 )-~-i=1 gi;~ 2 Y~i=l gi;~2), where 

gi;s = Ologp i ( y i ;w ,  A)/Ows = a - 2 ( y i  - # i ) •  

gi;~u = 02 logpi(yi; w, A)/OwtOw~ = - 0 - - 2  {l~i,uOi,t -- (Yi -- pi)Si , tu} ,  

for i = 1 , . . .  ,n  and s , t , u  = 1 , . . .  ,d.  Since, as usual, E(gi;s) = 0 and E(gi;a2) = 0, the 
calculations are in fact simplified. When the order of these likelihood quantities is O(n) ,  
then a s-2 = 62 + O ( n  -1)  and the order of H,~+l(z;&~, As) a n d S , ~ + l ( z ; w s , ~ ) ~  is O(n-1) .  
These modifying terms can be evaluated at (w, a 2) = (&, 52) without changing the order 
of approximation. 

4. Examples 

In this final section, generalized linear models with normal and gamma distributed 
error terms, which present explicit closed form solutions for the prediction problem, 
are taken into account. Models with an inverse Gaussian distributed error term do 
not a/low analogous explicit solutions. The discrete case, which is of interest for a 
number of potential applications, requires particular attention. Here, we shall consider 
generalized linear models with a Poisson distributed error term, which are characterized 
by a computationally tractable predictive solution. Analogous results, not presented in 
this paper, may be obtained for models with a binomial distributed error term. 
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4.1 Normal error 
Let us assume that ]I1,-.. , Y n , Y n d - 1 ,  with Z = Yn+l, are mutually independent 

normally distributed random variables with mean #i, i = 1 , . . . ,  n +  1, and known variance 
a2; namely, N(#i ,  a2). A generic link function g(.) is considered. Thus, Yi, i = 1, . . .  ,n-t- 
1, is a reproductive exponential dispersion model with #i = g - i  (xTw), V(pi )  = 1, Oi = #i 
and K(0i) -- 02/2. The first two orthogonal polynomials are, respectively, 

B i ( z ,  X n + l ; W , ( 7  ) - -  ( z -  ~ n + l )  B 2 ( z ,  x n + i ; o ) , ( 7 )  : (Z-- ~n+l)2 1 
O" ' 0 -2 

and the estimative prediction limit based on the maximum likelihood estimator 6J and 
that one based on the modified estimator cos are, respectively, z s^e = f~n+l + u,,a and 
5~ --/5n+1 + usa ,  with us the a-quantile of the standard normal distribution. 

From (3.7), using properties of Hermite polynomials (see (A.1) and (A.2) in the 
Appendix), it is almost immediate to approximate the improved a-prediction limit as 

7s + = ~n+l + ~ a A l ( x n + l ; w ~ ,  a) + u~a 1 - -~A2(xn+l;~Os,a) , 

where Wsr = &r + UsaXn+l,s{g'([~n+l)} - l ~ s ,  r = 1 , . . . , d .  By (3.9), we obtain the 
alternative approximation 

1 A { 1  } 
(4.1) z~ 1-F--~A2(xn+I;~,(7) �9 

Here 

O'X pl Al(Xn+l;W,o-) -= n+l,rXn+l,sg (Pn+l) Ars (rXn+l,r E A t u A  rs 
{g,(/An+l) }3 g, (/An+l) s tu  , 

A2(Xn+l; w, a) = Xn+l,rXn+l,8 Ars, 
{g ' ( ,n+l )}  2 

n II X X X I - 4  / k r s  with Z~t,, = ~ i=1  g (#i) ~,s i,t ,,u{g (/zi)} and the (r, s)-element of the inverse 
xi,~xi,~(g (#i)} . Retaining the same order of error, of matrix [A~], with A~s = )-:-i=1 , -2 

~+ may be further approximated by 

(4.2) f~nT1 + l a A l ( x n + l ; & , a )  + u s a x / 1  + A2(xn+l;&,a) ,  

that is, by the a-quantile of a N(/2~+1 + l a A 1  (x~+l; &, a), a2{1 + A2(zn+l;&, a)}) dis- 
tribution. A straightforward interpretation of formula (4.2) is possible since, to third 

1 order accuracy, - ~aA1 (Xn+l ; w, a) and a2A2 (xn+l; w, a) are, respectively, the bias and 
the variance of the estimator ft~+l = g-l(xT+t&). Note that, in the Gaussian case, 
the dependence of the modified predictive density (2.2) on the target value a is, in 
fact, suppressed to the relevant order of approximation. If the canonical link func- 
tion g(#) -- # is considered, we have that #n+l -- xT+I w, Al (Xn+l;W,a)  --- 0 and 
A2(xn+l;W, or) = Xn+l,rXn+l,sA rs, with A ~  = :~-~i~=i xi,rxi,~, and (4.2) coincides with 
the well-known prediction limit, which satisfies relation (2.1) exactly. 

When a is unknown, since 

1 1 2 
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i = 1 , . . . ,  n + 1, and ia2a2 = n/(2a4) ,  va2,tu = O, va2,t,u = o '-4Atu,  v~2,a2a2 = - n / a  6, 
va2,a~,a~ = n / a  6, the predictive density (3.10), which gives improved prediction limits, 
corresponds to 

r [1 + -~zAl(Xn+l;Wa, c r y ) -  1(52 - 1)A2(Xn+l;Wa,5"a) 

~ { 5 4 -  52(6-~- 2d)-~- 3 2j_ 2 d } n - l ]  , 

where AI(.), A2(-), Atu and &, are given above, r  the density of a N ( p , a  2) 
distribution and 5 = 6~-l(z-/bn+l) ,  with -2 = ~2 a a + {(5 e -- ~n+l )  2 -- 52}n  -1 . Integration 
using properties of Hermite polynomials, followed by inversion and by a suitable Cornish- 
Fisher type expansion for us,  shows that, in this case, the improved prediction limit 5 + 
may be approximated by (4.1) and (4.2), with b v / n / ( n  - d) substituted for (r and ta, 
the a-quantile of a Student t distribution with n - d degrees of freedom, substituted 
for us.  With the canonical link function, the second approximation coincides with the 
well-known prediction limit for linear regression models, which satisfies relation (2.1) 
exactly. 

With regard to the calibration problem, an a-level confidence interval for Xn+l can 
be obtained by inversion of the associated a-prediction interval based on the improved 
prediction limit z+(&~, ~;xn+1) or on the approximations (4.1) and (4.2). We consider 
the case with a known, since the general case with a unknown is obtained with the 
usual substitution for ~ and us.  In particular, if we consider the canonical link function 
g(#) = #, we obtain the exact prediction limit for normal linear regression models. For 
0J : (~d1 , ( . 02 )  T and xi ---- (1, Xi,2) T, i = 1 , . . . ,  n + 1, it is given by (4.2) with ftn+l = 
O21 + Xn+1,2022, A1 (Xn+l;&, a)  ---- 0 and A2(Xn+l; •, (~) = 1 /n  + (Xn+l,2 - .z)2/Sxz.  Thus, 
in this case, the results on calibration are analogous to those reviewed by Brown ((1993), 
w 

A simple simulation study confirms the superiority of the calibration procedure 
based on the improved prediction limits over those based on an approximate pivotal 
quantity and on the estimative prediction limits. We consider a normal model with a log- 
arithmic link function g(p) = log(p); indeed, we assume a known and scalar w and x~, i = 
1 , . . . , n +  1. Thus, #n+l ---- exp(wXn+l),  A l (Xn+l ;W,a)  = OrXn+l e x p ( w x n + I ) { E ( 3 ) A ~  - 

Xn+i }A(2 ~ and A2(x,~+l;w,a)  = Xn+12 exp(2wXn+l)A~,  with A(2) = ~-~i~1 x2 exp(2wxi) 

n 3 exp(2wxi). Moreover, we consider the approximate pivotal quan- and E(3) = ~-~i=l xi 
tity {Z - e x p ( & x , + l ) } / ( a  2 + ~g)1/2, which gives the approximate a-prediction limit 
~ = &Xn+l + u~(a 2 + ~)1/2 ,  where Vg = a2A2(xn+I;&,a)  is an estimator for the 
variance of exp(&Xn+l) (see, for example, Seber and Wild (1988), w 5.12). 

Sample of size n = 10 are generated from this model with w -- 0.15 and a = 1. 
The covariates x for the calibration stage are between 20 and 50, while, for ~ = x ,+ l ,  
we assume the three alternative values 35, 45 and 50. Table 1 gives estimates, with 
the corresponding estimated standard errors, of the actual confidence level for a-level 

= ^a and ^o These simulations, calibration intervals, with a 0.9, 0.95, 0.99, based on 2.~, z~ z~. 
based on 10,000 replications, show that for ~ -- 35, which represent a good situation, these 
methods are equivalent; however, for ~ = 50, which represent a problematic situation, 
the method based on improved prediction intervals performs uniformly better. The 
method based on the estimative prediction intervals seem to be inadequate even in the 
intermediate situation with ~ -- 45. 
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Table 1. Coverage probabilities, with estimated standard errors, for (~-level calibration intervals 
based on prediction limits. Simulations from the normal model with d = 1, g(/J) --- log(#), a = 1 
known and r = 0.15. Covariates x between 20 and 50 and (a) Xn+l = 35, (b) Xn+l = 45, (c) 
Xn+l = 50. Estimation based on 10,000 replications of samples of size n = 10. 

Prediction a = 0.9 a = 0.95 a = 0.99 
Limit (a) (b) (c) (a) (b) (c) (a) (b) (c) 

Estimative 0.897 0.855 0.687 0.948 0.913 0.771 0.988 0.977 0.885 

0.003 0.003 0.005 0.002 0.003 0.004 0.001 0.001 0.003 

Approximate 0.898 0.886 0.840 0.949 0.935 0.906 0.989 0.986 0.975 

0.003 0.003 0.004 0.002 0.002 0.003 0.001 0.001 0.002 

Improved 0.898 0.888 0.860 0.949 0.936 0.923 0.989 0.987 0.982 

0.003 0.003 0.003 0.002 0.002 0.003 0.001 0.001 0.001 

4.2 Gamma error 
Le t  us a s s u m e  t h a t  Y 1 , . . . , Y n ,  Yn+I, w i t h  Z = Yn+l, are m u t u a l l y  i n d e p e n d e n t  

g a m m a  d i s t r i b u t e d  r a n d o m  var i ab les  w i t h  scale  p a r a m e t e r  r  i = 1 , . . . ,  n + 1, a n d  
k n o w n  s h a p e  p a r a m e t e r  v; namely ,  Ga(v, r  For  ease  of  expos i t ion ,  t he  canon ica l  l ink 
func t i on  g(]2) = - 1 / ] 2  is cons idered .  S imi la r  r e su l t s  m a y  be  o b t a i n e d  for  a gener ic  l ink  
func t ion  g( . ) .  T h u s ,  Yi, i - -  1 , . . .  , n  + 1, is a r e p r o d u c t i v e  e x p o n e n t i a l  d i spe r s ion  m o d e l  
w i t h  #i  : vr = - - ( x / T o J )  - 1 ,  Y( ] 2 i )  = ]2 2, Oi : -1/]2i,  a2 : 1Iv a n d  g(o i )  : - l o g ( - 0 i ) .  
T h e  first  two o r t h o g o n a l  p o l y n o m i a l s  are,  respec t ive ly ,  

Bl(Z,  Xn+l;U),a) - (z - ]2n+l) B2(z,  xn+l;o~,a) -- (z - ]2n+1) 2 2 ( z  - #~+1)  1, 
O']2n+l ' 0"2122+1 ]2n+l 

a n d  t h e  e s t i m a t i v e  p r ed i c t i on  l imi t  b a s e d  on  the  m a x i m u m  l ike l ihood e s t i m a t o r  D a n d  ^ 
t h a t  one  b a s e d  on  the  mod i f i ed  e s t i m a t o r  &~ are,  respec t ive ly ,  ^e = ___ Z a U a r  Uc~f~n+l or2 
a n d  5~ = u ~ r  = u ~ / h n + l a  2, w i t h  u s  t he  a - q u a n t i l e  of  a Ga(v, 1) d i s t r i bu t ion .  

F r o m  (3.7), us ing  p r o p e r t i e s  of  L a g u e r r e  p o l y n o m i a l s  (see (A.3)  a n d  (A.4)  in t he  
A p p e n d i x ) ,  we o b t a i n  t he  fol lowing expl ic i t  a p p r o x i m a t i o n  for  t h e  i m p r o v e d  a - p r e d i c t i o n  
l imi t  

{ 1 A  - 0 - )  l(ua0-2 a2)A2(xn+l;~Oa,ff)} (4.3) 5 + : Uapn§ 2 1 + 5 a  l ( X n + l ; 0 ) ~ ,  - -  - -  1 + 

w h e r e  &a~ --- d~r + ( u , a  2 - 1)x~+ i , s~n+ l /~ r~ ,  r -- 1 , . . . ,  d, and ,  b y  (3.9), t h e  a l t e r n a t i v e  
a p p r o x i m a t i o n  

{ 1 l ( u ~  2 l+a2)A2(xn+l;dO,  a) } (4.4) z~ = Uafgn+l 0"2 1 + ~GAI(Xn+I;~O,0-) + ~ -- 

Here  

A1 (Xn+l; w ,  a )  2 r s  O'X " ~ ^ t u ^ r s  = --26rXn+l,rXnTl,s]2n+l A -- n+l,rt~n+l stu L-~ ~ , 
A2(Xn+l;W,a) 2 rs = XnTl,rXnTl,s]2nT1A , 

w i t h  A rs t he  (r, s ) - e l e m e n t  of  the  inverse  of  m a t r i x  [Ars],  w i t h  A~s = ~-'~n__ 1 xi,rxi,~]22, 
n 

a n d  ~s tu  = - 2  ~i--1 xi,sxi,txi,u]2~. R e t a i n i n g  the  s a m e  o rde r  of  e r ror ,  z + m a y  b e  a p p r o x -  

i m a t e d  b y  t h e  a - q u a n t i l e  o f  a Ga(p~, ^o o a - 2 { 1  + �89 + o r  d i s t r i bu t ion ,  w i t h  v~, --  
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1)A2(xn+l;&, (7)T l (TAl (Xn+l;&,a)}  -1 and ^o __ Cn+l f ~ n + l ( 1 - 1 A 2 ( x , + l , & , a ) } / v  ~ pro-  
^O vided tha t  the v ~ Cn+l > 0. Note  tha t ,  in the  g a m m a  case, the  dependence  of the  

modif ied predict ive densi ty  (2.2) on the  t a rge t  value c~ mainta ins .  

W i t h  regard  to the ca l ibra t ion problem,  an c~-level confidence interval  for Xn+l 
can  be ob ta ined  by inversion of the  associa ted  improved  s -p r ed i c t i on  interval  based on 
(4.3) or on the  approx ima t ion  (4.4). Here,  we consider the  s imple case wi th  scalar  w 
and  xi, i = 1 , . . .  , n  + 1. In  this par t i cu la r  s i tuat ion,  the  improved  c~-prediction l imit  
is approx ima ted ,  up to t e rms  of order  O(n-1) ,  by (4.4) wi th  f~n+l = - 1 / ( & X ~ + l ) ,  

AI(Xn+I;FO, (7) : 0 and A2(xn+l;&, (~) = 1/n; t ha t  is, 

o ^ u s  (1  + ( u s  - + 
z s ( ~ ,  a ;  X~+l)  - v~xn+l 

Whenever  1 + (ue - v + 1 ) / (2vn)  > 0, wi th  7 = (1 - a) /2 ,  (1 + a ) / 2 ,  and  & < 0, the  
associa ted confidence interval  for Xn+l is (x(1-s) /2(&,  a; z), x( l+s) /2(&,  a;  z)),  where  z is 
the  observa t ion  available in the  predic t ion  s tage and  

x~(&, a; z) ---- - u;^ (1 + (u ;  - v + 1 ) / (2vn)} .  
l/tdz 

If  & > 0, the  confidence interval  for XnT1 is ob ta ined  by  reversing the  extremes.  W i t h  
a l te rnat ive  link functions,  an explicit  expression for the  confidence interval  for xn+l  
m a y  not  exists; however, it can be ob ta ined  by  means  of a sui table  numeric  inversion 
procedure .  

A s imple s imulat ion s tudy  confirms the  superiori ty,  in t e rms  of ac tua l  coverage level, 
of the  ca l ibra t ion intervals based on the  improved  predic t ion l imits over those based on 
the  es t imat ive  predic t ion limits. We consider a g a m m a  model  wi th  the  canonical  link 
funct ion g(#)  ---- - 1 / # ;  indeed, we assume v known and scalar  w and xi, i = 1 , . . .  , n +  1. 
Sample  of size n = 10 are genera ted  f rom this model  wi th  w -- - 0 . 0 8  and  v -- 2. T h e  
covaria tes  x for the  cal ibrat ion s tage  are be tween 2 and  12, while, for ~ = Xn+l, we 
assume the  three  a l te rnat ive  values 3, 7 and  11. Table  2 gives es t imates  of the  ac tua l  
confidence level, wi th  the  corresponding es t imated  s t anda rd  errors,  for c~-level cal ibrat ion 
intervals,  wi th  ~ -- 0.9, 0.95, 0.99, based  on ~.~, and  ~ .  T h e  s imulat ions,  based  on 10,000 
replications,  show tha t  the  m e t hod  based  on the improved  predic t ion intervals  pe r fo rms  
uni formly  bet ter .  

Table 2. Coverage probabilities, with estimated standard errors, for a-level calibration intervals 
based on prediction limits. Simulations from the gamma model with d -- 1, g(/~) -- -1//~, v -- 2 
known and w = -0.08. Covariates x between 2 and 12 and (a) Xn+l = 3, (b) Xn+l = 7, (C) 

Xn+l = 11. Estimation based on 10,000 replications of samples of size n = 10. 

Prediction c~ = 0.9 c~ = 0.95 a = 0.99 

Limit (a) (b) (c) (a) (b) (c) (a) (b) (c) 

Estimative 0 .881  0.877 0.883 0.939 0.937 0.935 0.986 0.984 0.982 

0.003 0.003 0.003 0.002 0.002 0.002 0.001 0.001 0.001 

Improved 0 . 9 0 1  0.898 0.902 0.951 0.952 0.949 0.992 0.989 0.990 
0.003 0.003 0.003 0.002 0.002 0.002 0.001 0.001 0.001 
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4.3 Poisson error 
Let us assume that Y1,... ,Y~ ,Y~+I ,  with Z = Y,~+I, are mutually independent 

Poisson distributed random variables with mean p~, i -- 1 , . . . ,  n + 1; namely, Po(#i) .  
For ease of exposition, the canonical link function g(p) = log(p) is considered, that  is a 
log-linear model is defined. Similar results may be obtained for a generic link function 
g(.). Thus, Yi, i = 1 , . . . ,  n + 1, is a reproductive exponential dispersion model with 
Pi = exp(xTw), Y(# i )  = #i, a 2 = 1, Oi = log(pi) and g ( o i )  = exp(Oi). The first two 
orthogonal polynomials are 

(4.5) Bl(Z ,  Xn+l;w, er) = (z - Pn+l) 

(z-P'+l)2 1, 
Pn+l Pn+l 

and the estimative prediction limits based on the maximum likelihood estimator & and 
on the modified estimator &a are, respectively, zâ e _ inf{z C SV : Fn+l(Z;&,)~) _> a} 
and 5~ = inf{z C /~r : F,~+l(Z;&~, A) _> a}, with F~+I (z;&,)~) and F~+l(z;&~, A) the 
corresponding estimative distribution functions. 

From (3.6), particularized for discrete random variables, using formulae (A.5) and 
(A.6) given in the Appendix, we determine the distribution function associated to the 
predictive density (2.2), that  is, 

1 
(4.6) F++l(z;&a, A) = Fn+l(Z; &a, A) + ~{(z* - f~n+l)A2(Xn+l;&a,a) 

- V/~n+l A1 (X~+l ;&~, a)}pn+l (z*; 5Ja, A), 

where &~r = &r + (s - ftn+l)Xn+l,s fkrs, r = 1 , . . . ,  d, and, by (3.8), its approximation 

(4.7) a) 

---- Fn+l(Z;dJ, ~) + 2{(z* - 2;~a e + ftn+l)A2(Xn+l;da, a) 

- ~X/-~-~+IA* (x,~+, ;~b, a ) } p ~ + l  (z  , wa ,  A), 

where z* -- [z], namely, the integer part of z. Indeed, 

A1 (Xn+l; W, if) -~ --Xn+l,rXnTl,s ~J-~-~n+lArs _ Xn+l,r ~nT1Estu A tu  Ars ,  

As (X~+l ; w, a) = Xn+l,rXn+l,spn+ 1A rS, 

with Est~ = -)-~.in=l Xi,sXi,tXi,upi and A rs the (r, s)-element of the inverse of matrix 
[A~], with A~8 = )-~=~ x~,~x~,~p~. Thus, the improved a-prediction limit is defined as 

- -  ^ o  O . O / }  ~+ inf{z e JW: F++I (z;&~, A) > a}, with z~ = inf{z e JW: F~+l(z  ,&,)~, a) > 
its approximation based on (4.7). Note that, in the Poisson case, the dependence of the 
modified predictive distribution functions (4.6) and (4.7) on the target value a maintains. 

With regard to the calibration problem, an a-level confidence region for Xn+l can 
be obtained by inversion of the associated improved a-prediction interval based on 
z+(&, a; x~+t) or on its approximation z~(&, a; Xn+l). However, an explicit expression 
for the confidence region may not exist and it is usually obtained by means of a suit- 
able numeric inversion procedure. The inversion requires special attention, since it may 
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result in a region different from an interval. Under this respect, investigation of the 
monotonicity of  F : +  1 (z;  ~)(~, )~) o r  F n +  1 (z;  w, )~, oL), a s  functions of Xn+l with z fixed, c a n  

be a useful preliminary analysis. 
Besides the usual calibration regions for Xn+h it may be of interest to estimate the 

value (or the set of values) for Xn+l, such that a fixed potential observation z E ZW 
corresponds to the ~-quantile of the future random variable Z. For example, given a 
suitable observation z C ~W, the set {X~+l E F t  : z+/2(&,a;xn+x) = z} defines the 
covariate values for which z may be reasonably considered as the median observation in 
the prediction stage. 

As noted by Vidoni (2001), the coverage probability of a prediction interval in the 
discrete case, and then the actual level of the associated confidence region for Xn+l, 
presents an unavoidable error component, due to discreteness. Indeed, the improved 
prediction limit z + is superior to the estimative one, since it improves the actual cov- 
erage probability with regard to the second error component related to the estimative 
procedure. The same improvement maintains for the level of the associated confidence 
region for x~+a. The following simulation study confirms this superiority. 

Let us consider the simple case with scalar w and xi, i -- 1 , . . . , n  + 1. In this 
particular situation, F++a (z; &~, A) and Fn+ 1 (z; &, A, a) are given by (4.6) and (4.7) with 
] t n+ l  : e x p ( X n + l W )  and 

( 1 )  ( 1 )  
X2n+i exp ~Xn+lW xn+i exp -~xn+iw 

. 2exp(x   ) + . A l ( X n + l ; ~ 1 7 6  -- - ~ i = 1  x i  {~-'~i=1 Xi e x p ( x i w ) }  2 i=l  

2 xn+ 1 exp(xn+lw) 
A2(Xn+l;W, a) -- ~ i=1 xi n 2 exp(xiw)" 

Sample of size n = 10 are generated from this model with w = 0.15; the covariates x for 
the calibration stage are between 1 and 10, while, for ~ = Xn+l, we assume the three 
alternative values 5.5, 7.5 and 9.5. The quantiles have been randomized to take care 
of the discreteness of the future random variable and to detect the actual differences in 
the coverage probability. Table 3 gives estimates of the coverage probabilities, with the 
corresponding estimated standard errors, for (randomized) c~-prediction intervals, with 

^ O  (~ = 0.9, 0.95, 0.99, based on ~ ,  and z~. The simulations, based on 10,000 replications, 
show that the improved prediction intervals, and then the associated calibration regions, 
perform uniformly better than those based on the estimative procedure. In particular, 

Table 3. Coverage probabilities, with est imated standard errors, for a-level calibration intervals 
based on (randomized) prediction limits. Simulations from the Poisson model with d -- 1, 
9(/~) = log(/~) and w -~ 0.15. Covariates x between 1 and 10 and (a) Xn+l = 5.5, (b) Xn+l = 7.5, 
(c) Xn+l = 9.5. Est imation based on 10,000 replications of samples of size n ---- 10. 

Prediction (~ ---- 0.9 a ---- 0.95 (~ --- 0.99 

Limit (a) (b) (c) (a) (b) (c) (a) (b) (c) 

Est imat ive 0.837 0.872 0.853 0.863 0.913 0.915 0.885 0.948 0.970 

0.004 0.003 0.003 0.003 0.003 0.002 0.003 0.002 0.002 

Improved 0.844 0.889 0.889 0.868 0.922 0.941 0.886 0.952 0.974 

0.004 0.003 0.003 0.003 0.003 0.002 0.003 0.002 0.002 
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the improvement is evident for the more problematic situations when Xn+l -~ 7.5 or 
X n + l  ~ 9.5. 

Appendix: Results on orthogonal polynomials 

A.1 Normal distribution 
Let us assume that the random variable Z follows a N ( # , a  2) distribution with 

density p(z; #, a). The properties of Hermite polynomials (see Barndorff-Nielsen and 
Cox (1989), w 1.6) assure that  

(A.1)  (u _ . ) ~ - i p ( ~ ; . ,  o ) a ~  = - ~ p ( z ; . ,  ~), 

(A.2)  { (~  _ . ) 2 ~ . - 2  _ l i p ( u ; . ,  ~)eu = - ( ~  - . ) p ( z ; . ,  ~). 

A.2 Gamma distribution 
Let us assume that the random variable Z follows a Ga(v, r distribution, which 

can be viewed as a reproductive exponential dispersion model with ~ = r e ,  V(~) = # 2  
0 = - 1 / # ,  a 2 = 1/u and K(O) = - l o g ( - 0 ) .  Let p(z; #, a) denote the corresponding 
density function. The properties of Laguerre polynomials (see Barndorff-Nielsen and 
Cox (1989), w 1.6) assures that  

(A.3) (u - #)(a#)-lp(u; #, a)du = -azp(z;  #, a), 

/o (A.4) {(u - #)2(a#)-2 - 2(u - #)#-1 _ 1}p(u; #, a)du 

-~ - - Z { ( Z  - -  [A)~ - 1  -- O'2}p(z;  ~ ,O' ) .  

A.3 Poisson distribution 
Let us assume that the random variable Z follows a Po(#) distribution and that  

p(z; #) denotes the corresponding probability function. It is easy to verify the following 
results on the first and the second order differences 

p(1) (Z;~t )  :p(z;~t)  --p(z - -  1;it ) = -p(z;#)Bl(z;#)/v/-f i ,  z e IV, 

p(2) (Z; ~)  -~- p(1)(Z;  ~)  -- p(1)(Z -- 1; ~)  ---- p ( z ;  ~ ) B  2 (z;  ~)/]A, z e ~ ,  

with the convention that  p(z; #) = 0 for z • ~ .  Here, B~ (z; #) and B2(z; I~) correspond 
to (4.5), with # substituted for #n+l. From the above relations, since 

z z 
E p ( 1 ) ( U ; # ) = p ( z ; # ) ,  Ep(2)(U;t t)=p(1)(Z;#) ,  ze.~V,  
u ~ O  u ~ O  

we obtain 

(A.5) 

(A.6) 

z 

p(~; , ) B ,  (4; , )  = - v ~ p ( z ; , ) ,  
u~--0 

z 

p ( u ; . l B 2 ( ~ ;  ~)  = - (~ - ~ )p(z;  ~1. 
u~0 
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