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Abstract. This paper concerns prediction and calibration in generalized linear
models. A new predictive procedure, giving improved prediction intervals, is briefly
reviewed and further theoretical results, useful for calculations, are presented. In-
deed, the calibration problem is faced within the classical approach and a suitable
solution is obtained by inverting the associated improved prediction procedure. This
calibration technique gives accurate confidence regions and it constitutes a substan-
tial improvement over both the estimative solution and the naive solution, which
involves, even for non-linear and non-normal models, the results available for the
linear Gaussian case. Finally, some useful explicit formulae for the construction of
prediction and calibration intervals are presented, with regard to generalized linear
models with alternative error terms and link functions.
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1. Introduction

Prediction and ‘calibration are usually viewed as related problems and, within the
classical approach, calibration is considered as a kind of inverse prediction. In fact, cal-
ibration regions are usually obtained by inverting a suitable prediction procedure. This
paper concerns prediction and calibration in generalized linear models. In particular,
some recent results on prediction in generalized linear models are studied in more detail
in order to obtain improved solutions for the prediction and the calibration problems.

Statistical calibration is, broadly speaking, an inferential procedure useful whenever
two types of measurements or observations may be given for the same subject. Usually,
the observations (z,¢) and (y, 2) refer to an accurate but expensive measure and to a
cheap but less accurate measure, respectively, and the calibration procedure consists in
the following two stages. In the first stage, called calibration stage, a training experi-
ment, with both y and x available, is performed with the aim of defining a model for the
relation between these two types of measurements. In the second stage, called estimation
(prediction) stage, the observations z are used as indirect measurements of £, which is
not available. That is, the model is considered in order to estimate the unknown values
of £ associated to further available observations z. Statistical calibration is extensively
applied in Chemistry, Biology and Engineering. In this paper, we focus on univariate
(v and z scalar) controlled calibration; namely, = is considered as fixed (non-random
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and controlled) by design in the training experiment. Osborne (1991) provides an ex-
haustive review on statistical calibration; further general references are Brown (1993)
and Sundberg (1999).

The classical approach to calibration goes back to Eisenhart (1939) and it aims to
derive a suitable confidence interval for the unknown £. These confidence intervals are
usually obtained by inverting prediction intervals, associated to the further available
observation z. The coverage level of a confidence interval for £ is equal to the coverage
probability of the corresponding prediction interval for z. A serious problem, related to
this approach, is that its use is mainly confined to normal linear models. Within different
models, the confidence intervals for £ are usually computed mimicking the normal linear
case or using a simple estimative prediction procedure. However, the coverage level may
be remarkably different from the target nominal value and then the calibration procedure
is usually rather inaccurate. In this paper, the classical approach is extended in order
to define a proper prediction-based calibration approach. This approach involves an
improved prediction procedure and it gives a satisfactory solution to the above mention
problems. There are different approaches to calibration, not considered here, based on
likelihood methods (see Brown (1993), and Bellio (2000)) and on bootstrap techniques
(Gruet et al. (1993)), which may provide good alternative solutions in a number of
different models.

Within generalized linear models, Vidoni (2001) has recently defined a procedure,
based on the notion of a predictive density, for the construction of prediction intervals
with coverage probability equal to the nominal value to a close approximation. In this
paper, we shall consider these recent results in order to obtain improved classical solutions
for the calibration problem, useful as well for non-linear and non-normal models.

The paper is organized as follows. Section 2 gives a brief introduction to the predic-
tion and the calibration problems and reviews the above mentioned results on prediction
in generalized linear models. In Section 3, these results are complemented by giving
a formal expression for the improved prediction limit and the associated distribution
function and by considering the case with an unknown dispersion parameter. Finally,
Section 4 presents some explicit formulae useful for calculation of improved prediction
and calibration intervals for models with normal, gamma and Poisson distributed error
terms.

2. Prediction and calibration in generalized linear models

2.1 Preliminaries on prediction

The prediction of the value of a future random variable, based on an observed
sample, is usually expressed in terms of prediction intervals, or, equivalently, in terms
of the predictive density which generates the required prediction intervals through its
quantiles.

Let us assume that the observable random vector Y = (Y3,...,Y,) consists of
random variables having marginal probability density functions p;(y;w),i=1,...,n,w €
Q C R?, d € INt, with respect to a suitable dominating measure. The future random
variable Z = Y;, 11, independent of Y, has density p,4+1(2;w), depending on the unknown
parameter w. Its observed value z is the interest quantity and prediction statements are
usually based on p,41(z;w) or, since w in unknown, on a suitable estimator involving
the observable sample Y. More precisely, we are interested in the definition of an a-
prediction interval for z or, in particular, of an a-prediction limit z,(y), such that,
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exactly or approximately,

(2.1) pr{Z < 2,(Y);w} = q,

for all w € Q, where @ € (0,1) is fixed. The above probability is called coverage
probability and refers to the joint distribution of (Y, Z). At least from the frequentist
viewpoint, the goodness of an a-prediction limit is measured by the discrepancy between
the associated coverage probability and the target value a.

In some particular cases, such as the normal linear regression model, it is possible
to find prediction limits satisfying (2.1) exactly. This is usually done by considering
suitable pivotal functions, that is functions of ¥ and Z, whose distribution is free of
w. In general, this is not possible and we define prediction limits which constitute
approximate solutions to (2.1). Since w is unknown, the simplest procedure is that one
giving the estimative prediction limit 25 = 25 (&), obtained by substituting w with an
asymptotically efficient estimator & = @(Y') in 2,(w). Hereafter, & is the maximum
likelihood estimator. Furthermore, 2z,(w) is the a-quantile associated with pp41(z;w),
while 2¢ is the a-quantile associated with the estimative predictive density pp4+1(z;@).

For continuous random variables, Barndorff-Nielsen and Cox (1996) emphasize that
the coverage probability associated to 2¢ is a+O(n~!) and define a procedure giving pre-
diction limits which satisfy (2.1), in the conditional form, to order O(n=3/2). However,
these limits are implicitly defined and the associated predictive density is usually not in
a closed-form. Vidoni (1998) introduces a prediction limit, expressed as a modification
of the estimative one, which is asymptotically equivalent, up to terms of order O(n=3/2),
to that of Barndorff-Nielsen and Cox (1996) and hence meets the same asymptotic prop-
erties. Moreover, the associated predictive density has a relatively simple closed-form
expression, which may be useful for computations. Vidoni (2001) shows that this pre-
dictive density gives improved prediction limits for discrete random variables as well.

2.2 Improved prediction in generalized linear models

Let us suppose that Y3,...,Y,, Y41, with Z = Y, 4, are mutually independent and
such that Y;, 1 = 1,...,n+1 has probability density function, with respect to a suitable
dominating measure,

pi(yi;w, A) = c(\, ui) exp(Muif: — K(6:)}), ¥y €Y C IR,

where the parameter 6; is a linear function §; = z7w, called linear predictor, of a

d-dimensional vector w = (wi,...,wq)T of unknown parameters and a d-dimensional
vector z; = (Z;1,...,Z;4)7 of known covariates. The parameter A € A C R is the
index parameter, whereas 02 = 1/X is the dispersion parameter. Thus, Y; follows
a reproductive exponential dispersion model (see Jgrgensen (1997), Chapter 3) with
mean p; = p(6;) = dK(6;)/df; and variance 02V (u;), where the variance function
V(ps) = d®K(0:)/d8% g, —6(u;), with 6(-) the inverse of u(-). A generalization of this
model, giving the class of generalized linear models (see McCullagh and Nelder (1989)),
is obtained by considering a monotonic differentiable link function g(-) such that g(u;) =
zlw. Moreover, y; = g~!(zTw) and 6; = 8(g~1(2Tw)), with g~1(-) the inverse of g(-).
The simplified model with §; = z7w is obtained whenever the canonical link function
g(-) = 0(-) is considered.

Let us consider 62 known or estimated. Since the parameters 62 and w are or-
thogonal, this assumption does not influence the maximum likelihood estimator ¢b. The
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extension to the case with both w and o2 unknown requires an additional computational
effort and it will be presented in Subsection 3.2. Hereafter, we use index notation and
Einstein summation convention, according to which if an index occurs more than once in
a summand then summation over that index is understood. The convention is suppressed
only for the index i = 1,...,n + 1, which labels the observations.

The predictive density, which gives improved prediction limits both in the continuous
and in the discrete case, may be specified as follows (see Vidoni (2001), for a complete
derivation)

(22) p;lz-+1(2; ‘:jay ’\) = Pn+1 (Z; ‘:)ay /\){1 + Hn+1(z; ‘I)ou )‘)}’

where H,,41(2; @4, A) is
1
Hp1(z50,2) = _5)‘[)‘(2’ - #n+1)20n+1m0n+1,8 — (2= pn+1)
{9n+1,r(vs,tu + 'Us,t,u)itu - n+1,rs} - 9n+l,r:u'n+l,s]ir87
computed at w = @, and

M2 — fing1)Tny1,s8°

War = Wy + — . , r=1,...,d
¢ " V{fin+1)g (Ant1)
Here, i"™ = i"*(w), r,s = 1,...,d, is the (r, s)-element of the inverse of the expected
information matrix, ve s, = E(lely,) and vyt = E(€slly,), s,t,u = 1,...,d, where

25 = 0b(w;y)/Ows and by, = 8%4(w;y)/Ow;Ow,, with £(w;y) the loglikelihood function.
In this case,

- Zi 50 tu . . TirTis
Vs tu = A = Ugtu = A K"(6 % ai soi ai uy lrs = A
=AY T Ve = ALK 0600118 Z TPV

i=1

Furthermore, K™ (8(u:)) = d3K(6;)/d82|9,—o(,.) and

His = aui/aws = -’Bi,s{gl(#‘i)}_lv 012,1' = 80,‘/8&),- = -'l'i,r{V(.u'i)gl(ﬂi)}_lv
Oirs = 0°0; | BwrBws = — i r2is[K™ (6(:)){V (1)} ~3{g" (us)} 2
+g" () {V ()} g ()} 3,

with ¢ = 1,...,n 4+ 1, where ¢’(-) and ¢”(-) are the first and the second derivatives of

g(-). With the canomcal link function, we have that vs s, = 0, 4rs = A1) V(i) TirTis,
Vs t,u )\Z, =1 K”/(e(,u'z))xz sTitTit, Mis = T4 sV(lllz)v ir = Tir and 01 rs = 0. The
above quantities are evaluated at u; = g~'(zfw), i = 1,...,n + 1. Note that, when-
ever the order of the expected likelihood quantities i,s, ’Us,tu and vs 4, is O(n), then

Hpt1(2;@0,A) is O(n~ 1) and Gor =& + O(n~Y), r =1,...,d. In (2.2), Hpp1(2; @y A)
may be substituted by Hp4+1(2;&,A) without a change in the order of approximation.
Here and in what follows, a hat indicates evaluation at w = &, and a tilde evaluation at
W= WDq-

Function (2.2), which is a modification of the estimative density pp+1(2;@a, ), de-
pends, through the estimator &,, on the specified @. The predictive procedure proposed
by Barndorff-Nielsen and Cox (1996) does not present this drawback. However, this is
the price to be paid in order to obtain a simplified predictive density. Since the aim
here is to derive suitable prediction limits for a fixed value «, the predictive density (2.2)
turns out to be useful as well, especially for computations.
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2.3 Preliminaries on calibration

Let us consider the controlled calibration problem for generalized linear models.
More precisely, we adopt for Y1,...,Y,, Z, with Z = Y,4,, the general assumptions
of Subsection 2.2. Furthermore, we suppose that the calibration stage consists of a
training experiment giving the observations y = (y1,...,¥n), with the corresponding
covariates z;, ¢ = 1,...,n, known and fixed by design. In the prediction stage, an
additional observation z = yn4+1 is available, while the associated covariate { = Tp41
is unknown. Thus, 2,41 is here the interest quantity and the aim is to derive suitable
estimators or confidence regions for z,1, based on the observations (y,z). We focus
on the univariate case, by assuming w = (wy,w2)T and z; = (1, z;2)T,i=1,...,n+1;
for ease of exposition, sometimes we consider the simpler case with scalar w and z;,
i=1,...,n+ 1.

Within the classical approach, confidence intervals for x,4; are obtained by invert-
ing prediction intervals for Z. More precisely, if (21(@,0;Znt1), 22(W, 0;ZTp41)) is an
a-prediction interval for z, a confidence region for the unknown covariate z,41 is given
by {Zn+1 € R : 21(0,0;Zn+1) < 2 < 22(W,0; Tny1)}, where z is now available. The asso-
ciated coverage level is equal to the coverage probability of the corresponding prediction
interval. Sometimes, the inversion procedure may not result in an interval; moreover, the
confidence region may be unsatisfactory or even meaningless, but this usually happens
when the model is weakly confirmed by the data.

Let us start by reviewing the well known results on calibration for simple linear
regression models. We assume that Y¥;, i = 1,...,n + 1, follows a N(w; + WeT;2,07)
distribution, with 02 known. The random variable {Z ~ (&1 + @2Zn41,2) }/{oc(ZTnt1,2)}
is a pivotal quantity with a N(0,1) distribution. Here, @; and @y are the maximum
likelihood estimators for w; and we and ¢(zn412) = {1+ 1/n+ (Tny12 — T)2/ Sz }t/?,
with Z and S, the sample mean and the sample deviance of z; 2,7 = 1,...,n. Whenever
o is unknown, it can be substituted by §+/n/(n — 2), with & the maximum likelihood
estimator, giving a t-distribution with n — 2 degrees of freedom. An exact a-prediction
interval for Z can be easily defined by means of the above pivotal quantity. In order
to derive a confidence interval for x,4;, with an exact confidence level a, we need to
invert this prediction interval, by considering the actual available further observation
z. The inversion procedure usually gives a suitable confidence interval for z,41. It is
well-known that this procedure may result in unsatisfactory confidence regions, but this
is mainly confined to the case when the slope parameter wo is not statistically different
from zero, namely, when |©2v/Sz2/0| < U(144)/2, With U(14ay/2 the (1 + a)/2-quantile
of the standard normal distribution, or, in general, when the model does not provide a
good description of the data available (see Brown (1993), §2.3).

This approach holds for the linear Gaussian case. In non-linear and non-normal
models, confidence intervals for x,+1 are usually derived by mimicking the results avail-
able for the normal linear case. For example, in generalized linear models with normal
error and link function g(u), different from the canonical one, we can consider an ap-
proximate pivotal quantity {Z — g~ (zT@)}/(0® + V,)!/2, with V; a suitable estimator
for the variance of g~!(zF®). As a general alternative, an estimative predictive proce-
dure can be taken into account. That is, an a-confidence interval for x,4, is derived by
inverting (zfl_ ®)/2 (@,0;ZTnt1), 20 ta)/2 (¥, 0;%n41)), namely the estimative a-prediction
interval for Z based on the the maximum likelihood estimator @. However, the estima-
tive solution is usually rather inaccurate, since the coverage probability of the prediction
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interval, and therefore the actual confidence level of the associated confidence interval,
may be remarkably different from the nominal value a. Indeed, the solution based on an
approximate pivotal quantity may present unsatisfactory results as well, especially for
highly non-linear regression models.

In the following, we shall consider an improved classical solution for the calibration
problem. More precisely, this procedure consists in inverting an a-prediction inter-
val based on the predictive density (2.2), which presents coverage probability closed
to the target value a. Thus, the associated confidence region for z,4;, which has
an actual confidence level closed to the nominal value a, is given by {z,4+1 € R :
z(ﬁ_a)/Q(Q(l_a)/g,a;an) <z< z("i+a)/2(u3(1+a)/2,a;a:nH)}, where z,;“(d:,,,a;a:nﬂ) is
the y-quantile of a distribution with density (2.2). When an explicit expression for the
confidence region does not exists, a solution may be obtained by means of a suitable
numeric inversion procedure. Moreover, as in the linear normal case, the confidence re-
gion may be unsatisfactory or even meaningless, but this usually occurs when the model
is weekly confirmed by the data or concerns an asymptotically negligible subset of the
region, outside the design of the training experiment.

A final point regards calibration within a discrete model. Vidoni (2001) emphasizes
that, in this case, the coverage probability of the estimative prediction interval consists
of an unavoidable part due to discreteness and a further part related to the estimative
procedure. Indeed, prediction intervals based on (2.2) improve the estimative ones,
since, neglecting the error term due to discreteness, their coverage probability equals the
target value to third order accuracy. Therefore, the same improvement maintains for
the actual level of the associated confidence region for z,+;. In this framework, besides
interval estimation, it may be of interest to estimate the value (or the set of values) for
ZTn+1, such that a fixed potential observation z € Y corresponds to the a-quantile of
the future random variable Z. For example, given a suitable observation z € ), the set
{Zn+1 € R : zf/2(®1 /2,0 Tny1) = 2} defines the covariate values for which 2z may be
reasonably considered as the median observation in the prediction stage. With regard
to bioassay applications, these estimates for z,,1 can be viewed as a general alternative
to the notion of a-level effective or lethal dose.

3. Further theoretical results on improved prediction

3.1 Useful formulae for prediction intervals and distributions

In this section we consider the problem of calculation of prediction intervals in
generalized linear models. In particular, we focus on the derivation of explicit expressions
for the improved a-prediction limit and the associated distribution function.

Let us start by noticing that the modifying term H,;(2;w,A) can be rewritten
as a linear combination of the first two orthogonal polynomials (see Barndorff-Nielsen
and Cox (1989), §1.6) associated to pni1(z;w, A), with coefficient express in terms of
cumulants, given by

o) = _E 1)
31 Bi(z enti;0,9) o{V (ttns1)}1/%
(3:2) By(2,Tpq1;w,0) = (2 = pnt1)” _oK"(0(un+1)) (2= pny1) 1

02V (pnt1) V()13 o{V ()2

More precisely, we have that
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(3.3) Hp(z;w,)) = H(2,2p41;w,0)

1
= §A1($n+1;w,U)Bl(Z,$n+1;‘U,0)

_%A2(xn+1§w:0)B2(Za Tnt+1;W, U),
where
51771-%—1,1'$n+1,sg”(,un+l)i”3 zn+1,r(vs,tu + vs,t,u)ituirs

oV (pne) /g (n) P o{V(8n41)} /29 (png1)

$n+1,r$n+1,sirs
o2V (pn1 {9’ (Hnt1)}2’
with the obvious simplification whenever the canonical link function is considered.

The a-prediction limit, based on the modified predictive density (2.2), is defined as
the quantity Z} = 2f(@q, 0; Tas1) such that, in the continuous case, Fif, 1 (73; @4, ) = o
or, in the discrete case, Z} = inf{z € Y : F}, | (2;@a,)) > a}. Here, Y is the support
of Z and F,f 1(2;@a, A) is the distribution function associated to (2.2). If the modifying
term is considered in the alternative form (3.3), we have that, in the continuous case,

(3.4) A (Tpy1;w,0) =

(3~5) A(Tnyr;w, U) =

(3.6) Fl 1(2;00,2) = Fpy1(2;@as A)

1 - z . -
+§Al (xn+1§waa U) / B, (u’ Tn41;Wa, U)pn+1(u; Wey A)du
—00

1 . z . .
~—2—A2(xn+1;wa,0)/ Bo(t, Tpy1;Pay 0)Prt1 (U; Do, A)du,
—00

where Fi41(2;@q, A) is the estimative distribution function based on @, and B;(+), Ba(-),
A;(-) and A(-), are (3.1), (3.2), (3.4) and (3.5) computed at w = &,. The discrete case
is recovered by substituting the integration sign with the summation sign.

From (3.6), it is easy to show that, to the relevant order of approximation, the
improved a-prediction limit Z}, for continuous random variables, may be expressed as
a suitable modification of the estimative prediction limit based on &4, namely ¢ =
28 (Do, 03 Tnt1). That is, to third order accuracy,

. e 1 e -~ _ -
3.7) 7 =% - §{Pn+1(za;wa,)\)} VA1 (2415 @a,s 0)
z
' / Bl(z,mn+1;‘;'aaU)pn+l(z§&)a: A)dz
—00

1 e ~ _ .

+§{pn+1(zg; Wy, ’\)} 1A2($n+1;wa’ 0)
zZ

/ BZ(z’xn-i-l;‘:’a,0')pn+l(z§‘;)aa/\)dz-

—00
Expression (3.7) holds for continuous random variables. Maintaining the same order for
the error, F.I +1(2;@a, A) and Z7 can be further approximated by suitable modifications
of the estimative distribution function and the estimative prediction limit based on &.
We obtain, respectively, the approximations
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(3.8) 7?+l(z;‘;)7 Aa)= Frt1(z0,2)

1 R * “ -
- §A2($n+1;&% 0)/ By(u, Tny1;@, 0)ppy1(u; @, N)du
—00

1 . N . .
+ {EAl(an;w, 0) + B1(25, Tnt1;0,0)A2(Tn41; @, 0)}

: / By (t, Tt13.0, 0)pmg (85 &, N s

-0
and rs
Tpn41,s?

o{V(fin+1)}/2g' (fin41)

1 o i A % ) A
- E{pn+1(zg;wa’\)} 1A1($n+1;w,(7)/ Bl(zaxn+l;w,0)pn+1(z; W, A)d‘z
—00

(39) 281 = zg(dj’ 0’;(L’n+1) = 2; + 2;/1'31(22’ $n+1;‘:}70)

1 e e X Z X R
+ §{pn+1(zg;w,x\)} 1A2($n+1;w,0)/ By(2, Zn41;W,0)pn41(2; 0, N)dz.
—00

Here, Fri1(z;@,A) and 28 = 28(0,0;Zn41) are the estimative distribution function
and the estimative prediction limit based on the maximum likelihood estimator & and
o = 025, /0@y, v = 1,...,d. Indeed, Bi(-), Ba(-), A1(-), Aa(-), are (3.1), (3.2), (3.4),
(3.5) computed at w = &. As before, the discrete case is recovered in (3.8) by sub-
stituting the integration sign with the summation sign and then, to the relevant order
of approximation, z} equals 23 = inf{z € Y : F2,,(2;@,), @) > a}. Expression (3.9)
holds for continuous random variables. Formula (3.8) is obtained by means of a Taylor
expansion for F,1(%;@q,A) around @, = & and it implicitly requires that the order of
integration and differentiation can be interchanged in 0F,41(2z;@,\)/0w,, r = 1,...,d.
Formula, (3.9) is a consequence of a general result given by Vidoni ((1998), §3).

Relations (3.6)—(3.9) are useful for the computation of improved prediction intervals
and distribution functions. However, since the above formulae involve integration or
summation, a final closed-form expression is usually not available. In Section 4, we shall
consider some generalized linear models where simple explicit results may be obtained.
Finally, a further important point concerns the order of the error term in the improved
predictive density (2.2) and in the expressions for prediction limits and distribution
functions given in this section. If the order of the expected likelihood quantities i,s,
Us tu, Ustu iS-n0t O(n), it is not necessarily true that the prediction limits based on
(2.2) present coverage probability equal to the target value to third order accuracy.
Moreover, the error term, which usually depends on the future covariate z,4;, may
not be negligible, especially when the position of z,,; is far from the center of the z;,
¢ =1,...,d, considered in the training experiment. Thus, a careful investigation of the
size of the error term is useful at least in more problematic situations.

3.2 The case with unknown dispersion parameter

In this section we complement the results on prediction in generalized linear models,
by computing the modified predictive density pL_l(-) in the general case where the
dispersion parameter 2 is unknown. Following Vidoni (1998), the predictive density,
which gives improved prediction limits both in the continuous and in the discrete case,
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is
(3-10) p:;.:,.l('z;&a’ S‘OL) = pn+1(z;‘:)on 5‘0:){1 + Hn+1(z;‘:]on 5‘&) + Sn+1(z;‘:’a1 S‘a)}s

where Sp41(2;@a, Aa) i8

1 .

Sn+1(z; W, A) = _5[(£n+l;a2)2 - £n+l;az{(vaz,tu + Uaz,t,u)ztu
+('U‘,2,‘,2,,2 + Ut,z’az’az)i;}az} + en+1;0202]i;2102,
computed at (w, A) = (@a, Aa), With Ag = 1/62, 52 = 6%+ £, 41,02(0, 1/62; 25)i3 » and
&2 the maximum likelihood estimator for o2. Here, Hy11(2;@q, Aa) is the modifying
term given is Subsection 2.2 computed at (w,\) = (@Wa, Aa), With @, the well-known
modification of the maximum likelihood estimator for w. In this section, the index
notation is considered only for the components of the d-dimensional parameter w, which
is orthogonal to o2. Moreover,

NoE 2 0 — . / 2 4.
big2 = l; g2 (w,1/0% ;) = dlog pi(yi;w,1/0?) _ _yﬂ, K(6;) _c (1/0%,y:)

do? gt aie(l/o%, i)’
¢; _ OPlogpi(yi;w,1/0%) _2121';02 + 1 ["(1/0?%yi) _ d(1/a% yi) ’
io2a? = 802002 - o2 od | d(1/0%,y:) c(1/a2,y;) ’

for i = 1,...,n+ 1, where ¢/(1/02,y;) and ¢”(1/02,y;) are, respectively, the first and
the second derivatives of ¢(},y;), with respect to A, computed at A = 1/52. The above
likelihood quantities are iy2,2 = —E(3 1 €i6252), Uozpu = E(X lin2 Yoty bistu),
Vg2 5262 = E(Z‘,?:l &;02 22:1 gi;a‘zaz)nz Vo2itu = E(z:;l fi;(,z 2;;1 fz‘;t 2;;1 &‘;u) and
Vs2,02,02 = E(Zi:] fi;a2 Ei:l ei;az Zi:l ei;az)*) where

s = Olog p;(Yi;w, \) [Ows = 02 (y; — p:)0i.s5
it = 0% log p; (yi;w, N) /0wiOwy = —0 2 {pi it — (¥i — 1:)0i 1},

fori=1,...,n and s,t,u =1,...,d. Since, as usual, E(¢;;s) = 0 and E(¢;,,2) = 0, the
calculations are in fact simplified. When the order of these likelihood quantities is O(n),
then 2 = 62+ O(n~!) and the order of Hpy1(2;@a, Aa) 80d Spi1(2;@a, Aa) is O(n1).
These modifying terms can be evaluated at (w, 0?) = (&, 52) without changing the order
of approximation.

4. Examples

In this final section, generalized linear models with normal and gamma distributed
error terms, which present explicit closed form solutions for the prediction problem,
are taken into account. Models with an inverse Gaussian distributed error term do
not allow analogous explicit solutions. The discrete case, which is of interest for a
number of potential applications, requires particular attention. Here, we shall consider
generalized linear models with a Poisson distributed error term, which are characterized
by a computationally tractable predictive solution. Analogous results, not presented in
this paper, may be obtained for models with a binomial distributed error term.
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4.1 Normal error

Let us assume that Yy,...,Y,,Ynt1, with Z = Y,41, are mutually independent
normally distributed random variables with mean y;,% = 1,...,n+1, and known variance
02; namely, N(u;,02). A generic link function g(-) is considered. Thus, Y;,i=1,...,n+
1, is a reproductive exponential dispersion model with p; = g~ (27 w), V(1) = 1, 6; = p;
and K (6;) = 62/2. The first two orthogonal polynomials are, respectively,

- _ 2
(= ll’n+l), Ba(2,&ps1;w,0) = (2 = tin+1) _1

Bi(2,Zpt1;w0,0) = p P

and the estimative prediction limit based on the maximum likelihood estimator & and
that one based on the modified estimator @, are, respectively, 25 = fip41 + ue0 and
28 = fin4+1 + U0, With u, the a-quantile of the standard normal distribution.

From (3.7), using properties of Hermite polynomials (see (A.1) and (A.2) in the
Appendix), it is almost immediate to approximate the improved a-prediction limit as

. - 1 . 1 .
z: = fngt + 'éo'Al (xn+1;wa>0) + UaO {1 - §A2(wn+l;wa,0')} ’
where @gpr = @y + Ua0Zni1,s{0 (Ans1)} 1A, r = 1,...,d. By (3.9), we obtain the
alternative approximation

s0 _ - 1 . 1 -
(4.1) Zg = fint1 + EUAI (Tn41;@,0) + ugo {1 + -2—A2(xn+1;w, o)} .

Here

1"
OLn4+1,7Tn+1,s9 (Hn+1) rs OZni1,r tu ATS
A - —_EstuA A ’

{9’ (un+1)}? 9 (n+1)
Tn4+1,rTn+1,s
A2 Tn41;W,0) = b 6Lk L T Ars,
(En415,0) {9’ (4n41)}?
with Tsp = Y0 ¢”(1)Zi,s%i 1T {g' (1)} and AT the (r, s)-element of the inverse
of matrix [Ays], with Aps = Y i, Ti i s{g’ (11:)} 2. Retaining the same order of error,
Z} may be further approximated by

A1(Tntr1;w,0) =

R 1 N -
(4.2) 1 + §UA1($n+1;w, o) + Uao /1 + As(Tni1;@,0),

that is, by the a-quantile of a N(fin4+1 + %O’Al (Tny1;@,0),02{1 + Ax(Tny1;@,0)}) dis-
tribution. A straightforward interpretation of formula (4.2) is possible since, to third
order accuracy, —%aAl (Tn+1;w,0) and 02As(z,41;w,0) are, respectively, the bias and
the variance of the estimator fin41 = g7 '(z2,,&). Note that, in the Gaussian case,
the dependence of the modified predictive density (2.2) on the target value a is, in
fact, suppressed to the relevant order of approximation. If the canonical link func-
tion g(u) = p is considered, we have that p,4; = z2,w, A1(Tnt1;w,0) = 0 and
Ao(Tny1;w,0) = Tny1,rTnt1,sA", with Apy = 370 2,25, and (4.2) coincides with
the well-known prediction limit, which satisfies relation (2.1) exactly.
When o is unknown, since

1 1
bio2 = F{(yi — )2 — 0%}, ligrer = ﬁ{ff? — (yi — m)*}
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i=1,...,n+1,and is22 = n/(20%), Vo2 1o, = 0, Up2 44 = 0" A, Vo2 5242 = —n/a®,
Vg2 o2 g2 = n/0®, the predictive density (3.10), which gives improved prediction limits,
corresponds to

- - 1. .. 1, . o a
¢(z§/‘n+1»aa) 1+ EZAl(xn+l;waao'a) - ‘2'(22 - 1)A2($n+1§wa,0a)

—3{24 —~22(6+2d) +3+ 2d}n—1] ,

where A;(-), Aa(-), As, and @, are given above, @(-; 4, o) is the density of a N(u,0?)
distribution and Z = &1(2 — finy1), with 62 = 62+ {(25 — fin+1)2 —6%}n~!. Integration
using properties of Hermite polynomials, followed by inversion and by a suitable Cornish-
Fisher type expansion for u,, shows that, in this case, the improved prediction limit Z}
may be approximated by (4.1) and (4.2), with §y/n/(n — d) substituted for ¢ and t,,
the a-quantile of a Student t distribution with n — d degrees of freedom, substituted
for u,. With the canonical link function, the second approximation coincides with the
well-known prediction limit for linear regression models, which satisfies relation (2.1)
exactly.

With regard to the calibration problem, an a-level confidence interval for 41 can
be obtained by inversion of the associated a-prediction interval based on the improved
prediction limit 2z (&, ; zn+1) or on the approximations (4.1) and (4.2). We consider
the case with ¢ known, since the general case with ¢ unknown is obtained with the
usual substitution for o and u,. In particular, if we consider the canonical link function
g(u) = p, we obtain the exact prediction limit for normal linear regression models. For
w = (w1,ws)T and z; = (1,z;2)T, 4 = 1,...,n + 1, it is given by (4.2) with fin4; =
(;)1 + In+1,2(;)2, Al((L‘n+1;(:),0') = 0 and A2($n+1;(:),0’) = 1/n+ (IL’n+1,2 - 57)2/sz Thus,
in this case, the results on calibration are analogous to those reviewed by Brown ((1993),
§2.3).

A simple simulation study confirms the superiority of the calibration procedure
based on the improved prediction limits over those based on an approximate pivotal
quantity and on the estimative prediction limits. We consider a normal model with a log-
arithmic link function g(g) = log(u); indeed, we assume o known and scalar w and x;, i =
1,...,n+1. Thus, pint1 = exp(Wxn+1), A1(Tn+1;W,0) = 0Tn41 exp(wxnﬂ){i)(g)A(}% -
$n+1}A(_2§ and Ap(Tni1;w,0) =224 exp(2wxn+1)A(_2§, with Ag) = 37 | z7 exp(2wz;)
and X3 = S x3 exp(2wz;). Moreover, we consider the approximate pivotal quan-
tity {Z — exp(©Zny1)}/(0? + V,)'/2, which gives the approximate a-prediction limit
28 = OTpy1 + Ua(0? + V,)V/2, where V, = 0%As(zn41;0,0) is an estimator for the
variance of exp(Wzn41) (see, for example, Seber and Wild (1988), §5.12).

Sample of size n = 10 are generated from this model with w = 0.15 and o = 1.
The covariates x for the calibration stage are between 20 and 50, while, for £ = 41,
we assume the three alternative values 35, 45 and 50. Table 1 gives estimates, with
the corresponding estimated standard errors, of the actual confidence level for a-level
calibration intervals, with & = 0.9,0.95,0.99, based on 23, 27 and 2J. These simulations,
based on 10,000 replications, show that for £ = 35, which represent a good situation, these
methods are equivalent; however, for £ = 50, which represent a problematic situation,
the method based on improved prediction intervals performs uniformly better. The
method based on the estimative prediction intervals seem to be inadequate even in the
intermediate situation with £ = 45.
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Table 1. Coverage probabilities, with estimated standard errors, for a-level calibration intervals
based on prediction limits. Simulations from the normal model with d = 1, g(p) = log(u), o =1
known and w = 0.15. Covariates z between 20 and 50 and (a) n41 = 35, (b} zn41 = 45, (¢)
Zn+1 = 50. Estimation based on 10,000 replications of samples of size n = 10.

Prediction a=0.9 a =0.95 a=0.99
Limit (a) (b) () (a) (b) () (a) (b) )
Estimative 0.897 0.855 0.687 0.948 0.913 0.771 0.988 0.977 0.885
0.003 0.003 0.005 0.002 0.003 0.004 0.001 0.001 0.003

Approximate 0.898 0.886 0.840 0.949 0.935 0.906 0.989 0.986 0.975
0.003 0.003 0.004 0.002 0.002 0.003 0.001 0.001 0.002

Improved 0.898 0.888 0.860 0.949 0.936 0.923 0.989 0.987 0.982
0.003 0.003 0.003 0.002 0.002 0.003 0.001 0.001 0.001

4.2 Gamma error

Let us assume that Y;,...,Y,,Yn41, with Z = Y, 4, are mutually independent
gamma distributed random variables with scale parameter ¢;, ¢ = 1,...,n+ 1, and
known shape parameter v; namely, Ga(v, ¢;). For ease of exposition, the canonical link
function g{u) = —1/p is considered. Similar results may be obtained for a generic link
function g(-). Thus, Y¥;, i =1,...,n + 1, is a reproductive exponential dispersion model
with p; = vy = —(xfw) ™, V() = 2, 6; = —1/pi, 0* = 1/v and K(6;) = —log(—6;).
The first two orthogonal polynomials are, respectively,

- - 2 -
Bl(z,xn+1;w,0) = (i_/‘n_%—l)’ B2(z,$n+l;w» J) = (z /I’ﬂ-H) - 2(2 ”n‘H) -1

2
O lnt1 02U 1 Hn+1

b

and the estimative prediction limit based on the maximum likelihood estimator & and
that one based on the modified estimator &, are, respectively, 2& = u, q3n+1 = Ugfln4+10°
and 78 = UgPnil = Uafing102, With u, the a-quantile of a Ga(v,1) distribution.

From (3.7), using properties of Laguerre polynomials (see (A.3) and (A.4) in the
Appendix), we obtain the following explicit approximation for the improved a-prediction
limit

- - 1 - 1 -
(4.3) zt = ua,un+102 {1 + 50A1(xn+1;wa,a) — E(uaa2 -1+ 02)A2(xn+1;wa,a)} ,

where g, = @y + (2002 — l)xnﬂ,sﬂnﬂ&”s, r=1,...,d, and, by (3.9), the alternative
approximation

so . 1 . 1 .
(4.4) 2 = ugfint10° {1 + §UA1(:1:n+1;w,a) + i(uaa2 — 1+ 0%)Ax(Tny1; 0, a)} .

Here
) _ 2 t
Al(Zp41;W,0) = =20Tn41,7Tnt 1,851 A7° — 0Ll rliny1 Dstn A AT,
. — 2 s
A2(xn+1aw7a) = xn+1,r$n+1,s#n+1AT s

with A™ the (r, s)-element of the inverse of matrix [Ays], with Arg = Y0 | i »T; s,
and Y, = -2 Z?___l xi,sa:i,txi’u,u?. Retaining the same order of error, ZJ may be approx-
imated by the a-quantile of a Ga(v,#3,,) distribution, with v = 0=2{1 + J0%(us +
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1) Ag(Tnt1;@,0) + 20 A1(Tnt1;@,0)} 7! and ¢%4y = fint1{l — JAs(Tns1; &, 0)}/V2, pro-
vided that the V&,(Z)% 41 > 0. Note that, in the gamma case, the dependence of the
modified predictive density (2.2) on the target value a maintains.

With regard to the calibration problem, an a-level confidence interval for z,y:
can be obtained by inversion of the associated improved a-prediction interval based on
(4.3) or on the approximation (4.4). Here, we consider the simple case with scalar w
and z;, 1 = 1,...,n+ 1. In this particular situation, the improved a-prediction limit
is approximated, up to terms of order O(n™!), by (4.4) with finy1 = —1/(@Tn+1),
A1(Tpi1;0,0) = 0 and Ap(zp41;@,0) = 1/n; that is,

. u
2o(@0,0;Tpy1) = Eﬁ:{l + (uq — v+ 1)/(2vn)}.

Whenever 1+ (u, — v + 1)/(2vn) > 0, with v = (1 — a)/2,(1 + a)/2, and & < 0, the
associated confidence interval for zn41 i8 (Z(1-q)/2(@, 05 2), T(14a)/2(@, 0; 2)), where z is
the observation available in the prediction stage and

zy(0,0;2) = _L%Yz{l + (uy —v+1)/(2vn)}.

If & > 0, the confidence interval for z,41 is obtained by reversing the extremes. With
alternative link functions, an explicit expression for the confidence interval for z,41
may not exists; however, it can be obtained by means of a suitable numeric inversion
procedure.

A simple simulation study confirms the superiority, in terms of actual coverage level,
of the calibration intervals based on the improved prediction limits over those based on
the estimative prediction limits. We consider a gamma model with the canonical link
function g(p) = —1/p; indeed, we assume v known and scalar w and z;,i = 1,...,n+1.
Sample of size n = 10 are generated from this model with w = —0.08 and v = 2. The
covariates x for the calibration stage are between 2 and 12, while, for £ = z,41, we
assume the three alternative values 3, 7 and 11. Table 2 gives estimates of the actual
confidence level, with the corresponding estimated standard errors, for a-level calibration
intervals, with o = 0.9,0.95,0.99, based on 27, and Z]. The simulations, based on 10,000
replications, show that the method based on the improved prediction intervals performs
uniformly better.

Table 2. Coverage probabilities, with estimated standard errors, for a-level calibration intervals
based on prediction limits. Simulations from the gamma model withd = 1, g(p) = ~1/p, v = 2
known and w = —0.08. Covariates = between 2 and 12 and (a) zp+1 = 3, (b) zp+1 = 7, (€)
Zp+1 = 11. Estimation based on 10,000 replications of samples of size n = 10.

Prediction a=10.9 a=0.95 a = 0.99
Limit (a) (b) (©) (a) (b) (c) (a) (b) (0
Estimative 0.881 0.877 0.883 0.939 0.937 0.935 0.986 0.984 0.982
0.003 0.003 0.003 0.002 0.002 0.002 0.001 0.001 0.001

Improved  0.901 0.898 0.902 0.951 0.952 0.949 0.992 0.989 0.990
0.003 0.003 0.003 0.002 0.002 0.002 0.001 0.001 0.001
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4.3 Poisson error

Let us assume that Y3,...,Y,,Y, 41, with Z = Y,4;, are mutually independent
Poisson distributed random variables with mean u;, ¢ = 1,...,n + 1; namely, Po(u;).
For ease of exposition, the canonical link function g(u) = log(u) is considered, that is a
log-linear model is defined. Similar results may be obtained for a generic link function
g(). Thus, Y;, ¢ = 1,...,n + 1, is a reproductive exponential dispersion model with
pi = exp(zTw), V() = wi, 02 = 1, 6; = log(u;) and K(6;) = exp(6;). The first two
orthogonal polynomials are

(z - ﬂn+1)
VAT
(2 = pnt1)? _ (2 = pn+1) _
Un1 Hn+1

(4.5) Bi(z,Zny1;w,0) =

Ba(z,Zpy1;w,0) = 1,
and the estimative prediction limits based on the maximum likelihood estimator & and
on the modified estimator &, are, respectively, 2¢ = inf{z € IN : Fh41(2;0,)) > a}
and 2§ = inf{z € IN : Fpo11(2;@a,A) > a}, with F,11(z;@,A) and Fpy1(2;@a, A) the
corresponding estimative distribution functions.

From (3.6), particularized for discrete random variables, using formulae (A.5) and
(A.6) given in the Appendix, we determine the distribution function associated to the
predictive density (2.2), that is,

(46) Fta (3300, Y) = Fara (258, ) + 3 {(2" — fing1) A2(Zn413 D0, 0)
“VVint1A1(Tn 415 @, 0) }Pn1 (2% Ba, A),s
where @or = &p + (28 — fint1 )wn+1,s[k”, r=1,...,d, and, by (3.8), its approximation
(4.7) Fo i (z0,Ma)
= Fp1(z;0,0) + %{(z* — 288 + fin41)A2(Tnt1;@,0)
~ V4141 (Zn41;0,0) }Pra1 (27 0o, A),

where z* = [z], namely, the integer part of z. Indeed,

. — t
Ay (xn—i-l;w, U) = " ZTn4+1,Tnt1,sv UPni1 AT — Tn+l,ry/ Pnt1Dstu AT ATS,
A2 (Tn41;W,0) = Tng1,rTnt1,sbnt 1077,

with X = — }:Z’:l TisTitTiwpts and AT the (r,s)-element of the inverse of matrix
[Ars), with Arg = 37 ; %ir&i spi. Thus, the improved a-prediction limit is defined as
Y =inf{z € IN : Ff(2,0a,A) > a}, with 23 = inf{z € IN : F2_,(2;&,\,a) > a}
its approximation based on (4.7). Note that, in the Poisson case, the dependence of the
modified predictive distribution functions (4.6) and (4.7) on the target value o maintains.

With regard to the calibration problem, an a-level confidence region for z,4; can
be obtained by inversion of the associated improved a-prediction interval based on
zf; (@, 0;Tn41) or on its approximation z5(W, 0;xny1). However, an explicit expression
for the confidence region may not exist and it is usually obtained by means of a suit-
able numeric inversion procedure. The inversion requires special attention, since it may
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result in a region different from an interval. Under this respect, investigation of the
monotonicity of F:H(z; @a, A) or o, (2@, A, a), as functions of x4, with z fixed, can
be a useful preliminary analysis.

Besides the usual calibration regions for x,41, it may be of interest to estimate the
value (or the set of values) for x4, such that a fixed potential observation z € IV
corresponds to the a-quantile of the future random variable Z. For example, given a
suitable observation z € IN, the set {z,41 € R : zi"/z,(d),o;a:nﬂ) = 2} defines the
covariate values for which z may be reasonably considered as the median observation in
the prediction stage.

As noted by Vidoni (2001), the coverage probability of a prediction interval in the
discrete case, and then the actual level of the associated confidence region for z,41,
presents an unavoidable error component, due to discreteness. Indeed, the improved
prediction limit 2} is superior to the estimative one, since it improves the actual cov-
erage probability with regard to the second error component related to the estimative
procedure. The same improvement maintains for the level of the associated confidence
region for x,,41. The following simulation study confirms this superiority.

Let us consider the simple case with scalar w and z;, i = 1,...,n + 1. In this
particular situation, F,f,; (2;@q, A) and F2,,(2;@, A, ) are given by (4.6) and (4.7) with
pnt1 = exp(Tn+1w) and

1 1
xi-{-l €Xp | 3Tn+1W Tn+1€Xp | Tp41W n
2 + 2 Z z3 exp(ziw)
S Fen@e) |, dexplew))? 2 ’
1 P(Ens1)
2im1 @7 exp(xiw)

A1($n+1;%0) = -

Ay(Zpi1;w,0) =

Sample of size n = 10 are generated from this model with w = 0.15; the covariates z for
the calibration stage are between 1 and 10, while, for £ = z,,1, we assume the three
alternative values 5.5, 7.5 and 9.5. The quantiles have been randomized to take care
of the discreteness of the future random variable and to detect the actual differences in
the coverage probability. Table 3 gives estimates of the coverage probabilities, with the
corresponding estimated standard errors, for (randomized) a-prediction intervals, with
a = 0.9,0.95,0.99, based on 22, and 25. The simulations, based on 10,000 replications,
show that the improved prediction intervals, and then the associated calibration regions,
perform uniformly better than those based on the estimative procedure. In particular,

Table 3. Coverage probabilities, with estimated standard errors, for a-level calibration intervals
based on (randomized) prediction limits. Simulations from the Poisson model with d = 1,
g(p) = log(u) and w = 0.15. Covariates  between 1 and 10 and (a) zp41 = 5.5, (b) Tp41 = 7.5,
(¢) n+1 = 9.5. Estimation based on 10,000 replications of samples of size n = 10.

Prediction a=0.9 a=0.95 a = 0.99
Limit (a) (b) (c) (a) (b) (c) (a) (b) (c)
Estimative 0.837 0.872 0.853 0.863 0.913 0915 0.885 0.948 0.970
0.004 0.003 0.003 0.003 0.003 0.002 0.003 0.002 0.002

Improved  0.844 0.889 0.889 0.868 0.922 0.941 0.886 0.952 0.974
0.004 0.003 0.003 0.003 0.003 0.002 0.003 0.002 0.002
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the improvement is evident for the more problematic situations when z,4+; = 7.5 or
Tnyl = 9.5.

Appendix: Results on orthogonal polynomials

A1 Normal distribution

Let us assume that the random variable Z follows a N(u,0?) distribution with
density p(z;u,0). The properties of Hermite polynomials (see Barndorff-Nielsen and
Cox (1989), §1.6) assure that

(A1) f " (= wop(u; 4, 0)du = —op(z; 1, 0),
(A2) / T (= w0 = V(s p,0)du = —(z — wp(zi 1, o).

A2 Gamma distribution

Let us assume that the random variable Z follows a Ga(v, ¢) distribution, which
can be viewed as a reproductive exponential dispersion model with u = v¢, V(i) = u2,
6 = —1/u, 0 = 1/v and K(0) = —log(—6). Let p(z;u,0) denote the corresponding
density function. The properties of Laguerre polynomials (see Barndorfi-Nielsen and
Cox (1989), §1.6) assures that

(A.3) /0 z(u — w) (o) p(u; p, 0)du = —o2p(2; p, 0),
(A1) [t om - 2w - — Dot o)
= —z{(z — wu~! - o*}p(z; 1, 9).

A.3 Poisson distribution

Let us assume that the random variable Z follows a Po(y) distribution and that
p(z; 1) denotes the corresponding probability function. It is easy to verify the following
results on the first and the second order differences

PV (zm) = p(z; 1) — p(z — Lip) = —p(2; ) By (2, 1) /B, 2 € NN,
PA (2 1) = pV(z; 1) — V(2 - 1) = p(2; ) Ba(z3 1) /11, 2 € NN,

with the convention that p(z;p) = 0 for z ¢ IN. Here, B;i(z; 1) and Ba(z; u) correspond
to (4.5), with p substituted for p,41. From the above relations, since

z z
> o Owp) =pzp), Y pP(wp) =pV(zn), zeN,
u=0

u=0

.we obtain

(A.5) > p(u; 1) By (u; 1) = —/ip(2; 1),
u=0

(A.6) > p(u; ) Ba(us ) = — (2 — w)p(z; 1)-
=0
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