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Abst rac t .  In this paper, an estimation theory in partial linear model is devel- 
oped when there is measurement error in the response and when validation data a r e  

available. A semiparametric method with the primary data is used to define two 
estimators for both the regression parameter and the nonparametric part using the 
least squares criterion with the help of validation data. The proposed estimators of 
the parameter are proved to be strongly consistent and asymptotically normal, and 
the estimators of the nonparametric part are also proved to be strongly consistent 
and weakly consistent with an optimal convergent rate. Then, the two estimators of 
the parameter are compared based on their empirical performances. 

Key words and phrases: Partial linear model, validation data, strong consistency, 
asymptotic normality. 

1. Introduction 

In many research settings, the exact measurement of some important  variables is 
difficult, time consuming, or expensive, and can only be performed for a few items in 
a large scale study. Hence surrogate data, which are more easily obtained using some 
relatively simple measuring methods, are used to measure these variables of interest. For 
example, in the evaluation of smoking behavior, current smoking behavior is generally 
collected by self-report using questionnaires. Data obtained by self-report are relatively 
inexpensive to obtain but  may be subject to error. Expensive chemical analysis of saliva 
samples for the presence of contine can only be performed for at most a small subset 
of subjects enrolled in these large scale studies to yield a more accurate evaluation of 
smoking behavior. Analogous examples can be found in Wittes et al. (1989), Duncan 
and Hill (1985) and Pepe (1992) among others. Here, self-report of smoking behavior is 
used as a surrogate. The exact measurements obtained by expensive chemical analysis 
of saliva sample for a small subset of subjects together with their surrogate observations 
are usually treated as validation data set. 

Generally, the relationship between the surrogate variables and the true variables 
can be rather complicated compared to the classical additive error model usually assumed 
(see, e.g., Fuller (1987)). In this case, some statisticians developed statistical inference 
techniques based on surrogate data and validation observations without specifying any 
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error structure and the distribution assumption of the true variable given the surrogate 
variable (See, for example, Stefanski and Carroll (1987), Carroll and Wand (1991), Pepe 
and Fleming (1991), Pepe (1992), Pepe et al. (1994), Reilly and Pepe (1995), Sepanski 
and Lee (1995), and Wang (1999) and Wang and Rao (2002) among others). Carroll and 
Wand (1991) developed a semiparametric approach using the kernel regression technique 
for logistic measurement error models. Sepanski and Lee (1995) applied the method to 
nonlinear parametric model with error. Wang (1999) extended it to partial linear models 
with covariates measured erroneously. Also, Liang et al. (1999) considered the same 
problem under the additive error model. 

The partial linear model is given by 

(1.1) Y = X r ~  + g ( T )  + e, 

where Y is a scalar response variable, X is a p-variate explanatory variable, X r is its 
transpose, T is a random variable taking values in [0, 1], fl is a p x 1 column vector of 
regression parameters, g(.) is an unknown regression function on [0, 1], e is a random 
statistical error, and given X and T the errors e = Y - X r ~  - g ( T )  are assumed to be 
independent and identically distributed. 

Such semiparametric additive models have been widely studied when X, T and 
Y are measured exactly. Various estimators for ~ and g(-) have been proposed using 
various parametric and nonparametric methods such as the polynomial method (see, e.g., 
Heckman (1986), Rice (1986)), kernel method (see, e.g., Speckman (1988)), projection 
method (see, e.g., Chen (1988)) and nearest neighbor method (see, e.g., Song (1991)). 
The estimation problem of f~ and g(-) when Y may be censored randomly on the right 
is considered by Wang (1996, 1997). It is well known that such censorship may occur in 
survival analysis, medical follow up and reliability studies. 

In the present paper, we consider model (1.1) when Y is measured with error and 
both explanatory variable X and T are measured exactly. That  is, instead of the true Y, 
a surrogate variable Y is observed. If the measurement error in the response is additive, 
the problem obviously reduces to the standard partially linear model and hence can 
be handled with standard methodology. Motivated by the above example and those in 
Duncan and Hill (1985) and Wittes et al. (1989), we consider the setting where some 
validation data are available to relate Y and Y and no error equation or distribution 
assumption of Y given Y is specified. In this case, estimators of both j3 and g(-) are 
developed by using the kernel method and least squares method (see, e.g. Speckman 
(1988)) with the Y/, that would have been used if measured exactly, replaced by a 
kernel regression estimate of ElY/ ] ~ ,  Xi, Ti] based on validation data. We define two 
estimators of f~ and g(.) by two different ways of using data. For the definition of the first 
estimators, the least squares method uses only primary data except the use of validation 
data in the estimation of E[Yi I ~ ,  Xi, Ti], where primary data include the surrogate 
data and the corresponding observations of T and X. For the second estimators, the 
least squares method uses not only the primary data but also the true observations in 
the validation data set. 

Asymptotic results for the two estimators are derived, showing that the two proposed 
estimators of ~ are strongly consistent and asymptotically normal, and two estimators 
for g(.) are also strongly consistent and weakly consistent with an optimal convergent 
rate. 

This paper is organized as follows. We define the two estimators of ~ and g(-) in 
Section 2. The asymptotic results are formulated in Sections 3 and 4. In Section 5, 
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we compare the two estimators of ~ based on the theoretical framework as laid out in 
Sections 3 and 4. A simulation study is also carried out to compare them in Section 5. 
The proofs of the main results are presented in the Appendix. 

2. Estimation 

In what follows, assume that we have a primary data set containing independent 
~ n+N and identically distributed observations of { (Yj, X5, T 5)j=n+l } and a validation data set 

containing n indepedent and identically distributed observations of { (~ ,  Y~, X~, Ti)L1 }. 
Also, it is assumed that the primary variables are independent of the validation variables 
and the random vector (9 ,  X, T) in the primary data set and the one in the validation 
data set are identically distributed. 

As in Carroll and Wand (1991), Pepe (1992) and Sepanski and Lee (1995) among 
others, measurements of the true response variables in the validation data set do not de- 
pend on Y, X, T. This is different from the case considered by Carroll et al. (1995) where 
true variables are observed with some probability zr which depends the observations of 
other relevant variables. 

Since we do not make any assumptions on the relation between Y and Y, the 
estimation problem of/3 and g (-) in model  (1.1) can not be handled directly with standard 
methodology. To use the surrogate data Y, it is necessary to rewrite the model (1.1) such 
that Y is related to X and T. For any matrix or vector A, denote by A* its transpose. 
Let Z = (]~, X, T). Then the model (1.1) can be rewritten as 

(2.1) E[Y I Z] = XT fl + g(T) + e 

= e -  ( Y -  E l Y  I Z]) 

Clearly, (2.1) is equivalent to model (1.1). Hence, statistical inference of/3 andg(-)  can 
be based on (2.1) instead of (1.1). Let u(Z) = E l Y  I Z]. Indeed, the relation of Y, X and 
T is established in (2.1), but  u(z) is an unknown regression function. Hence, the model 
(2.1) can not be applied directly to get the estimators of t3 and g(-) yet. If u(Z) = a r Z  
is assumed, validation data set can be used to estimate parameter a and hence u(.) 
by least squares method. The results, however, can be sensitive to the specification of 
u(z). Hence, here we do not assume any parametric structure. We use validation data  to 
estimate u(z) by the kernel regression estimation procedure. Hence, the semiparametric 
method due to Carroll and Wand (1991) and Sepanski and Lee (1995) can be extended 
to the model considered here to define the first estimators for/3 and g(.). 

By using the validation data, the regression function u(z) in (2.1) can be estimated 
by a nonparametric kernel regression of Y on Z = z. That  is, the estimator of u(Z) can 
be defined as 

(2.2) r  = 
\ b n )  

EiL1K1 ( Z  i - Z~  
\ b . }  

for any z E 2 ,  where 2 is the support set of Z, K1 (-) is a p+2  dimensional kernel function 
and bn a bandwidth tending to zero. It is well known that the choice of kernel-based 
method is common and natural to estimate regression. Other methods for regression 



24 QI-HUA WANG 

estimation include the piece-wise constant smooth method, the method of smoothing 
spline, the orthogonal series approach and the local polynomial method. Local linear 
estimate, or more generally, local polynomial estimate, which was studied by Stone 
(1982), is known to have some favorable properties compared to the kernel method. 
Hence, kernel weighted local polynomial regression may be a better alternative in some 
sense. But, we will still use the kernel-based method here because it is simple and has 
desirable properties. 

By (2.1), we have u ( Z )  - X~'/3 = 9 ( T )  + ~. If/3 were known, 9(') could then be 
estimated by the Nadaraya-Watson (N-W) kernel technique with u(.) replaced by fin(')- 
Let 

W N j ( t )  -= 

j = n + l / ( 2  

where /(2(.) is also a kernel function and h N  a bandwidth tending to zero. Using the 
above kernel method, we can define the first step estimator of g(') as follows: 

n+N n+N 

(2.3) griN(t) :----griN(t,~3)---- E W N j ( t ) f n ( Z J ) -  E W N j ( t ) X ; / 3  
j=n+l  j=n+l  

:---- Ol,N(t)  -- O~,N(t)/3. 

Again by (2.1), we get u ( Z )  - X5 /3  - g ( T )  = e. Hence, the first estimator of/3 is defined 
to be the one which minimizes S(/3) given by 

n+N 
1 ^~ 2 

(2.4 / S(/31 ---- ~ E (un (Z j )  - X f  /3 - ~I ,N(Tj)  + g2,N(Tj) /3)  . 
j=n+l 

That  is, the estimator, say ~, minimizing (2.4) is the solution to the equation 

(2.5) 
1 n+N 

E [(Xg - 0 2 , N ( T j ) I ( a n ( Z j )  - gl,N(Tj) -- (Xj - 02,N(Tjl)r/3)] 
j=n+l 

By solving (2.5), it is easy to obtain that 

(2.6) 

= 0 .  

where 

n+N 
1 

= -N E ( X k  -- 0 2 , y ( T k ) ) ( X k  -- 02 ,N(Tk))  ~-, 
k=n+l 

l nTN 
= -N E ( X k  -- ~ 2 , N ( T k ) ) ( f n ( Z k )  -- (h ,N(Tk) ) .  

k=n+l 

By (2.3) and (2.6), we then obtain the first estimator of g(.) as follows 

(2.7) g(t) gl ,N(t)  ^T ^ = -- g2,N(t)/3. 
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The above method first uses validation data  to estimate u ( z ) .  Then, only the 
primary data  are employed to define the estimator of /3  based on the least squares 
criterion after the one step estimator of 9(.) is obtained. Such an approach uses the true 
observations on Y only by the estimator of u( z ) .  The following procedure gives another 
alternative. Noff only the validation data set is used in the estimation of u(.) but also 
the exact data in the validation data  set together with primary data  are used to define 
the estimator of ~ with the least squares method. 

Let 

w;~(t) = 
F~i=l K* 
n 

o;.(t) = ~ wg~(t)Y~, 
i = l  

n 

O~.(t) = ~ w;~(t)x~. 
i=1  

The second estimator of/3 is defined to be the one which minimizes S* (/3) given by 

(2.8) 
1 n+N 

S*(~) = -N E (un(ZJ) -- X ; ~  -- [I1,N(Tj) --k O~,N(Tj)~) 2 
j = n + l  

1 n r ^*~ 2 
+ - -  E ( Y i  - X i  ~ - O;,,~(Ti) + g2,n(Ti)~)  �9 

n 
i=1  

Similar to (2.6), it is obtained from (2.8) that the alternative estimator of 

(2.9) f}* = E*-aA*, 

where 

~ .  _ 1 n-t-N 
N E ( X k  - [~2,N(Tk))(Xk - ~2,g(Tk)) r 

k=n+l 

• ^ . *  

+ -  ~ ( x ,  - a , A r d ) ( x ,  - O~, . (TdY, 
n i=l 

1 n+N 
A* : - -  E ( X k  - O2,N(Tk)) (z tn(Zk)  -- [?I,N(Tk)) 

N 
k = n + l  

1 
+ -  ~ ( x ~  - 0~,n(Td)(Y~ - 0~,~(T~)). 

n 
i=1  

(2.3) and (2.9) together then yield the second estimator of g(-) given by 

( 2 . 1 0 )  {~*(t) {71,N(t) ^r ^, = - -  g 2 , u ( t ) Z  �9 
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Remark 2.1. If one deletes the first term of the right hand side in (2.8) and obtains 
the estimator of fl by minimizing the second term of (2.8) only, the estimators of fl and 
g(-) are defined without using surrogate data. Intuitively, this will result in loss of 
some information. To make up for the loss of accuracy, one can instead increase n, the 
number of the observations of the exact data  which are, however, expensive and difficult 
to obtain. Hence, this procedure is impractical though simple. 

3. Asymptotic properties for/~ and ~(t) 

The following Theorem 3.1 states the consistency of/3 and ~(t). 

THEOREM 3.1. Suppose that all the assumptions listed in the Appendix A hold 
h* except [K*] and[ ~], then 

(3.1) ~ a.,.>/3. 

Furthermore, if  supzez  E[Ya l Z = z] < oc, then 

(3.2) g( t )  a.s.) g( t )  

for  any t r [0, 1]. 

Let :D m be the class of all continuous function f on R p+2 such that  the derivatives 

0~1 0~ 0ip+~ 
(~V;' C~V~ 2 "'" OVp7 ~ I ( v l '  " " " ' vp+2) 

are uniformly bounded for 0 < il + i2 + . . .  + ip+2 <_ m. 
The following Theorem 3.2 states the asymptotic normality of/~ and gives the con- 

vergent rate of ~(t). 

THEOREM 3.2. Under all the assumptions listed in the Appendix B except [h~y, / f  
assumptions [X], [u], [Z]ii, [Ki]ii, [hN] and [in] listed in the Appendix A are satisfied, 
we have 

x /N(~  - 13) ~ Y(O, V), (3.3) 

and 

(3.4) 3/2 --1 ~(t) - g(t) = O p ( ( N h  N ) ) -4- O p ( ( i h N )  -1 /2)  A- O ( h N )  A- O p ( i  -1 /2)  

for any t E [0, 1], where 

V = E-1VI (E-1 )  ~, 

Vl = E[(?.t(Z) - X~'~ - -  g ( T ) ) 2 ( X  - E[X [ T])(X - E[X [ T]y] 
+ AE[(Y- E[Y[ Z])2(X- E[X [T])(X- E[X [T])r], 

E = E l ( X -  E[X [ T ] ) ( X -  E[X IT]) T] 

and A is defined in Assumption [Nn]'. 
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Remark 3.1. The first component in the asymptotic covariance of/~ is the amount 
of information in the sample by modeling (1.1) as the regression relationship between 
u(Z)  and X, T. The second component is the extra dispersion caused by the nonpara- 
metric regression estimation of the unknown mean of Y given Z using the validation 
data set. 

Remark 3.2. The asymptotic covariance of f~ can be estimated consistently by 

v~r = ~ - - l [ h  I _~_ X 2 ] ( ~ - l ) - r ,  

where E is that defined in Section 2 and 

n + N  
1 ^ T -~1 = ~ E [(fi~(Zk) - X[r - O~(Tk))2(Xk - Ou,n(Tk))(Xk -- g2,N( k)) ] 

k=n+l  
n 

s  : _A E [ ( y  / _ 0 1 n ( Z i ) ) 2 ( X i  _ g 2 , N ( T i ) ) ( X i  - -  [ ? 2 , N ( T i ) ) r ] .  
n i=1 

COROLLARY 3.1. 
have 

Under all the assumptions of Theorem 3.2, i f  hN = N -1/3 we 

~( t )  - g ( t )  = O , ( N - ' / 3 ) .  

Remark 3.3. The convergent rate is the same as the optimal convergent rate for the 
corresponding nonparametric estimator of regression function (See, e.g. Stone (1980)). 

4. Asymptotic properties for ~* and [l*(t) 

We show in this section that ~* and ~*(t) have the same asymptotic properties 
similar to/3 and ~(t). 

THEOREM 4.1. 

(4.1) 

and 
(4.2) 

for  any t C [0, 1]. 

Under the assumptions of Theorem 3.1 and [K*] and [h*], we have 

8" o.8.> 

~*(t) a~  g(t) 

THEOREM 4.2.  

(4.3) 

and 

(4.4) 

Under the assumptions of Theorem 3.2 and [K*] and [h* 1' we have t n l  

v~(~*  - ~) s N(o, V*), 

3/2 --1 t*(t) - g(t) = Op((Nhu ) ) + OA(NhN)-I/~)  + O(hN) + Op(N -~/2) 



28 QI-HUA WANG 

for any t E [0, 1], where 

V* = ( ~ - ] * ) - I v ~ ( E * ) - r ,  

Y~ = E[(u(Z) - X~t3 - 9(T))2(X - E[X  ] T])(X - E[X I T]) ~] 

+ I { E [ ( Y -  E[Y I Z])2( X - E[X  I T ] ) ( X -  E[X IT]) ~] 

+ E[(Y - X~t3 - g(T))2(X - E[X  I T])(X - E[X I T]) ~] 

+ 2E[(Y - E l Y  I Z])(Y - X~/3 - g (T) ) (X  - E[X I T])(X - E[X I T])*]}, 

E* = 2E[(X - E[X I T])(X - E[X I T]Y. 

COROLLARY 4.1.  
have 

Under all the assumptions of Theorem 4.2, if hN -~ N -1/3 we 

[l*(t)  -- g ( t )  : O p ( i - i / 3 ) .  

Remark 4.1. It is intuitive that  Y, X and T have useful information in predicting 
the unknown Y. Therefore, it is assumed that besides Y and l~, X and T are also 
measured in the validation data set. Without  observations on X, T in the validation 
data  set, one might define the estimators of/3 and g(.) by rewriting the model (1.1) as 

{ u ( ? )  = + g ( T )  + E', 

(4.5) e' =- e - (Y - u(Y)), 

u(Y) = E[Y I Y]. 

If so, it is perhaps necessary to add the assumption E[Y ] Z] = E[Y I l~] to the 
corresponding theorems in Sections 3 and 4 in order to get the above asymptotic results 
for these estimators. Indeed, this can be seen by noticing that E[Y I Z] = E[Y t ~z] 
and (C.e)i together imply that E[e' I Z] -- 0, which is just needed in the proof of these 
results. 

Remark 4.2. It is noted that the asymptotic covariances of ~ and ~* decrease if A 
decreases. 

5. Simulation results 

In this section, a simulation study was carried out to compare the two proposed 
estimators of/3 with two naive estimator/3N~i~e,x and ~Na~ve,2 which are defined to be 
/3 and/~*, respectively, with Un (Zk) replaced by ]~k for k = n + 1, n + 2 , . . . ,  n + N. 

We considered the partly linear model Y = X ~  + g(T) + e, where/3 = 1.50, g(t) = 
3.2t 2 if t G [0, 1], g(t) = 0 otherwise. It is assumed that X and e have a standard 
normal distribution and T follows an uniform distribution on [0,1]. When Y is subject to 
measurement error, validation data and primary data contain (Y, X, T) and (Y, Y, X, T), 
and 1~ were generated by Y = 1.12Y 2 + 0.85u, where u follows a standard normal 
distribution, and u is independent of e. The simulation were run with validation data  
and primary data sizes of (n, N)  -- (30, 150), (60, 300), (60,150), (120,300), (30,600) and 
(60, 1200), respectively. In the simulation study, bn, hN and h* were taken to be n -1/4, 
N -1/2 and n -1/~, and the kernel 

15 2 9 
K l ( X ) =  - - ~ x  + ~ ,  - 1 < x < 1  

0, otherwise 
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T a b l e l .  A = 5 .  

(n, N)  

(30, 150) (60, 300) 

Estimate(fl)  Bias SD Bias SD 

~Naive,1 --1.0275 2.4148 --0.9823 2.0316 

flNaive,2 --1.1651 1.9571 --1.1262 1.5852 

0.1097 1.4021 0.0984 1.0721 

~* 0.1109 1.0428 0.0995 0.7305 

29 

Table 2. A = 2.5. 

(n, N)  

(60, 150) (12o, 3oo) 
Estimate(fl)  Bias SD Bias SD 

~Naive,1 --1.1210 2.1027 --1.0011 1.6542 

~Naive,2 --1.1081 1.7034 --1.1732 1.2731 

0.0995 1.1527 0.0471 0.7648 

~* 0.0977 0.8023 0.0615 0.5262 

Table 3. ), = 20. 

(n, N)  

(30, 600) (60, 1200) 

Est imate(~)  Bias SD Bias SD 

~Naive,1 
~Naive,2 

-1.2117 1.7820 -1.2841 0.1363 

-1.3024 1.5827 -1.3245 0.8577 

0.1073 0.8758 0.0577 0.5129 

0.1088 0.8243 0.0595 0.4317 

of order m = 4 and the kernel 

15 
7 (1 - 2x  2 + x4) ,  - 1  < x < 1 K2(x) 
O, otherwise 

were used to calculate un(.) and the weight WNj(t) ,  j = n-~ 1 , . . .  ,n  n u N ,  respectively. 
For calculating W*i(t), 1 = 1,2, . . .  ,n,  g*(x )  were taken to be same as K2(x). The 
simulation results are presented in following Tables 1, 2 and 3 to compare the bias and 
standard deviation (SD) of ~ and ~* with ~Naive,1 and ~Na~ve,2. The bias and variance 
are computed from 1000 simulated data sets of each size (n, N). That  is, 1000 estimates 
were computed to yield the results in the tables. 

From the simulation results, the two naive estimators have serious bias and bigger 
SD than the two proposed estimators. Comparing the two proposed estimators, they 
have approximately the same bias but different standard deviation. /~* behaves better 
than f) in the sense of less standard deviation. But, it seems that  the performances of 
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the est imators are close to each other  when n, N and A are large enough. Hence, it is 
also appropria te  to use/~ for practical purposes because it is simpler than fl* and it also 
has little bias. 

On the other  hand, the simulation s tudy  illustrates that  the change of size of vali- 
dat ion set yields bigger effect on the proposed est imators  than  tha t  of the surrogate set 
in terms of bias and SD. 

6. Concluding remarks 

It is noted tha t  the dimension of Z -- (1), X,  T) is p + 2. When  p is large, the curse 
of dimensionality may  occur because of the kernel es t imat ion of u(z) -- E [ Y  [ Z = z]. 
For this case, one solution is to consider this dimension reduct ion model  by assuming 
u(z) = m(arz ) ,  where a is a (p + 2) x 1 vector of unknown parameter  and m(-) is an 
unknown function. Actually, this assumed model  is a single index model,  and hence 
can be expected to apply in a wide variety of situation. To est imate  u(z),  one can first 
est imate a by sliced inverse regression techniques due to Li (1991), and then est imate 
m(-) by the kernel regression technique with univariate explanatory variable. After 
obtaining the est imator  of u(z),  we can develop the est imate  theory for fl and g(-) 
and obtain the results similar to those obta ined in previous sections. The  asymptot ic  
inference theory in this set t ing is worth further investigating. 

Appendix A: Proofs of Theorems 3.1 and 4.1 

To prove Theorems 3.1 and 4.1, we first introduce the following notations,  assump- 
tions and present severM lemmas. 

Let gl(t) = E[u(Z)  I T = t], g2(t) = E [ X  I T  = t]. Denote  by g2r(') and X ~  the 
r - th  component  of g2(') and Xi, i = 1, 2 , . . . ,  n; r = 1, 2 , . . .  ,p. Let Ila - bll = ~ lai - bil 
for any vectors a and b, where as and bi are the i- th component  of a and b, respectively. 

The  following assumptions are needed for the strong consistency of fl and O(t). 
[g]: gl( t) ,  g2r(t) and g(t) satisfy Lipschitz condit ion of order 1, r = 1 , 2 , . . .  ,p. 
[r]: The density of T, say r(t), exists and satisfies 

0 <  inf r(t) < sup r(t) <co .  
O < t < l  - -  o < t < l  

[X]: suptE[X41r I T  = t] < oo, r = 1 , 2 , . . . , p .  
[u]: There exists absolute  constant  Co such tha t  

l u ( z l )  - u ( z 2 ) l  <  ollZl - z2 t l .  

[Z]i: The densi ty of Z, say f z ( z ) ,  exists and satisfies 

oo 

N P ( f z ( Z )  < ?~N) < (X) 

N = I  

for some positive constant  sequence 7/N > 0 tending to zero. 
ii: f z ( z )  has bounded  part ial  derivative of order one. 

[e]i: E[e I X ,  T] = O, 
ii: SUpzezE[e  2 [ Z = z] < c~, 

[Y]: SUpzcz E l Y  2 [ Z = z] < oo for some 5 > 0. 
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[K1]i: 
ii: 

111: 

[K~]: 

KI( ')  is a bounded kernel function with bounded support. 
K1 (.) is a kernel of order one . 
]K1 (')1 is of bounded variation. 
There exists absolute constants M1, M2 and p > 0 such that  

MlI [ I t l  <_ p] <_ K2(t) < M2Z[ltl <_ p]. 

[hN]i: 

ii: 
[Nn]: 

[hNbn]: 

E N = I  N - l h N  < oc. 

For ~N appearing in [Zli, ~ = ~ ( n ~ N h ~ 2 )  -2 < ~ .  
N = 0(1). 
n 

b~+2 0(1). hN -- 
The above assumptions are needed for the proof of Theorem 3.1. 

rem 4.1, we futher assume the following conditions. 
[K*]: There exists absolute constants M{, M~ and p* > 0 such that 

To prove Theo- 

M{I[ I t l  <_ p*]  _ K*(t )  < M; I [ I t l  <_ p* ] .  

[h~]:  )-~n~__l n - l h  * < c~  a n d  o0 2 �9 - 1  E ~ = l ( n  h~) < ~ .  

Remark A.1. Assumption [Z]i is clearly satisfied when inf~ez f z ( z )  = ~/and ~N 
is taken to be 177 for some ~ > 0. Assumption [Z]i also holds if (Y, X) follows p + 1- 
dimensional standard normal distribution, T follows uniform distribution on [0, 1] and 

1 Analogously, we also can give some examples for the /IN is taken to be N2/(p+I)log2N" 
assumption [Z]'i listed in the Appendix B. 

LEMMA A.1. Under assumptions [r] and [K2], we have as N h N  --~ o0 
(a) E[WNj(Ti)] ~ <_ c(N~hN) -1, "7 = 2,4; i, j -- n +  1, . . .  , n + N .  
(b) E[Wyy(t)] "r ~ c (N~hg)  -1, 3' = 2,4; j ---- n + 1 , . . . , n  + N. 

The Lemma is proved by Qin (1995) and Wang (1996). 

LEMMA A.2. Under conditions [g], [K2], [r] and [X], we have 

a.% E. 

The proof is similar to that of Hong (1991). 
For the sake of simplicity, let us denote by c any positive constant. 

PROOF OF THEOREM 3.1. Clearly 

(A.1) 

where E is as defined in Section 2, and 

1 
n+N 

- -  - -  - -  ^ T ~  T E (Xk ~12,N(Tk))[~tn(Zk) gl,N(Tk) (Xk- -g2 ,N(k) )  ~]. 
k : n + l  
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To prove Theorem 3.1 by Lemma A.2, it is sufficient to prove that  

(A.2) .4(/3) ~% 0. 

For simplicity, we next denote Y]~k and ~ k , j  to be the summations on k and on k 
and j ,  respectively, extending over the integers from n +  1 to n +  N. Analogious definition 
also applies to ~-~d" From (2.1), A(fl) can be decomposed as: 

(A.3) fi~(fl) = 1 E ( X k  _ O2,N(Tk))(~tn(Zk ) __ lt(Zk) ) 
k 

1 
+-~ ~-~(Xk -- 02,N(Tk))ek 

k 
1 

+-~ Z ( Xk - 02,N(Tk ) )(g(Tk ) - E WNj(Tk )(u( Zj ) - X ;  /~) ) 
a j 

1 Z ( X k  _ 02,N(Tk)) E WNj(Tkl(Ctn(ZJ) -- u(Zj)) 
N k j 

:= AN,1 + AN,2 4- AN,3 -'b AN,4. 

a.s.) 
To prove (A.2), it is sufficient to prove AN,i 0, i = 1,2, 3, 4, by (A.3). We prove 
only the case: i = 1. The proofs of the other three cases are much easier and hence are 
omitted. 

Next, We consider AN,1. Recalling the definition of 02,g('), it follows that 

1 
(A.4) AN,1 = --~ E Wlvj(Tk)(E[Xj I Tj] - Xj)(Cz.(Zk) - u(Zk)) 

k,j 
1 

+-N E WNj(Tk)(g2(T~) - g2(Tj))(itn(Zk) - u(Zk)) 
k,j 

1 
+-~ Z ( X k  -- E[Xk I Tk])(~,(Zk) - u(Zk)) 

k 
: :  AN,11 -k- AN,12 -'[- AN,13. 

By the definition of ~ ( . ) ,  AN,11 can be represented as 

(A.5) AN,11-  
1 

nNbPn+2 E WNj(Tk)(E[Xj I Tj] - Xj)  
k,j 

• - - 

1 
-~ nYbP+2 E W N j ( T k ) ( E [ X j  IT  j ] -  Xj)  

k,j 

Ein=l(U(Zi) - u (Zk ) )K l  ( Z i - Z k )  

• ]z(Zk) I /n(Zk) >_ fz(Zk)  >_ lrlN 
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1 
+ ~  Z WNj(Tk)(E[Xj I Tj] - Xj)(Cz,(Zk) - u(Zk)) 

k,j 

1 
+ N Z WNj(Tk)(E[Xj [ Tj] - Xj)(Czn(Zk) -- u(Zk)) 

k,j 

• < rlul 
A a ( 1 )  A (2) ..}- A (3) A_ A (4) 
= "~N,11 -~- N,11 " ' N , 1 1  - - ~ * N , 1 1 "  

Denote by A [~'rl the r - th  component  of A (~) i = 1,2,3,4.  By conditions [Y] [Z]i, N,11 N,11,  , 
[K1]i, [g], [K2], IX] and [hNbn] together  with Lemma A.1, we have 

(A.6) E[A[1,rl 12 <_ n 
t--N,11J g(nbPn+2)2r/~ E E { W 2 j ( T k ) E [ ( X j r  - E[Xjr I T  j]) 2 I T  j]} 

k,j 

c(nb(n3 /2)(p+ 2)rIN ) -2  . 

Using conditions [hN]ii, INn] and [hNb~l, we get 

(A.7) A~;~ a.s. 0, r : 1 ,2 , . . .  ,p. 

From [u], [K1]i and [Z]i, we have 

A[2,r] N,11 <~ - -  ~NN ~k 

• 

Wm(Tk)(E[XjT I TA - x jr)  

TtbPn q-2 E i L 1  b-n b n  

fn(Zk) 

<_ ~Ngbp+l WNj(Tk)(E[Xj~ I T  jr - , r = 1 , 2 , . . .  ,p. 

By [X], [Z]i, [K1]i, [hNbn] and Lemma  A.1, similar to (A.6) it follows 

2 5 4 --I  ( A . 8 )  E I A [ 2 , r ]  ]4 <: c ( N  hN~IN ) , r = 1,2, ,p. ["*',N,11J - -  " " " 

By condition [hN]ii, we get 

(A.9) 

For any e > 0, we have 

P(IA{~:I] [ > e) <_ Z P ([]z(Zk) - fz(Zk)[ 
k \ 

A [ 2 , r ]  a.s. .. 
Y, ll O, r ---- 1,2, . ,p .  

1) 
> ~ / U  _ cbn 2p+1 exp{--cnr/NbP~ +2} 
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by [Z]i. By  condit ion [Nn] a nd  2n~176 nb~ 2p+l exp{--cn•NbPn +2 } < oc (this is implied by 
[hg]ii, [Nn] and [hgbn], and Borel-Cantelli 's Lemma),  it follows that  

(A.10) A[a,r] a.s.) .. N,11 0, r = 1,2, . ,p .  

Clearly, for any e > 0 we have 

i / n + N  ) 

P(]A[~',~]I] > e) <_ P ( U { fz (Zk)  < ~TN} <-- N P ( f z ( Z )  < rig). 
\ k = n + l  

This together  with [Zli proves y]~ 1P(IA[~:~I> e) < o0. By Borel-Cantelli 's  Lemma,  
we have 
(A.11) at4,r] a.s. .. "~N,11 0, r = 1,2, . ,p .  

Combining (A.5), (A.7), (A.9), (A.10) and (A.11), it follows that  Ag ,n  and similarly 

Ag, li,i = 2, 3, converge to zero almost surelY. This proves AN,1 ~'% O. 
The proofs of (A.2) and hence (3.1) are completed by Lemma A.2. 
Next,  we prove (3.2). Clearly 

(A.12) ~(t) - 9(t) = gl,N(t)  -- gl( t)  -- (O~,N(t) -- g~(t))3 + g~(t)(3 -- 13). 

Standard  arguments  can be  used to prove gl,N(t) a.s.) gl(t)  and ~2,N(t) a.s.) g2(t). This 
together  with (3.1) proves (3.2). 

The proof  of Theorem 3.1 is thus completed.  Similarly, we can prove Theorem 4.1. 

Appendix B: Proofs of Theorems 3.2 and 4.2 

To prove the asymptot ic  normali ty of /3  and obta in  the rate of weak consistency, 
the assumption IX] can be  weaken to 

[X]': s u P t E [ X 2 [ T  = t] < oo, r = 1 , 2 , . . . , p .  
And the assumptions [u], [Z], [K~]ii, [hN] and [Nn] can be replaced by 

[u]': For some m > p + 2, u(.) E ~ m .  

[Z]'i: The  densi ty of Z,  say f z (z ) ,  exists and satisfies N P ( f z ( Z )  < 77N) -~ 0 for some 
positive constant  sequence ?~N > 0 tending to zero. 

ii: f z ( z )  C Dm. 
[K1]': K1 is a kernel of order m. 

[hN]' i: Nh 2 ---* oo, 
ii: Nh4N ~ O. 

[Nn]': N n --* A, where A is a nonnegative constant.  
[Z]': E[(X - E[X I T ] ) (X  - E[X IT]) ~ is a positive definite matrix. 

[hNbn]'i: For TIN appearing in (C.Z) ' i ,  ,,2 nt,2(p+2) ' IN  un --'+ Cr 
rib2 m 

ii: hu--k-~u --* 0 for m appearing in [u]'. 

The  above assumptions are for the proof  of Theorem 3.2. For Theorem 4.2, we need 
further assume the following conditions in addit ion to the above assumptions.  

[h*]'i: nh~ ---* oc. 
ii: nh .4 ~ O. 

Let Uk = ( e k , Z k ) , Y i  = (Yi ,Zi) ,k  = 1 , 2 , . . . , n +  N; i  = 1 , 2 , . . . , n .  
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LEMMA B.1. 

where 

Under the conditions of Theorem 3.2, we have 

n+N n 
1 

vYNA(~)  - nvg  ~ E E l'~nl(Uk, y i ;bn) '~  Op(1), 
k=n+l i=1 

kOnl(Uk, Vi;bn) : (Xk -- E[Xk  I Tk])ek 

- E[Xk  ] Tk])(Y/ - U(Zk))Ki  ( Z i  
Zk (x~ 

\ 

~+2i(zk ) 
i = 1 , 2 , . . . , n , k = n + l , . . . , n + N .  

PROOF. Let [(z) 1 n = (%-y-). Then E i = i  Y/K1 Z, - z  

1 ~ ( X k  -- EiXk  ITk])[(Zk) -- ] (Zk)u(Zk)  
(B.1) x / ~ A ( 1 3 ) -  v / ~  k f (Zk )  

1 
+ - ~  ~ ( x k  - E[Xk I Tk])~k 

v ~ "  k 

+v/-NAN,11 + v/-NAN,12 -4- v/-NAN,131 + x /~AN,22 

+x/-NAN,23 + x /NAN,3  + V ~ A N , 4  

where AN, n ,  AN, a2 are defined in (A.4), AN,3 and AN,4 are defined in (A.3) and 

1 ~ Wm(T~)(g2(T~) - g2(Tj))~k AN,22 ---- -~ 
k,j 

1 
AN,23 -- N E W u j ( T k ) ( X J  -- E[X j  t Tjl)s 

k,j 

1 E ( X k  _ E[Xk I Tk])([(Zk) - ] z (Zk )u (Zk ) ) ( f z (Zk )  - ]z(Zk))  
AN,131 -- V ~  k f z ( Z k ) ] Z ( Z k )  

Recalling the definitions of [(.) and ](.), the sum of the first two terms in (B.1) is 
clearly the main term of the asymptotic representation in Lemma B.1. Hence, to prove 
Lemma B.1, it is sufficient to prove that  the last seven terms on the right hand side of 
(B.1) converge to zero in probability. Using the analogous arguments to treat AN, n in 

the Appendix A, we can prove V ~ A N ,  I31 p 0. Next, we prove v/-NAu, n ~ 0 only. 
The other five terms can be proved to converge to zero similarly. 

Next, let us consider ANAl. 
By (A.6) and conditions [hub,], [hNb,~]'i, it follows that  

(B.2) 

Let 

vfNA[~:I~ P 0, r = 1 ,2 , . . . , p .  

1 .  ( ) 
~n(Zk) -- nbPn+2 E (u(Zi)  - u ( Z k ) ) g  1 Zi - Z k 

i=1 -bn " 
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By [Z]i, we have 

(B.3) 
1 {( 

E(A[~]~])2 <- N71---~N ~k E 2 : W N j ( T k ) ( E [ X j  I T  j ] -  Zj)  
J 

x[E(~n(Zk)-  E[~n(Zk) l Zk])2 + E(E2[~n(Zk) l Zk])], 

a[2,r] 
w h e r e  " * N , 1 1  is defined in (A.5). Notice that  

( B . 4 )  E[~n(Zq) t Zq] : f (U(Zq + b,~u) - u ( Z q ) ) f ( Z q  + b~u)gl(u)du 

1 < ~ < 1  

where Pn(u) is a polynomial of degree k - 1 on u and hence f Pn(u)Kl(u)du = 0 and 
R,(~,  n) is the k-th remainder of the Waylor's expansion and satisfies f Rn(~, u)g(u)du < 

by [K1]'. This proves 

(B.5) IE[(=(Zq) l Zq]l cb , q : n + l , . . . , n  + N ,  

where c is a constant which does not dependent on Zq. 
Clearly, by derivative mean-value Theorem, we have 

(B.6) - E[r I Zk]) 2] 

(::) -< _,.2(?+2) (u(Z) - u(Zk))ZK 2 z -  Zk fz(z)dz 
'I ~U n 

C 
< ----L~ - ~  O. 
- -  T / , b n  

By (B.3)-(B.6) and Lemma A.1 together with [hNbn] t, w e  get 

(B.7) NE(A[~'~]I)2 < c nb2(p~2)7/~ + hg~----~N ~ 0 

which proves that v/-NA[~:]] 1 p O,r = 1 ,2 , . . .  ,p. Similar to (A.10) and (A.11), we can 

prove that v/-NA [i'r] p 0 , r  = 1,2, ,p; i = 3,4. Hence, This together with (A.5) and v - ,  N , 1 1  " ""  

(B.2) proves that V~AN.11 p O. 
The proof of Lemma B.1 is thus completed. 

LEMMA B.2. Under the conditions of Theorem 3.2, we have 

n n+N 1 

i = 1  k=n+l 
~nl(Uk, Vi;bn) ~ N(O, V1) 

where V 1 iS defined in Theorem 3.2. 

PROOF. For any p-dimension vector c~, let 
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Cn(U, V; bn) = o~'r ff2nl (U, V; bn) 
n n T N  

1 
M ' ~ - n - - - - ~ E  E r Vi;b~). 

i=1 k = n + l  

Clearly, Mn is a two sample statistic and 

(B.8) E[r  V; b,~) [ V] ~ a ~ (X - E[X I TI)(Y - ElY  [ Z]). 

Similarly, by [u]' and [KI]', we have 

(B.9) E[r V; b,~) [ U] =- a~-(X - E[X I T])e 

z - Z  

-t 
~+2fz(z) 

d ( x  - E[X I T])~. 

By the first equality in (B.9), we get 

(B.10) E[r  V;b~)] = E{E[r V; b~) [ U]} 
z - Z  

= E  I)+2 b. Yz(z) 

dz 

Similar to (B.5), it follows that 

(B.11) 

dz 

[E[r V; bn)]l _ cb m. 

Hence, by [Nn]' and [hNbn]'ii, we have 

(B.12) x/NECn(U, V; bn) --~ O. 

Lemma B.1 of Sepanski and Lee (1995) together with (B.9), (B.10) and (B.12) proves 
that 

where 

n n + N  1 
nv~ ~ ~ r y~; b.) s N(0, V21 

i : 1  k = n T 1  

V2 = E[(u(z) - X ~  - g(T))2a~(X - E[X I T])(X - E[X I T]) Ca] 

+AE[(Y - ElY  [ Z] )2d (  x - E[X [ T])(X - E[X I T])~a]. 

This proves Lemma B.2. 

PROOF OF THEOREM 3.2. Notice that 

(B.13) x/N(/3 - ~) = vfNy]-I.4(~) ~- v/-N(E -1 _ ~ - 1 ) ~ ( ~ ) .  
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By Lemma B.1 and B.2, it follows that 

(8.14) vZN-4(f~) = Op(1). 

Hence, (B.13) and (B.14) together with Lemmas A.2 and B.1, B.2 prove (3.3). 
In what follows, we prove (3.4). 
Using the analogous arguments as before, we can prove that GN1 = Op ( (Nh~ 2)- 1)+ 

Op((Nhg)-l/2),  GNi = Op((NhN)-l/2), i = 2, 3 and EGNa = O(hN) where GN1, GN2, 
GN3 a n d  GN4 are as defined in (A.15). This together with (A.15) yields that 

3/2 --1 
(8 .15)  gl,N(t) - gl(t) = O p ( ( N h  N ) ) -~ O p ( ( g h g )  -1/2) T O ( h g ) .  

Similarly, we can prove that 

(8 .16)  g2,N(t) -- g2(t) : O p ( ( g h N )  -1/2) + O(hN) .  

The result (3.3) implies that 
(B.17) /~ - / 3  --- Op(N-1/2). 

Formulas (A.14), (8.15)-(B.17) together prove (3.4). 

This completes the proof of Theorem 3.2. Similarly, we can prove Theorem 4.2. 
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