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Abst rac t .  In a Bayesian setup, we consider the problem of predicting a dependent 
variable given an independent variable and past observations on the two variables. 
An asymptotic formula for the relevant posterior predictive density is worked out. 
Considering posterior quantiles and highest predictive density regions, we then char- 
acterize priors that ensure approximate frequentist validity of Bayesian prediction in 
the above setting. Application to regression models is also discussed. 
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i .  Introduction 

The problem of characterizing priors that  ensure approximate frequentist validity 
of Bayesian credible sets has been of substantial recent interest; see, e.g., Ghosh and 
Mukerjee (1998) and Mukerjee and Reid (1999) for review and references. These priors, 
known as probability matching priors, are in a sense noninformative and yield accurate 
frequentist confidence sets; see Tibshirani (1989). In a related development, recently 
Dat ta  et al. (2000) addressed the corresponding problem where interest lies in predicting 
a future observation rather than estimating a parameter. They characterized priors 
ensuring approximate frequentist validity of Bayesian predictive regions obtained via 
consideration of (a) posterior quantiles and (b) highest predictive density (HPD). 

Notwithstanding the previous work in this area including that of Dat ta  et al. (2000), 
an important issue in prediction yet remains to be addressed. This relates to the case 
where each observation involves a dependent variable and an independent variable, both 
possibly vector-valued. Quite commonly, then one has knowledge of both the variables 
in past observations and also of the independent variable in a new observation. Given 
these, the prediction problem involves the dependent variable in the new observation. 
The work of Dat ta  et al. (2000) takes no cognizance of the distinction between such 
dependent and independent variables and hence their results cannot be applied to the 
present problem that can often arise in practice especially in regression settings. 

We consider the above problem of predicting a dependent variable from a Bayesian 
viewpoint. Section 2 gives an asymptotic formula for the relevant posterior predictive 
density. Then Section 3 characterizes priors ensuring approximate frequentist validity of 
Bayesian prediction as considered here in the senses (a) and (b) above. While a shrinkage 
argument employed in Section 3 has been considered previously in other contexts, the 
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final matching conditions in Section 3 are new. Furthermore, they allow applications 
to the practically important regression models that cannot be handled by the existing 
results. These applications covering, in particular, the exponential regression model and 
several varieties of the normal regression model are discussed in Section 4. 

2. Posterior predictive density 

Consider an independent variable X and a dependent variable Y, both possibly 
vector-valued, having a joing density f (x ,y ;O) ,  where the parametric vector ~ = 
(01, . . . ,0v) '  lies in an open subset of R p. Let (Xi,Y~), i > 1, be a sequence of inde- 
pendent and identically distributed observations on (X, Y). The first n of these axe the 
past observations where both X and Y are known while the (n + 1)-th one is a new 
observation where only X is known. We consider Bayesian prediction of Y,+I, based 
on d = {(xi, Yi), 1 < i < n} and Xn+l, using a prior density ~r(.) which is positive and 
thrice continuously differentiable. Here xi and Yi are the realized values of X~ and Y~ 
respectively. Along the line of Ghosh and Mukerjee (1993), we work essentially under 
the assumptions of Johnson (1970) and also need the Edgeworth assumptions of Bickel 
and Ghosh (1990). The per observation Fisher information matrix I =_ I(O) is supposed 
to be positive definite for all 0. All formal expansions for the posterior, as used here, 
are valid for sample points in a set S with P0-probability 1 + o(n-1), uniformly over 
compact sets of 0; cf. Bickel and Ghosh (1990). 

Let l(O) = n -~ ~i~=~ log f ( x i ,  y~; O) and 0 be the maximum likelihood estimator of 
0 based on d. With Dj - O/O~j, let 

aj~ = {DjDTl(O)}o= & ajr~ = {DjD~Dfl(O)}o= & cj~ = -aye,  
7rj(O) = DjTr(O), f j (x ,y ;O)  = Dj f ( x , y ;O) ,  f j~(x,y;O) = DjD~f (x , y ;O) .  

The matrix C = ((cj~)) is positive definite over S. Let C -1 = ((dr)) .  Then, following 
Datta et aL (2000) (see also Komaki (1996)) and using the summation convention, the 
posterior joint density of (X~+I, Yn+l), given d = {(xi, Yi), 1 < i < n}, under the prior 
7r(.), is seen to be 

(2.1) ~(Xn+l,Yn+l I d) 

= f (Xn+l ,  Yn+l ; ~) + l{At(Tr)ft(x,~+l, Y,~+I; O) + c jr f j r (Xn+l ,  Yn+l; ~)} 

+o(n-1) ,  

where 

} (2.2) = c s* #rajTs + 

We now proceed to obtain the posterior predictive density of Yn+l, given d and 
Xn+l. With reference to the density f ( x ,  y; 0), let g(x; O) be the marginal density of X and 
h(y [ x; 0) be the conditional density of Y given X. Then f t (x ,  B; O) = gt(x; O)h(.y [ x; 0)+ 
g(x;O)ht(y [ x;O), where gt(x;0) = Dtg(x;O) and ht(y [ x;O) = Dth(y  l x;O ). Hence, 
f~176 f t (x ,  y; O)dy = gt(x; 0). Similarly, f_c~ f i r (x ,  B; O)dy = gj~(x; 0), where gjr(x; O) = 
DjDrg(x;  0). Then by (2.1), 

F (2.3) ~(Xn+l,Yn+l I d)dyn+l 
oo 
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z g(Xn+l; O) § ~'~-~{At(Tr)gt(Xn-t-1; O) § cjrgjr(Xn+l; 0)} "~- O(n--1) �9 

By (2.1) and(2.3), after some simplification, the posterior predictive density of Yn+~, 
given d and Xn+l, under the prior 7@) is found to be 

( 2 . 4 )  7r*(yn+l I d, x~§ 

//? ~- ~'(Xn+l, Yn+l I d) #(Xn+l, Yn+l [ d)dyn+l 
c o  

cJrbjr(Yn+l 

+o(n-1), 

where 

bjr(yn+l I x .+ l ;  0) = {fjr(x.+l,y.+l; O) - 9jr(x.+l; O)h(y.~+l I Xn-t-1; O)}/g(Xn-t-1; 0). 

3. Probability matching conditions 

3.1 Posterior quantiles 
First suppose the dependent  variable Y is scalar valued so that  posterior quantiles 

of Y~+I, with reference to the predictive density (2.4) are well-defined. For 0 < c~ < 1, let 
o o  q(O, (~, x) be such that  fq(o,a,x) h(y I x; O)dy = (~. Then by (2.4), the (1 - a ) - th  posterior 

predictive quantile of Y~+I, given d and Xn+l, is 

(3.1) Q(a,~) = q(O,o~,Xn+l) T n-lW(Tr), 

where the explicit form of W(Tr), which is at most of order O(1) and can involve c~, d 
and X~+l in adition to 7r(.), will not be needed in the sequel. 

We now characterize priors that  ensure frequentist validity, with margin of error 
o(n-1),  of the posterior quantiles of Yn+l. The shrinkage argument of Ghosh and 
Mukerjee (1993) helps in this regard; see Mukerjee and Reid (2000) for more details 
on why this argument works. We take an auxiliary prior 3(-) satisfying the conditions 
of Bickel and Ghosh (1990) such that  3(.) and its first order partial derivatives vanish 
on the boundaries of a rectangle containing 0. Let P~{. I d, Xn+l } denote the posterior 
probability measure under 3(.). Then by (3.1) and an approximation, analogous to (2.4), 
for posterior predictive density of Yn+l given d and xn+l under s one can check tha t  

( 3 . 2 )  I)~(Yn+l > Q(OL, T') I d , x . + l }  

= + - 
q(~,~,x~+l) 

ht(Yn+l I Xn+l; O)dyn+l + o ( n - 1 )  �9 

We next integrate by parts Eo[P~{Yn+I > Q(c~, 7r) I (x1, Y1) , . . . ,  (Xn, Yn), Xn+l}], as 
computed up to o(n -1) via (3.2) (recall the definition of d), with respect to 3(.) and 
finally allow 3(.) to converge weakly to the degenerate measure at 0. Using (2.2), these 
steps eventually yield 

(3.3) 
1 

Po{Yn+ 1 > Q(~,Tr)} = a nTr(o) Ds{IstVt(O,(~)~r(O)} § 
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where 1-1 = ((I~t)) is the inverse of the information matrix I, and 

(3.4) Vt(O,a) - -Eo  ht(y l X; O)dy . 
(o,~,x) 

In view of (a.a), a prior rr(.) ensures frequentist validity, up to o(n-1);  of the posterior 
quantiles of Yn+l if and only if the condition 

(3.5) D,{I*tVt(e, a)rr(O)} = 0 

holds for every a. 

3.2 HPD regions 
HPD regions for Yn+I are meaningful even when the dependent variable Y is possibly 

vector-valued. For 0 < c~ < 1, let m(0, a,  x) be such that f h(y I x; O)dy = c~, where the 
integral is over H(O,c~,x) = {y : h(y I x;0) _> m(0, c~,x)}. Let Ut(0, a) = E o { f h t ( y  I 
X; t))dy}, the integral being over H(0, c~, X).  Then arguing as in Subsection 3.1, it can 
be shown that a prior rr(-) ensures frequentist validity, up to o(n-1),  of HPD regions for 
Yn+l if and only if the condition 

(3.6) D,{Ftu t (o ,  (~)rc(0)} = 0 

holds for every a. The details are omitted here to save space. 

4. A p p l i c a t i o n  to  r eg re s s ion  m o d e l s  

Example 1. With scalar Y and possibly vector-valued X, let 

(4.1) g(x; t~) = g(x; r h(y I x; 6) = exp{-)~'w(x)}h* [y exp{-A'w(x)}],  

where 0 = (A',r Here h*(.) is a density on the real line and each of A, r and w(x) is 
possibly vector-valued. Note that the independent variable X enters into the conditional 
distribution of Y via a scale parameter exp{A'w(x)}. The exponential regression model 
(Cox and Reid (1987)) is covered by (4.1) if one takes h*(v) = exp( -v )  for v > 0 and = 0 
otherwise. Similarly, (4.1) covers the normal regression model with known coefficient of 
variation if one takes h* (v) = ~b(v - k), where ~b(-) is the standard univariate normal 
density and k -1 (> 0) is the known coefficient of variation in the conditional distribution 
of Y. 

In view of (3.4), after some algebra it can be checked that the following hold under 
(4.1): (a) I does not involve A; (b) I = cling(M1, M2), where M1 and M2 correspond to 

and ~b respectively; (c) q(t~, ~, x) -- q~ exp{A'w(x)}, where q~ is the (1 - c0-th quantile 
of the density h* (-); (d) Vt(0, c 0 does not involve ~ for any t; (e) Vt(8, a)  = 0 whenever t 
corresponds to some element of r  Hence one can verify that  any prior lr(-) that  does not 
involve A will satisfy the matching condition (3.5) for posterior quantiles. Furthermore, 
with additional algebra, the same conclusion is seen to hold also with respect to the 
matching condition (3.6) arising via HPD regions. 

Example 2. Continuing with scalar Y and possibly vector-valued X now let 

(4.2) g(x; 0) = g(x; r h(y I x; O) = 6-1h * [{y - .~'w(x)}16], 
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where 0 = (5, A',~b')'. As before, h*(.) is a density on the real line and each of A, r and 
w(x) is possibly vector-valued. The independent variable X enters into the conditional 
distribution of Y via a location parameter A'w(x) and 5(> 0) is a scale parameter 
underlying this conditional distribution. In particular, if X and Y are jointly normal 
(with no supplementary information available about the underlying parameters) then 
(4.2) arises and 5 represents the conditional standard deviation of Y. 

By (3.4) after some algebra one can check that the following hold under (4.2): (a) 
I = diag(5-2M1, M2), where ~/[1 and M2 correspond to (5, A')' and r respectively; (b) 
neither M1 nor M2 involves 5 or A; (c) q(O, a, x) = 5q~+A'w(x), where q~ is the ( 1 - a ) - t h  
quantile of the density h*(.); (d) Vt(0, a) is of the form Vt(0, a) = 5-1Gt(r a) whenever 
t corresponds to 5 or some element of ),, Gt(r a) being free from 5 or A; (e) Vt(0, a) = 0 
whenever t corresponds to some element of ~. Hence it may be verified that any prior 
7r(.) of the form 7r(0) = ~(r where ~(~)(>  0) is a smooth function involving r alone, 
will satisfy the matching condition (3.5) for posterior quantiles. One can also check that 
the same conclusion holds for the matching condition (3.6) pertaining to HPD regions. 

Example 3. 
separable as 

The last two examples may give the impression that if f(x,  y; O) is 

(4.3) f(x, y; O) = g(x, r [ x, A), 

where 0 = (A1,r ', then the matching priors in the present context are determined 
only through the conditional model h(y ] x, A). We now demonstrate that  this is not 
the case in general. Consider a model of the form (4.3) where X, ]I, r and A are all 
scalars and h(y ] x, A) is the simple exponential density with mean exp(1A2 + Ax). Write 
A = 01,r = 02. Then 

/11 = Er / 1 2 = 0 ,  Vl(O, oO:G(ol )Er  V2(0,~) : 0, 

where the constant G((~) depends only on ~ and not on A or r Hence it can be seen 
that a prior satisfies the matching condition (3.5) if and only if it is of the form 

~(0) = ~(~)Er  + X)2}/E,~(:, + X), 

where t~(r 0) is a smooth function involving r alone. Clearly, the above form of ~r(0) 
is influenced by the marginal distribution of X as well. 

Example 4. In the previous examples, the marginal density of X and the condi- 
tional density of Y given X involved no common parameter. Consider now a situation 
where this is not the case. Let the joint distribution of X and Y be bivariate normal 
with both means #(C RI),  both standard deviations a (>  0), and correlation coefficient 
p([p] < 1). Writing # = 0a, a = 02 and p = 03, then 

/11 = 2/{a2(1 + p)}, I12 = 1,3 = 0, 122 = 4/c ru', 123 = -2p /{q (1  - p2)}, 

133 = (1 + p2)/(1 - p2)2, 

VI(0, c~) = {(1 - p)/(1 + p)}l/2r V2(O, or) = Zc,r 
v3 (o ,  = - p z . r  - p2) ,  

where z~ is the (1 - c~)-th quantile of a standard normal variate and, as before, r 
is the standard normal density. Hence considering a natural class of priors of the form 
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7r(0) = {at(1 - p2)S}-l, where r and s are any real numbers, one can verify that the 
unique prior in this class satisfying the matching condition (3.5) is given by r -- - 1 ,  
s = 1. With additional algebra, the same conclusion is seen to hold for the matching 
condition (3.6). Thus, either via  posterior quantiles or via predictive HPD regions, one 
gets the unique probability matching prior 7~(0) = a / ( 1  - p2) within the natural class 
mentioned above. Interestingly, in contrast with what was seen in Example 2, this prior 
is not inversely proportional to the conditional standard deviation of Y. 

Acknowledgements 

We thank the refrees for very constructive suggestions. This work was supported 
by National Science Foundation, USA, and Center for Management and Development 
Studies, Indian Institute of Management, Calcutta. 

REFERENCES 

Bickel, P. J. and Ghosh, J. K. (1990). A decomposition for the likelihood ratio statistic and the Bartlett  
correction--a Bayesian argument, Ann. Statist., 18, 1070-1090. 

Cox, D. R. and Reid, N. (1987). Parameter orthogonality and approximate conditional inference (with 
discussion), J. Roy. Statist. Soc. Set. B, 49, 1 39. 

Datta, G. S., Mukerjee, R., Ghosh, M. and Sweeting, T. J. (2000). Bayesian prediction with approximate 
frequentist validity, Ann. Statist., 28, 1414-1426. 

Ghosh, J. K. and Mukerjee, R. (1993). l~requentist validity of highest posterior density regions in the 
multiparameter case, Ann. Inst. Statist. Math., 45,293-302. 

Ghosh, M. and Mukerjee, R. (1998). Recent developments on probability matching priors, Applied 
Statistical Science III  (eds. S. E. Ahmed, M. Ahsanullah and B. K. Sinha), 227-252, Nova Science 
Publishers, New York. 

Johnson, R. A. (1970). Asymptotic expansions associated with posterior distributions, Ann. Math. 
Statist., 41,851-864. 

Komaki, F. (1996). On asymptotic properties of predictive distributions, Biometrika, 83, 299-314. 
Mukerjee, R. and Reid, N. (1999). On a property of probability matching priors: Matching the alterna- 

tive coverage probabilities, Biometrika, 86, 333-340. 
Mukerjee, R. and Reid, N. (2000). On the Bayesian approach for frequentist computations, Brazilian 

Journal of Probability and Statistics (to appear). 
Tibshirani, R. (1989). Noninformative priors for one parameter of many, Biometrika, 76, 604-608. 


