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Abstract. In the common trigonometric regression model we investigate the D-
optimal design problem, where the design space is a partial circle. 1t is demonstrated
that the structure of the optimal design depends only on the length of the design space
and that the support points (and weights) are analytic funetions of this parameter.
By means of a Taylor expansion we provide a recursive algorithm such that the D-
optimal designs for Fourier regression models on a partial circle can be determined in
all cases. In the linear and quadratic case the D-optimal design can be determined
explicitly.
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1. Introduction

Trigonometric regession models of the form

(1.1) y=P0+ Zﬂgj_l sin(jt) + Zﬂzj cos(jt) +¢e, te€led

Jj=1 =1

—00 < ¢ < d < oo; are widely used to describe periodic phenomena (see e.g. Mardia
(1972), Graybill (1976) or Kitsos et al. (1988)) and the problem of designing experi-
ments for Fourier regression models has been discussed by several authors (see e.g. Hoel
(1965), Karlin and Studden (1966), p. 347, Fedorov (1972), p. 94, Hill (1978), Lau and
Studden (1985), Riccomagno et al. (1997)). Most authors concentrate on the design
space (—m, ], but Hill (1978) and Kitsos et al. (1988) point out that in many applica-
tions it is impossible to take observations on the full circle [—=,7]. We refer to Kitsos
et al. (1988) for a concrete example, who investigated a design problem in rhythmome-
try involving circadian rhythm exhibited by peak expiratory flow, for which the design
region has to be restricted to a partial cycle of the complete 24-hour period.

In the present paper, we address the question of designing experiments in trigono-
metric models, where the design space is not necessarily the full circle but an arbitrary
interval [c,d] C R. Recently, Dette and Melas (2003) considered optimal designs for
estimating individual coefficients in this model and gave a partial solution to this prob-
lem. In the present paper, we consider the D-optimality criterion, which is a reasonable
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criterion if efficient estimates of all parameters in the model are desired. It is demon-
strated in Section 2 that the structure of the D-optimal design depends only on the
length a = (c—d)/2 of the design space and that there only exist two types of D-optimal
designs (this result seems to be even unknown for the complete circle). Our main result
of Section 3 proves that the support points (and weights) of the D-optimal design are
analytic functions of the parameter ¢ and that an appropriately scaled version of the
D-optimal design converges weakly as a — 0 to a nondegenerate discrete distribution
on the interval [0, 1]. Following Melas (1978), these results are applied to obtain Taylor
expansions for the support points of the D-optimal design (considered as a function of
the parameter a = (d — ¢)/2), which allows a complete solution of the D-optimal design
problem in the trigonometric regression model (1.1) on the interval [c,d]. Finally, some
examples are given in Section 4, and in the linear and quadratic trigonometric regression
model on the interval [—a, a] D-optimal designs are determined explicitly.

2. Preliminary results for D-optimal designs in trigonometric regression models on a partial

circle

Consider the trigonometric regression model (1. 1) define 8 = (B0, B1,---,Pom)T as
the vector of parameters and
(2.1) f(t) = (1,sint, cost, ...,sin(mt), cos(mt))T = (fo(t), ..., fom(t))T

as the vector of regression functions. An approximate design is a probability measure £
on the design space [c, d] with finite support (see e.g. Kiefer (1974)). The support points
of the design £ give the locations, where observations are taken, while the weights give the
corresponding proportions of total observations to be taken at these points. Due to the
2rm-periodicity of the regression functions we restrict ourselves without loss of generality
to design spaces with length d — ¢ < 27. For uncorrelated observations (obtained from
an approximate design) the covariance matrix of the least squares estimator for the
parameter § is approximately proportional to the matrix

22) M(E) = / FOFT(O)dE(t) € REmFIxem1,

which is called Fisher information matrix in the design literature. An optimal design
minimizes (or maximizes) an appropriate convex (or concave) function of the information
matrix and there are numerous criteria proposed in the literature, which can be used for
the discrimination between competing designs (see e.g. Fedorov (1972), Silvey (1980) or
Pukelsheim (1993)).

In this paper, we are interested in D-optimal designs for the trigonometric regression
model (1.1) on the interval [c, d], which maximize the determinant det M (§) of the Fisher
information matrix in the space of all approximate designs on the interval |c, d|. Note that
a D-optimal design minimizes the (approximate) volume of the ellipsoid of concentration
for the vector 8 of the unknown parameters in the model (1.1) (see e.g. Fedorov (1972))
and that optimal designs in the trigonometric regression model (1.1) for the full circle
[c,d] = [—m, ] have been determined by numerous authors (see e.g. Karlin and Studden
(1966), Fedorov (1972), Lau and Studden (1985), Pukelsheim (1993) or Dette and Haller
(1998) among many others).

Qur first preliminary result demonstrates that for the solution of the D-optimal
design problem on a partial circle it is sufficient to consider only symmetric design
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spaces. To be precise, let

(to ... ta
(2:3) = (wo wn)
denote a design on the interval [e, d] with different support points {3 < --- < ¢, and
positive weights wg,...,w, adding to one and define its affine transformation onto the
symmetric interval [—a, a] by

NS
(2.4) &n = (wo wn>

where a = (d—c¢)/2 and &; =t; — (d+¢)/2,i=1,...,n.

LEMMA 2.1. Let M(n) and M(&,) denote the information matrices in the trigono-
metric regression model (1.1) of the designs 1 and &, defined by (2.3) and (2.4), respec-
tively, then

(2.5) det M (&) = det M(n).
ProoF. If the number of support points satisfies n+ 1 < 2m + 1, then both sides

of the equation (2.5) vanish and the proof is trivial. Next consider the case n = 2m, for
which we have (see e.g. Karlin and Studden (1966))

2m
(26) det M(£y) = (det F(&))? H Wi,
i=0
where the matrix F(¢,) € RZ7+1x2m+l j5 defined by
~ j=0,...,.2m
(2.7) F(&) = (L&) am -
Now it is easy to see that the vector f(¢) defined by (2.1) satisfies for any a € R
flt+a) = Pf(t)
where P is a (2m + 1) x (2m + 1) diagonal block matrix defined by
1
Qla
.| e

Q(ma)

and Q(B) is a 2 x 2 rotation matrix given by

_( cos(B) sin(B)
QB) = (— sin(B) cos(ﬁ)) )
Obviously, we have det P =1 and obtain from (2.6) and (2.7)

det M(£,) = det M(n),
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which proves the assertion of the lemma in the case n = 2m. Finally, in the remaining
case n > 2m, the assertion follows from the Cauchy Binet formula and the arguments
given for the case n = 2m. [

From Lemma 2.1 it is clear that it is sufficient to determine the D-optimal designs

for symmetric intervals
le,d] =[-a,a], O<a<mw

and we will restrict ourselves to this case throughout this paper. For fixed a € (0, 7] let &
denote a D-optimal design for the trigonometric regression model (1.1) on the interval
[~a,a]. Note that in general the D-optimal design for the trigonometric regression
model is not necessarily unique (see e.g. Fedorov (1972), who considered the case a =
w). However, it is known that the optimal information matrix M(£}) is unique and
nonsingular (see e.g. Pukelsheim (1993), p. 151). Moreover, due to the equivalence
theorem for D-optimality (see Kiefer (1974)) the design £, satisfies

(2.8) d(t,&,) <0 forall te€[-aq,q],
with equality at the support points, where
(2.9) dt,&) = FFM~1(E)f() - (2m+1)

denotes the directional derivative of the function £ — logdet M (&) (see Silvey (1980),
p- 20). Let Ef,l) denote the set of all designs of the form

b .. - to ti .. tm
(210) £=¢(a)= 1 1 1 1 1
2m+1 7 2m+1 2m+1 2m+1 7 2m+1
where 0 =ty < t] < --- < t;, = a and define
(2.11) E® = {¢ | supp(€) C [—a,a], d(t,€) = 0 for all t € [—a,a]}

as the set of all designs on the interval [—q, a] with vanishing directional derivative for
all t € [—a, a], then we obtain the following auxiliary result.

LEMMA 2.2. Let & denote a D-optimal design on the interval [—a,al, then
£ e = UEP.

PROOF. Due to the equivalence theorem (2.8) any design £ € =P is D-optimal
for trigonometric regression model (1.1) on the interval [—a, a]. Now assume that

_ Uy ... Up
£= (w1 wn>
is D-optimal for the trigonometric regression on the interval [—a, a], where the support
points satisfy —a < w3 < - < up, < a. €& Ef,z), then d(t,£) # 0, but due the
equivalence theorem we have
d(u,£) <0 Yu € [~a,q]
(2.12) d(u;,€) =0 Vi=1,...,n
d

@d(u,fﬂu:ui =0 Vi=2,...,n—1.
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If £ denotes the reflection of £ at the origin, then it is easy to see that det M(£) = det M 3]
and consequently ¢ is also D-optimal. Moreover, the concavity of the D-criterion im-
plies that the symmetric design £* = (£ + £)/2 is also D-optimal in the trigonometric
regression (1.1) on the interval [—a,a]. Note that there exists a permutation matrix
P ¢ R?m+1x2m+1 guch that

wo - (5 3)

where

M@ = [ FOFF (D) € Rrroms

(2.14) M) = [ 1) 5T (6)dE(t) € RHIRm

—a

My©) = [ (O @d(e) e R

and f.(t) = (1,cos(t),...,cos(mt))T, fs(t) = (sin(t),...,sin(mt))T. Because the infor-
mation matrix of the D-optimal design is unique (see Pukelsheim (1993)), we obtain
(note that £* is symmetric)

M2(§) = Mg(é) = M2(§*) =0€ Rm+1><m,
which implies for the directional derivative in (2.9)

(2.15)  g(t) = d(t,€) = FTOMTHE) () + £ T ()M 1) f>(t) — (2m+ 1)

2m
= Z 7; cos(it)
i=0
for appropriate constants 7o, - . .,Y2m (note that the last representation follows by well

known trigonometric formulas). From & ¢ =) we obtain that the polynomial g(t) is not

identically zero and the equivalence theorem shows that every suppport point is a zero of
the function g. Moreover, the functions {1, cost, . ..,cos(2mt)} form a Chebyshev system
on the interval [0,a] and a Chebyshev system on the interval [—a,0]. Consequently, g
has at most 2m + 1 roots in the interval [0, a] and at most 2m + 1 zeros in the interval
[~a,0] (including counting of multiplicities) (see Karlin and Studden (1966)). Consider
the case [0, a] and substitute ¢ = arccos z, then it follows, observing the definition of the
Chebyshev polynomials of the first kind

(2.16) T;(z) = cos(i arccos z),

(see Rivlin (1974)) that g(arccosz) is a nonpositive polynomial of degree 2m on the
interval [cosa, 1]. Consequently, if g(arccosz) has exactly 2m roots (including counting
of multiplicities), the boundary points cosa and 1 have to be roots of g(arccos ). Note
that a similar argument applies to the interval [—a,0] and therefore the nonpositive
function ¢ defined in (2.15) has at most 4m roots (including counting of multiplicities)
in the interval [—a, a]. Because the number of regression functions is 2m +1, it therefore

follows from (2.12) that any D-optimal design 1 ¢ 22 has exactly 2m + 1 support
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points in the interval [—a, a] including the boundary points —a, a. A standard argument
shows that all weights of the D-optimal design have to be equal, i.e. w; = 1/(2m + 1),
j=1,...,2m+1. f £ & E =0 then ¢ # £ and consequently £&* = (£+£)/2 is a D-optimal
design for the trigonometric regression model (1.1) on interval [—a,a] with more than

2m+ 1 support points, which is impossible, by the above discussion. This shows £ € = ”(1)
and proves Lemma 2.2. [1

3. Analytic properties of D-optimal designs in trigonometric regression models on a partial
circle

Lemma, 2.2 motivates the consideration of designs of the form (2.10) and our next
lemma gives an explicit representation for the determinant of the information matrix of
this type of design.

LEMMA 3.1. Let{ denote a design of the form (2.10) and z; = cost;, i =0,...,m,
then
92m? 72 2 4
(3.1) det M(§) = (—2*‘—:1)27“ H(l H-z)? [ (@—=z)*

- 1<i<j<m
Proor. For any design £ of the form (2.10) we have

det M (&) = det M; (€) det M3(£),

where the matrices M, (), M3(£) are defined by (2.14) and the matrix My(¢) is the
null-matrix, which follows form the discussion in Section 2. Define the design ¢ by

To I ‘o Tm
e = 1 2 2 ’
2m+1 2m+1 =~ 2m+1
then it is straightforward to see, that
(52) 10 = ([ nem@me)
1,j=0
m—1
(33) My(€) = (/ (1 - 2)Ui(a)V5 @) o))
i,§=0

where T;(x) is the Chebyshev polynomial of the first kind defined in (2.16) and

sin((Z + 1) arccos z)
sin(arccos x)

(3.4) Ui(z) =

is the Chebyshev polynomial of the second kind (see Rivlin (1974)). Because Ti(x) is a
polynomial of degree ¢ with leading coefficient 2'!, it follows that M (£) is essentially
a Vandermonde determinant, i.e.

det My (§) = 2™ 2meuwhm2

(2m+ 1

2m + 1)m+1 H I @-=)7

1<i<j<m
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(note that zo = 1). Note that the support point zo of n¢ has a vanishing contribution
to the matrix M3(£) and that the leading coefficient of U;(z) is 2°. Therefore we have
by similar arguments

2

det Ma(€) = (2%7:—17,; [[a-a [ G&-=)

1<i<ji<m

and a combination of these formulas yields (3.1), which proves the assertion of
Lemma 3.1. O

We are now studying the function

(35) ¢(z,0) = [I0-2D-2)* T] (25-=)*

1<i<j<m

as a function of the length a of the design space. To this end we note that z,, = cos(a)
and introduce the set

(36) T={(m1,. . ,Tm-1)T |0<T< -+ < Typy < 1}

(37) X ={(z1,...,Tm-1)T | zi =cos(ar),i=1,...,m —1,(71,...,Tm-1)" €T}
Note that any design £ E,(ll) of the form (2.10) is uniquely determined by a point
7 = (11,...,7m-1)F € T or its corresponding function = = (z1,...,Zm-1)7 € X by
the transformation t; = ar; = arccosz;, i = 1,...,m — 1 (note that t; = 0,t,, = a)
and by Lemma 3.1 the determinant of M(£) is proportional to the function ¢ given in
(3.5). By standard arguments it can now be verified that for fixed a € (0, ] the function
$ in (3.5) is a strictly concave function of z = (z1,...,Tm—1)T € X. Therefore (for
fixed a) the function ¢(z,a) has a unique maximum in X, which will be denoted by
z*(a) (because of its dependence on the length of the design space). The function ¢ is
obviously differentiable and z*(a) can be obtained as the unique solution of the equations

9 m—1
(38) ‘a—w¢($, a) =0eR .
Moreover, for any z € X the matrix of the second partial derivatives
82 m-—1
. G = —
(39) @@(m%mmhﬂ

is positive definite and in particular the matrix
(3.10) J(a) = G(z*(a),a)

is positive definite for all a € (0,7]. It therefore follows from the implicit function
theorem (see Gunning and Rossi (1965)) that the function

a1y {072

defined as the solution of the equation (3.8) is real analytic. In other words: for any
point ag € (0, 7] there exists a neighbourhood Uj of ag, such that the function z*|y, can
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be expanded in a convergent Taylor series. Observing the symmetry ¢(z,a) = ¢(z, —a),
it therefore follows that the function

[-m,7\{0} = T
arccos 27 (|al) arccos :c;‘n_l(|al))T

(3.12) T
a—»r*(a)-——( yeees

a a

is also real analytic. The following result shows that the function 7* can be extended to
a real analytic function on the full circle [—m,7].

LEMMA 3.2. The function 7* defined by (3.12) can be extended to a real analytic
function on the interval [—m,x], where

7(0) = lim 7(a) = (7, ..., 1)

T <+ < T 1 are the positive roots of the polynomial

1

PP (20 — 1) = - PP, () = i Ds

Py (x)

and Pi(a’ﬁ ) (x) denotes the i-th Jacobi polynomial orthogonal with respect to the measure
(1—z)*(1+z)?dz and Pom(z) is the 2m-th Legendre polynomial orthogonal with respect
to the Lebesgue measure on the interval [—1,1]:

ProoOF. The assertion of Lemma 3.2 follows if we prove the existence of lim,_.q
7*(a) and the claimed form of its components. Let z, = (cos(ami),...,cos(a7m-1))7,
then the expansions sint = t + o(t), cost = 1 — t2/2 + o(t?) show that for a — 0

2m(2m+1) m
$ara)= o 108 T (2= D4+ ofa)

i=1  1<i<j<m

(Tm = 1) and consequently, the limit lim, ,o 7*(a) exists and can be obtained by maxi-
mizing the function

(3.13) o) =l a-2* I -7)°

1<i<j<m—1

over the set T' defined in (3.6). Note that standard arguments show the strict concavity
of the function ¢ and consequently, the point 7* = (77, ...,75_;)T where the maximum
is obtained is unique. Taking partial derivatives of the logarithm of ¢ yields the system

3 4r; ml 4r; .
(3.14) T > 0, i=1,...,m—1
Tl 73 — Tz ]
J=Lj#i
and substituting 72 = y; € (0,1) gives
3 m~1
3.15 1=1, m—1
( ) yz Yi — Yi — ’

J=1,3#i
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Table 1. Values of the components 75 (0), . .., 7, _; (0) of the vector 7*(0) defined in Lernma 3.2
and the polynomial solution of the differential equation (3.16) for various values of m.

m_ Y(y) and 7;(0)
2 YPly)=y-3/7
71(0) = v 3/7 =~ 0.6546
3 P(y) =y*—10/11y +5/33
7(0) == 0.4688, 73 (0) ~ 0.8302
4 Ply) =y~ T/5y% +7/18y — 7/143
7$(0) = 0.3631, 73 (0) = 0.6772, 75 (0) = 0.8998
5  (y) = y* ~ 36/19y3 + 378/323y2 — 84/323y + 63/4199
77 (0) & 0.2958, 75 (0) & 0.5652, 75 (0) = 0.7845, 75 (0) ~ 0.9340

Similar arguments as given in Karlin and Studden (1966) or Fedorov (1972) show that
m—1

the polynomial ¥(y) = [[."] (y — v;) satisfies the differential equation

(3.16)  y(Q—yv" @)+ (3/2-7/2y)¥ (y) + (m — 1)(m + 3/2)%(y) = 0.

It is well known (see e.g. Szegb (1975), Section 4.21) that the unique polynomial solution
of this differential equation is given by the polynomial

PUD (1~ 29)

and the assertion of the lemma now follows from transformation y = 72 and the equation
pleP )(—x) = (—1)"P,(f_’[i) (x) (see Szegd (1975), formula (4.1.3)). The alternative rep-
resentations of the polynomial P,(nl’_ll/ 2) (2z% — 1) are a consequence of P9 (z) = Py(z)
and Theorem 4.1 in Szegd (1975). O

Table 1 shows the polynomial P,(nl’_ll/ 2) (2y — 1) (normalized such that the leading
coefficient is 1) and the corresponding values 7;* = ,/y; for lower degrees m = 2,3,4,5.
The following result shows that for small designs space, i.e. a < (1 — 1/(2m + 1)), the
solution of the optimal design problem can be obtained by a Taylor expansion of the
function 7* in (3.12) at the point a = 0, where the i-th component 7;*(0) of the vector

7*(0) is the ¢-th positive root of the polynomial P,(nl’_ll/ 2)(2z2 —1).

THEOREM 3.1. Consider the trigonometric regression model (1.1) with design
space [—a, a], where 0 < a < 7.
(i) If a > w(1 — 1/(2m + 1)), then the design & with equal masses at the 2m + 1
points
(3.17) oot = 1T™ L omat1
' R
is a D-optimal design.
(ii) Ifa<7w(1—1/(2m + 1)), the D-optimal design is unique and of the form
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—a —ar},_1(a) -+ —ar{(a) 0 ati(a)
(3.18) & = 1 1 1 1 1
2m +1 2m+1 2m+1 2m+1 2m+1
ar),_4(a) a
1 1

2m+1 2m+1

where T* s a real analytic function on the interval [—m, 7] defined by (3.12) and
Lemma 3.2.

PrOOF. Recall the definition of the set E,(f) in (2.11) and assume that the design
& € E,(lz) is D-optimal for the trigonometric regression model (1.1) on the interval
[~a, a]. Because d(t,£*) = 0 for all t € [—a, a] it follows from the Chebyshev property of
the functions {1,sint,cost,...,sinmt, cosmt} that the directional derivative d(t,£*) also
vanishes on the full circle [, 7] (see Karlin and Studden (1966), p. 20). Consequently,
&* is also D-optimal for the trigonometric regression on the interval [—, 7], which implies
(by the uniqueness of the D-optimal information matrix) M (£*) = diag(1,1/2,...,1/2),
det M(£*) = 272™. On the other hand we have

lim max det M (£) = 0,
a—0 £

and consequently for sufficiently small a the D-optimal design cannot be an element of
the set ES?’. From Lemma 2.2 it follows that the D-optimal design must belong to the

set Ef,l) and the discussion in the first part of this section shows that for sufficiently
small a the D-optimal design is unique and of the form (3.18). Now let £} denote the
design defined by (3.18) and

(3.19) a* = sup{a € (0,n] | & is D-optimal}
' = sup{a € (0,7] | det M(£*) < 272™}

(note that the second equality follows by continuity and Lemma 2.2). It is well known (see
Fedorov (1972) or Pukelsheim (1993)) that the uniform distribution &, at the 2m + 1
points defined by (3.17) is D-optimal for the trigonometric regression model on the
interval [-m,7]. If & = w(1 — 1/(2m + 1)) denotes the largest support point of this
design, then it follows that £ = &,. Consequently, the design £} specified in part (i)
of Theorem 3.1 is also D-optimal for the trigonometric regression on the interval [—a, |
and the D-optimality of £ on [—m, w| shows

& e =N nEY,
which implies for the critical bound in (3.18) the inequality a* < a. Now for any design
of the form '
tm ... —t to t i tm
(320) &£=¢(a)= 1 1 1 1 1
2m+1 7 2m+1 2m+1 2m+1 = 2m+1
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with 0 < t; < --- < t, < 7 it follows from Lemma 3.1 that

des (@) = C[Ja-sDt -2 [ (252" = hiae)

i=1 1<i<j<m

with C = 22" /(2m + 1)>™* 4 = (z1,...,2m)T, 7; = cost; (i = 1,...,m). The
discussion at the beginning of this section shows that h is strictly concave. Additionally,
we have for the design &5, h(wg:) = 272™ and for any other design £ of the form (3.20)
h(z¢) < 272%™ (because otherwise a convex combination of £ and &, would have an
information matrix with a determinant larger than 2~2™, which is impossible). Conse-
quently, because £} is of the form (3.20) it follows for the quantity a* defined by (3.19)
that a* = a.

If a > &, the discussion of this proof shows that the design specified by part (i)
of Theorem 3.1 is D-optimal. If a < &, the definition (3.19) shows that the D-optimal
design is in the set =% and Lemmas 3.1 and 3.2 (with their corresponding proofs) imply
that the D-optimal design for the trigonometric regression on the interval {—a,a] is of
the form (3.18), which completes the proof of the theorem. []

Note that Theorem 3.1 provides a complete solution of the D-optimal design prob-
lem. In the case (i) with @ > 7(1—1/(2m+1)) a D-optimal design for the trigonometric
regression model (1.1) on the interval [—a,a] is explicitly given by the uniform dis-
tribution at the support points specified by (3.17), but is not necessarily unique. If
a < w(1—1/(2m+ 1)) the D-optimal design is unique and specified by (3.18), where the
vector 7*(a) = (1§ (a),...,7,_1(a))T can be obtained by means of a Taylor expansion
at the point a = 0

00
(3.21) OIS
i=0

and the vector 7, = 77(0) is given in Lemma 3.2. It is shown in Dette et al. (2002)
that the coefficients in the above expansion can be calculated by the recursive relations

1 . d s+1
=~ O (5) 972 @, 0leco
$=0,1,2,..., where
d .
T:s> (a’) = ZT(*i)az
i=0

denotes the Taylor polynomial of degree s € {0,1,2,...},

J(0) = (#?—;Eqb(wﬂ a))

8 _
g(r,a) = Ed)(m«,,a) e R™1,

m~—1
and

1.J=1|r=1x(0)

Note that in general an exact determination of the radius of convergence for the Taylor
expansion (3.21) seems to be intractable. In general several re- expansions could be
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needed to obtain the D-optimal design for any a € (0,7(1 —1/(2m +1))). However, our
numerical calculations in the following section indicate that only one expansion at the
point a = 0 is required to obtain the D-optimal design for the trigonometric regression
model (1.1) on the interval [—a,a] for any a € (0,7(1 — 1/(2m + 1))).

Remark 3.1. As pointed out by a referee it might be of interest to obtain similar
results for multidimensional models. Unfortunately, it seems to be difficult to obtain
such results, because in the multidimensional case the system of regression functions
does not satisfy any Chebyshev properties. For interesting work on optimal designs in
multidimensional models on the complete circle (—m,w] we refer to Riccomagno et al.
(1997) and Dette (1998).

4. Examples

Ezample 4.1. Our first example considers the linear trigonometric regression model
(m = 1) on the interval [—a,a], for which the solution is rather obvious. If a > 27/3,
the design

2 2T

22 g Z££
¢ = 3 3
‘ 111
3 3 3

is D-optimal, while for a < 27/3 the D-optimal design for the linear trigonometric
regression model on the interval [—a, a] is given by

/—a 0 a
L=11 11
3 3 3

This follows directly from Theorem 3.1. For A-and E-optimal designs in this model see
Wu (2002).

Ezample 4.2. Inthe quadratic regression model the situation is more complicated.
If a > 47 /5, then part (i) of Theorem 3.1 shows that the design

A7 2w 0 2 4r

5 5 =~ 5 5
11 1 1 1

5 5 5 5 5

is D-optimal. If a < 47/5, the D-optimal design can be obtained by means of a Taylor
expansion as indicated in the second part of Theorem 3.1. However, in this particular
case an explicit solution is possible by a careful inspection of the arguments given in
Section 3. Part (ii) of Theorem 3.1 shows that the D-optimal design in the quadratic
trigonometric regression model is in the set Egl), whenever a < 47 /5 and consequently
only one support point t; = t}(a) has to be determined. This can be done by a direct

differentiation of the function ¢(z,a) in (3.5). Note that m = 2, zo = cosa and therefore
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#(z,a) is a function of only one variable, say x; € (—1,1). Elementary calculus yields
that the derivative of ¢ has zeros at the points x; = cosa, z2 =1 and

1
73,4 = g[2cos(a) — 15 V/33 + 12cos(a) + 4 cos(a)?].

It is easy to see that only one of these two points yields to a solution in the interval
[cosa, 1] and consequently the D-optimal design for the quadratic trigonometric regres-
sion model on the interval [—a, a] with 0 < a < 4x/5 is given by

—a —ti(a) 0 ti(a) a
L=11 1 1

11
5 5 5 5 5

where

1{a) = arccos (%[2 cos(a) — 1+ /33 + 12 cos(a) + 4cos(a)2]> .

Ezxample 4.3. In the general case m > 3 the second part of Theorem 3.1 has to be
applied if a < (1 — 1/(2m + 1)) (note that in the remaining case a D-optimal design
is explicitly given in part (i) of Theorem 3.1). From Table 1 we obtain the values of
75(0), i = 1,...,m — 1 (provided m < 5) and the nontrivial support points 7;*(a) for
0 <a<7(l—1/(2m+ 1)) can now be calculated by means of a Taylor expansion as
indicated at the end of Section 3. Table 2 shows the values of the first coefficients in the
expansion

o0
(4.1) @)=Yy (%)l i=1,...,m—1
=0

for m = 2,3,4,5. It can easily be shown that 7;*(a) is an even function of the parameter a
and consequently the odd coefficients vanish and only the even coefficients are displayed.

Table 2. Coefficients in the expansion (4.1). The D-optimal design in the trigonometric
regression model (1.1) on the interval [—a,a] with 0 < @ < w(1 — 1/(2m + 1)) has equal masses

at the points —a, —tm—1,...,—t1, 0, ¢1,...,tm—1, a, where t; = ar(a), i=1,...,m — 1.
% 0 2 4 6 8 10
m=2 7f @ 65465 —.21977 -—-.07747 .04852 06118 -.02116
m=3 T{(i) 46885 —.19145 —.00875 .02584 —.00184 -.00283

Ty @ .83022 —.13502 —.10286 —.05465 —.00161 .03946

m=4 Tf @ 36312 —.15556 00820 01117 —.00368 —.00011
Ty @ 67719 —.18093 ~.07349 .00094 .02393 01100
T3 &) 89976 —.08456 —.07603 —.06025 —.03806 —.01256

m=5 77 @) 29576  —.12851 .01204 .00501 —.00238 .00036
T 0 .56524 —.18316 —.03971 01585 .01178 —.00245
T3 ) .78448 —.14366 —.08805 —.03360 .00483 .01980
T @) 93400 —.05677 —.05431 —.04874 —.03965 —.02762
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Fig. 1. The support points of the D-optimal design in the trigonometric regression model (1.1)
on the interval [—a,a] as a function of the parameter a for various degrees m. The D-optimal
design has equal masses at these points.

Consider as a concrete example the case m = 3. If a > 6x/7 a D-optimal design
for the cubic trigonometric regression model on the interval [—a, a] is given by part (i)
of Theorem 3.1, i.e.

6 4r 2 2r 4n 67
N 0 = — -
ba= 1 1 1 1 1 1 1
7 7 7 7T 7T 7T 7

If 0 < a < 67/7 the D-optimal design can be calculated from the expansion (4.1) and
Table 2. For example if a = 1 we obtain that the D-optimal design for the cubic
trigonometric regression model on the interval [—1,1] is given by

1 —08154 —04494 0 04494 08154 1
L=11 1 11 11

1
7 7 7 7 7 7 7
Figure 1 shows the support points of D-optimal designs as a function of the length a
of the design space for m = 2,3,4,5. The support points have been determined by a
Taylor expansion as indicated in Section 3 and the D-optimal design puts equal masses
at these points.
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