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Abstract. The problem of estimating linear functions of ordered scale parameters
of two Gamma distributions is considered. A necessary and sufficient condition on
the ratio of two coeflicients is given for the maximum likelihood estimator (MLE)
to dominate the crude unbiased estimator (UE) in terms of mean square error. A
modified MLE which satisfies the restriction is also suggested, and a necessary and
sufficient condition is also given for it to dominate the admissible estimator based
solely on one sample. The estimation of linear functions of variances in two sam-
ple problem and also of variance components in a one-way random effect model is
mentioned.

Key words and phrases: MLE, unbiased estimator, admissible estimator, variance
estimation.

1. Introduction

In this paper, we discuss the problem of estimating linear functions of scale pa-
rameters of Gamma(a;, A;), ¢ = 1,2, when ¢4, @ = 1,2 are known and the restriction
A1 < Az is given. We note that a special case of this general problem is given in two
samples problem with different but ordered variances. Estimation of smaller or larger
variance has been discussed by Kushary and Cohen (1989). Among the linear functions
of variances estimation of those with positive coefficients is especially important since
they are the variances of linear functions of two random variables.

Consider, for another example, a one-way random effects model given by

yij:M+ai+€ij, ’i=1,...,I, j:]-y"'a‘]’

where a; ~ N(0,0%) and €;; ~ N(0,0). Letting S1 = 32, > .(yij — 5:.)* and Sz =
I (@ —5.) for g, =J 7! dovi and g = (IJ)71 Y, >_; Yij» one has that Si/a? ~
x2,,i=1,2 forng =I(J—1), ny =I1—-1and 06 = g7 + Jo. In this situation, of
great interest is to estimate the between component of variance 0%, being represented by
0% = J71 (6% — 0%), which is a linear function of two ordered Gamma scale parameters
0% and o3.

There has been considerable interest in the estimation of the parameters when there
are linear restrictions among parameters. Typical types of the restrictions are positivity,
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simple ordering and simple tree ordering. See, for example, Barlow et al. (1972) and
Robertson et al. (1988). Many papers focus on normal mean estimation and on compar-
ing the maximum likelihood estimator (MLE) which satisfies the order restriction with
the unbiased estimator (UE) coordinately (Lee (1981), Kelly (1989)). However, MLE
does not always improve UE (Lee (1988)), and it is not always true that every linear
function of MLE dominates the one of UE in terms of mean square error (MSE) (see
also Hwang and Peddada (1994) and Ferndndez et al. (1999)). In recent years, Rueda
and Salvador (1995) have considered the problem of estimating general linear function
of normal means when two linear inequality constraints are given, and have shown that
MLE gives an improvement for any coefficients. In estimating linear functions of positive
normal means, Shinozaki and Chang (1999) have given a necessary and sufficient condi-
tion on the coefficients so that linear function of MLE dominates the one of UE in terms
of MSE. Thus they show that MLE dominates UE for any choice of coefficients if and
only if the number of means is less than 5. Independently, Ferndndez et al. (2000) have
discussed the same problem under a symmetric unimodal location model. Other than
normal distribution, there are also many papers dealing with the estimation of param-
eters under order restrictions. Kushary and Cohen (1991) considered the estimation of
ordered Poisson parameters. Kaur and Singh (1991) considered the estimation of ordered
means of two exponential population with the same sample sizes. They compared MLE
with UE coordinately and showed that MLE dominates UE. This is a special case of
the estimation problem of Gamma, scale parameters when order restriction is given. See
Hwang and Peddada (1994) and Kubokawa and Saleh (1994) for general scale parameter
estimation under order restriction.

Here we first compare MLE with UE in estimating linear functions of ordered scale
parameters of two Gamma distributions. To evaluate the difference of MSE of two es-
timators we give some useful lemmas in Section 2. We give a necessary and sufficient
condition on the ratio of coefficients for MLE to dominate UE in terms of MSE. We also
numerically obtain the upper bounds of the ratios for some typical values of o;,i = 1,2.
All these results are given in Section 3. Other than UE, there is another standard esti-
mator of \; which we can obtain by replacing «; by o; -+ 1 in UE. This estimator is an
admissible one based solely on one sample under quadratic loss. In Section 4, we sug-
gest a modified MLE which satisfies the restriction and give a necessary and sufficient
condition on the ratio of coefficients for the modified MLE to dominate the unrestricted
one. The lower bounds of the ratios are also given for some typical values of a;,i = 1,2,
We give some concluding remarks in Section 5.

2. Preliminaries
Let X;, i = 1,2 be independent Gamma(a;, A;) random variables, having density
(2.1) Prolm) = a2 I\ e/ D (),  0< ;<00

where a;(> 0) is known and X;(> 0) is unknown but satisfying 0 < Ay < A2 < co. We
note that even if we have more than one observations, we can reduce the case to the
above one by considering the sufficient statistics which also follow Gamma distributions.
The MLE of ); is given by

(aa X1 — o Xo)t
fo= Xy qpleXizae) oy
a; ai(ag + az)
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where a™ = max(0,a) and X;/a; is the unbiased estimator (UE) of A;.

The best estimator of ); of the form ¢X; under squared error loss is X;/(a; + 1),
which is an admissible estimator of \; based solely on X;. We also consider a modified
MLE that satisfies the restriction 0 < A; < Ay < o0 given by

- X; :
i = ~1)*
A ai+1+( )

((02 + 1)X1 — (Ol1 -+ 1)X2)+
(ai + 1)(a1 + oo + 2) ’

i=1,2,

which we can obtain by replacing o; by a; + 1 in the MLE Xi. We note that Kubokawa
and Saleh (1994) have proposed another improving estimator of A; by their general
argument.

Let ¢, ¢ be given constants and we want to estimate ¢ A1+ c2Xa. We first compare
two estimators, UE, E?zl ¢iX;/a; and, MLE, Z?zl c;A\; by their mean square error
(MSE) and give a condition on ¢; and cp for MLE to dominate UE. We also compare
Zle ¢; X;/(a; + 1) with modified MLE Z?zl ¢ihi, and give a condition on ¢; and c; for
the modified MLE to dominate the competitor.

We should first mention that the domination depends only on the ratio ca/¢;. This
is generally true so far as we are concerned with estimation of linear functions Z?zl c;;
of parameters #; and 05 and compare two estimators of the form E?=1 ¢;0; by their MSE,
since MSE is a quadratic function of ¢; and c¢s.

To evaluate the difference of MSE between the estimators, we need the following
lemmas. The following Lemma 2.1 is well known and we can show it by applying inte-
gration by parts (Berger (1980)).

LeEMMA 2.1. Let X be a Gamma(a, \) random variable and assume that g(z) is
absolutely continuous on (0,00) with ¢'(z) = é%(_ww_) satisfiying
(i) EllXg'(X)]] < ccand E[|g(X)|] < o0
(ii) limg_o g(x)z%*/* = limg_,o g(x)z%e~%/* = 0, for A > 0.
Then
E[Xg(X)] = MaE [9(X)] + E [Xg'(X)]}.

LEMMA 2.2. Let X;, i = 1,2 be independent Gamma(a;, ;) random variables
having density (2.1). For any constant b > 0, I, >ps, denotes indicator function of the
set {(z1,72) | z1 > bz2} and p=0b/(b+1). Then

EXoIx,>0x,] o Eo[Xolxi>ox,] _ a1toe 1—I(a,09)
E[X1Ix,>bx,] ~ Eo[X1Ix,>bx5) ar 1—Ij(oa+1as) 7’

where Eo[-] denotes the expectation when Ay = Xy and I(a, 8) = [y u®~ (1 —u)?~'du/
B(a, 8), where B(a, f3) is the beta function.

The proof is rather technical and we give it in Appendix A.l. We note that
Eo[XoIx,>bx,]/EolX11x,>bx,] is independent of the common value of A; and A,.

3. MSE reduction by MLE in estimating linear functions of Gamma scale parameters

Here we evaluate the difference of MSE between MLE and UE in estimating ¢; A1 +
¢ )2, Where ¢1, ¢g are constants. The difference of squared errors between MLE and UE
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is given by

o0 {Fa(Z ) (S (B o) - tizmn (o))

i=1

N - 2
= ( e ) {22511(Xi = 0idi) (02 X1 — 0n X))
i=1

a1 + o
€1
_ X, —
(a1+a2)[(a2 LX) ] }

where & = ¢;/0y, i = 1,2. Without loss of generality we assume that ¢; > ¢ and also
for simplicity we denote Iy, x,>a,x, by I, hereafter.
To evaluate the expected value of (3. 1) we use Lemma. 2.1 and have

E[Xl(OQXl - a1X2)+] = Al{alE[(agXl - a1X2)+] + E[OthlI]}

and
(3.2) E{XQ(QQX]_ - a1X2)+] = Az{azE[(agXl - a1X2)+] - E[a1XQI]}.

Thus we see that the expected value of the quantity in the braces of (3.1) is given by
(33) 251/\1E[a2X1I] - 252)\2E[&1X2[]
¢
- (i‘ﬁ‘) {aaz(A1 = Ao)El(@2 X1 — a1 X2) "]
+a2/\1E'[a2X1[] + C\!1A2E’[O£1X21]}.

We first show that (3.3) is negative for sufficiently large A if &, > 0. Since the third
term in (3.3) is non-positive we see from Lemma 2.2 that (3.3) is less than or equal to

_ a1 Eo[X2 | aaX1 > 04 X5
2F (o X1 1 A Ag—
[o2 1 ].{Cl 1= > Eo[X1 | apX1 > a1 X>)

which is negative for sufficiently large Ap if ¢ > 0. This means that MLE does not
improve UE if ¢ > 0. Thus we see that é; must be non-positive when &; > & in order
for MLE to dominate UE. In addition to the condition & > & we assume that &3 < 0in
the following and give a condition on ¢; and ¢y for MLE to dominate UE.

Since (3.2) is non-negative, we have

agE[(agXl - a1X2)+] 2 E[OlezI],
and we see that (3.3) is greater than or equal to
(34) 2&1)\1E[02X1H - 252A2E{01X21]
¢
(ai+ >{a1(/\1 A2)Eloy X, 1)
+a2)\1E[a2X11} + al)\gE[angI]}

= )\1 (251 — M) E[Oszlf]
o1+ o
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_ ( A2 i+ 252,\2> Elon X1
a1 + az

A1
Z
a1 + ag

{(51 (2011 + ag) + Ezaz)E[agXl.[]
—-(51051 + 62(&'1 -+ 20(2))E[Q1X2[]},

since A2 > A; and & < 0. We can easily see that if ¢; (20 + a2) + é202 > 0, then (3.4) is
non-negative since E{asX1I] > Elog XoI] and & > &. Even if ¢ (204 + ag) + é202 < 0,
(3.4) is non-negative if

EXol] | az(a1/e)2+ az/on) +1
E[le] %1 (cl/cz)+(2+a1/a2) ’

(3.5)

We note that for fixed a; and s, the right-hand side of (3.5) is an increasing function
of ¢1/ca. Thus we see that for fixed a; and oy if some ¢; and ¢p satisfy (3.5) then any
c; and ¢ such that ¢1/co > ¢)/c, satisfy (3.5).
Putting R = {1 — Iy(oq +1,a2)}/{1 — I,(c1,2)}, we have from Lemma 2.2
Eo{XQI] o +agl

= =1
EoX11] ag R 7

o
aj+ta2

where p = . Thus the inequality (3.5) is true if

atapl 1> %cl(2+a2/a1)+02
a R Toma+ 2+a/az)e’

which is equivalent to
a(l—p)+c(2-p)

R< g
p+C2

1
The above inequality is also equivalent to the one

a__p 2—-p—R

cg " 1—p R—p

It should be noted that R > 1 > p, since I,(a; + 1, a2) < I (04, o).

Thus we have shown that MLE dominates UE if ¢; and ¢y satisfy ¢;/c2 < p(2—p—
R)/{(1 — p)(R — p)}. Conversely, we see that this conditions is also necessary for MLE
to dominate UE by examining each step of the above evaluation for the case A\; = Ag. If
we denote the MSE of an estimator ¢ of E?=1 ¢\ by MSE(p), we have the following
theorem.

THEOREM 3.1. MSE(Y2_, ¢;iXi/oi) > MSE(X2, ei)i) for any 0 < Ay < Ag <
oo if and only if

< p 2—-p—R

(3.6) TR

Sl

including the case ¢ = 0.
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Table 1. Upper bounds of ¢; /c2.

ai\az| 0.1 0.3 0.5 0.8 1 1.5 2 2.5 3 5 8 12 100
0.1 |~0.277 —0.152 —0.104 —0.070 —0.057 —0.039 —0.030 —0.024 —0.020 —0.012 —0.008 —0.005 —0.001
0.3 |—0.275 —0.188 —0.142 —0.103 —0.086 —0.062 —0.048 —0.039 —0.033 —0.021 —0.013 —0.009 —0.001
0.5 {—0.208 —0.153 —0.120 —0.090 —0.077 —0.057 —0.045 —0.037 —0.031 —0.020 —0.013 —0.008 —0.001
0.8 |—0.086 —0.066 —0.054 —0.042 —0.036 —0.027 —0.022 —0.018 —0.016 —0.010 —0.006 —0.004 —0.001

1 0 0 0 0 0 0 0 0 0 0 0 0 0

1.5 | 0.220 0.178 0.149 0.120 0.106 0.082 0.067 0.056 0.049 0.031 0.021 0.014 0.002
2 0.444 0.364 0.308 0.250 0.222 0.174 0.143 0.121 0.105 0.069 0.045 0.031 0.004
25 | 0.670 0.552 0.471 0.385 0.344 0.271 0.224 0.191 0.167 0.110 0.073 0.050 0.006

3 0.896 0.743 0.636 0.524 0.469 0.372 0.309 0.264 0.231 0.154 0.102 0.071 0.069

5 1.803 1.512 1.306 1.089 0.981 0.790 0.662 0.571 0.502 0.340 0.230 0.161 0.021

8 3.167 2.673 2.322 1.949 1.764 1.432 1.210 1.049 0.928 0.637 0.436 0.308 0.042

12 | 4.987 4.225 3.681 3.103 2.815 2.298 1.949 1.697 1505 1.044 0.721 0.512 0.071

100 |45.043 38.403 33.658 28.586 26.058 21.483 18.386 16.131 14.406 10.216 7.220 5.244 0.797

When ¢; = 0(c; = 0) and oy = a5 is a positive integer, the above theorem reduces
to Theorem 2.1. (a) (Theorem 2.2. (a)) due to Kaur and Singh (1991). See Kushary
and Cohen (1989) for another improving estimator of smaller variance and also Hwang
and Peddada (1994) for related results.

We have calculated the values of the right-hand side of (3.6) for some typical values
of a; and @ and have given them in Table 1. We see that the range of the value of ¢; /c;
for which MLE dominates UE is rather small. Especially when we are concerned with
the case with positive coefficients it is quite small. If ¢; = as = 2, we need ¢; Jea <0.143
and MLE does not dominate UE for most of the choice of coefficients with the same sign.
We notice that the range of ¢;/ce for which MLE dominates UE becomes larger if oy or
o gets larger. Rather than as, a; seems to be important to make the range larger.

The case when ¢; = 0 corresponds to the estimation of Az and is of particular
interest. From Table 1 it is almost obvious that MLE dominates UE for ¢; = 0 if and
only if oy > 1. We formally give it in the following corollary whose proof is given in
Appendix A.2.

COROLLARY 3.1. MSE(Z?=1 ¢iXifow) > MSE(Z?=1 cz;\z) for any 0 < A <
Ao < 00 and for any ¢; > 0 and ca < 0 (and also for any ¢; < 0 and cz > 0) if
and only if o1 > 1.

4. MSE reduction of an admissible estimator based solely on one sample

In this section, we compare two estimators of c1A; + ¢z, Z?:l ¢;X;/(a; + 1) and
Z?zl ¢;\;, by their mean square errors and give a condition on ¢; and c; for the latter
to dominate the former. R

The difference of squared errors between Z?zl ¢; Xi/(a;+1) and Z?:l ¢iA; is given
by

(41) (alia +2> {2ZC(X (s + )A)[(az + 1) X1 — (o + )Xot

_ (—i———-éé—) {llaz + 1)X; — (aa + 1)X2]+}2 } J

a1+ as+2
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where & = ¢;/(a; +1),i = 1,2. Without loss of generality we assume that & > &, and
also for simplicity we denote I(q,41)x,>(as+1)X, bY I’, hereafter. By applying Lemma 2.1
we see that the expected value in the braces of (4.1) is given by

(4.2) 26’1/\1E{(a1 + ].)XQII] - 252)\2E[(012 + 1)X1[’]
_ (ﬁg-;%) {(02 -+ 1)/\1E[(a1 -+ 1)X21/] -+ (a1 + 1)A2E[(a2 -+ 1)X1I,]
+(011 + 1)(a2 —+ 1)(/\1 - )\Q)E[{(az + 1)X1 — (Oll + 1)X2}+]}.

Here we notice that (4.2) is negative for sufficiently large Ay if &, > 0, since the third
term in (4.2) is non-positive and E[(ag + 1)X1I'] > E[(cq + 1)X2I']. This implies that
Z?zl ciAi does not dominate Z?zl ciXif(oi+1)if & > & and & > 0 (or & < & and
&, < 0). Therefore in the following we only consider the case where & > & and ¢; <0
to find the conditions on & and &, for Z?zl ;A to dominate Z?zl ciXi/(a; +1).

We first show that (4.2) is non-negative if (a7 + 1)é&; + (o1 + 22 + 3)& < 0. Since
&y > & and A1 < Ag, (4.2) is greater than or equal to

201 + ag + 3)& + (az + 1)
(4.3) (( ! 2&1 +)a; +(2 2 )62) AME[(oq + 1) XaI']

3 ((al + 1) + (o1 + 202 + 3)&,
g + g + 2

) /\QE[(ag + 1)X1I’].

Since M < Az, E[(a1+1)X2I'] < E[(a2+1)XlI’] and (2a1+a2+3)6'1+(a2+1)6’2 > (a1+
1)&} +(a1+2a2+3)c, we see that (4.2) is non-negative if (a1 +1)&; + (a1 +2a2+3)& < 0.
In the following we assume that (oq + 1)&] + (a1 + 2a3 + 3)&, > 0. Using the
inequality
E[{(a2 + 1)X1 — (a1 + 1) X2}t > E[X I,

we see that (4.2) is greater than or equal to

AL

4.4 —_—
(4.4) ay+as+2

{l(2en + a2 + 3)¢) + (a2 + 1) E[(an + 1) X2I']
—[(a1 + 1)& + (o1 + 202 + 3)&] E[(02 + 1) X11']}.
(4.4) is non-negative if and only if

E[X,I'] > as+1c + {2 + (a1 + 1)/{(az + 1)}eo
EXiI') " a1 +1{2+4 (2 +1)/(aa+ D)}er + ¢

(4.5)

Now we denote p' = (a; +1)/(a1+ a2 +2) and R = (1 — Iy(oaq + 1,0))/(1 —
Iy (a1, az)). Then from Lemma 2.2, we see that the inequality (4.5) is true if

oy + oo > 2(01 + Cz)

4.6 .
(4.6) R~ (p+ Der + plea

Since the right-hand side of (4.6) is a decreasing function of ¢;/ca, we see that if
a1 R [{oa + 0o2) < (p' +1)/2, then Z?:l ¢;A; dominates E?=1 ¢ Xi/(a; + 1) for any
¢1 and ¢z such that —oco < ¢1/¢a < (a1 +1)/(a2+1) including the case ¢c; = 0. Similarly
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Table 2. Lower bounds of ¢ /c2. (A blank means that lower bound does not exist).

ai\az 0.1 0.3 0.5 0.8 1 1.5 2 2.5
0.1 —3.610 —5.315 —9.856
0.3 —3.784 —-5.312 —8.806  —302.000
0.5 —3.966 —5.384 —8.320 —43.602
0.8 —4.251 —5.564 —8.037 —23.911
1 —4.444 -5.714 —8.000 —20.000
1.5 —4.938 —6.145 —8.159 -16.197  —47.793
2 —5.438 —6.619 —8.500 —15.000 —31.000
2.5 —5.943 —7.118 —8.929 —14.654 —25.934
—6.450 —7.630 —9.407 —14.692  —23.800
5 —8.490 —-9.746  —11.541 —16.242  —22.594
—-11.565 —12.993 —14.972 -19.779 —25.500 —105.36
12 —15673 —17.363 —19.663 —25.021 —-30.974 —83.649
100 —106.18 -114.15 —124.71 —147.56 -170.11 —291.02 —1292.8

in the case when a;y R'/(c + ap) > (p' +1)/2, Y7, ¢;A; dominates Z?=1 i Xi/(a; + 1)
for any ¢; and ¢ such that {(a; +a2)p’ — 201 R'} /{201 R’ — (cq +a2)(p' +1)} < e1/eq <

(a1 + 1)/(a2 +- 1).
By examining each step of the above evaluation for the case A\; = A2 we see that
this condition is also necessary. Thus we have shown the following theorem.

THEOREM 4.1. MSE(Y2 | ¢;Xi/(0s +1)) > MSE(Y2_ ¢;X) for any 0 < N <

A2 < oo if and only if

o — 2pR’ a _oa+1 Ly
_ L = h 20R 1
20R' ~ (p/ +1) T c2 T az+1 when 2pR >0+

and
when 2pR' <p' +1

including the case ca = 0.

We have calculated the lower bounds of ¢; /¢s if they exist for some typical values
of a; and as and have given them in Table 2. ~

The case when ¢; = 0 corresponds to the estimation of A; and A; dominates
Xi1/(oq + 1) if and only if 2pR' < p’ + 1. Although it seems clear from Table 2 for
what values of o; and a; this condition is satisfied, we give the following analytical
result which is not the best possible in any sense.

COROLLARY 4.1. MSE(X1/(e1 + 1)) > MSE(X;) for any 0 < A\ < Xy < 00 if
a; < ag and ag > 1.

The proof is given in Appendix A.3.

From Table 2 it seems that oy > 2.5 is sufficient for 5\1 to dominate X;/(a; +1) for
any o, although by Corollary 4.1 we show that A\; dominates X; [(a1+1) if g < a9 and
ag > 1. The range of positive coefficients for which Z?zl ¢;\; dominates Z?=1 ¢ X [(o+
1) is completely determined by the ratio (a1 + 1)/(a2 + 1). If (a1 + 1)/(ag + 1) gets
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larger, the range gets larger. Thus if «; is large compared with a we can get the uniform
improvement for wide range of positive coefficients.

5. Concluding remarks

A comparison of the results given by Theorems 3.1 and 4.1 (or Tables 1 and 2) may
be in order. Although we cannot give clear explanation, we will also point out possible
reason of the difference of the two regions of ¢; /co.

(i) For any ¢; and ¢p with opposite sign both MLE and modified MLE give uniform
improvement over their competitors except for the case when «; is quite small (in case
of MLE) or a3 is quite small (in case of modified MLE). This implies that we can use
these estimators safely to estimate between component of variance in a one-way random
effects model.

(ii) Both MLE and modified MLE have larger MSE than their competitors for larger
ci/ca (e1/ca > ai/as in case of MLE and ¢;1/c2 > (a1 + 1)/(a2 + 1) in case of modified
MLE) when A2/); is sufficient large.

(iii) MLE has larger MSE than UE for the case Ay = A2 if p(2—p—R)/{(1-p)(R~
p)} < c1/ea < aq/as. We note that MLE expands UE in this case, but this does not
explain the possible improvement for the case ¢; = 0.

(iv) Modified MLE has larger MSE than its competitor for the case A\ = Ay if
—o00 L eyfea < (p —2pR')/{2pR' — (p' +1)} when 2pR’ > p’ +1. We note that modified
MLE shrinks 37, ¢;X;/(a + 1) although X;/(c; + 1) itself is a shrinkage of the UE
X i / [0 78

Next, we give some results on the comparison of the two estimators Zf___l cihi and
Z?zl ci;\i without proof. We have restricted ourselves to the case a; = ag = & because
of a technical difficulty in evaluating the risk difference by the same sort of calculations
given in Sections 3 and 4.

(1) MSE(Z?=1 cidi) > MSE(E;‘.":1 cidi) for any 0 < Ay < A if |y /ea| < 1.

(ii) For Ay = Ao, MSE(Y7_, c;ihi) < MSE(Y2_, ¢i);) if and only if

—(40? + 20 — 1) — 2(2a — 1)c1cp + (4a? + 6a + 5)c2
¢y
Eo[X21]

Eo[X11] {(402 + 60+ 5)c2 — 2(2a — 1)cicz — (40® + 2a — 1)c3} < 0.

+

In particular MSE()\) < MSE();) for A\, = g if and only if EO.(XgI)/Eo(Xll) <
(402 +2a—1)/(4a%+6a+5). By numerical evaluation we have found that this inequality
is satisfied for oy = ap > 1. Thus we see that E?zl ¢iAi does not improve Z?=1 e if
|c1/e2] is sufficiently large and oy = a2 is moderately large.

(iii) For any ¢; and ¢, MSE(Y 2, cidi) > MSE(Y2, e;h) if M1/ is sufficiently
small. Thus z;;l ¢;\; does not improve Ef___l ¢\ for any ¢; and cp.

Finally, we should mention the case of more than two populations. In case of two
populations we have partitioned the sample space into two subregions and have given
the expressions of the estimators. Even in case of three populations we have to partition
the sample space into six subregions and the expressions of the estimators become much
more complicated. Although we believe that the technique used in this paper will be
useful, we have not succeeded in obtaining explicit results unfortunately.
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Appendix
A.l. Proof of Lemma 2.2.
Let ,
X1
_ X X _ M
W—A1+>\2 and Z—£1.+)_(2.
A1 A

Then W and Z are independent random variables having Gamma(ay +oz, 1) distribution
and Beta(ay,as) one, respectively. The random variables X; and X3 can be expressed
as

Xi=MWZ, and Xo=MW({1-2)

respectively.

We first note that X; > bX, if and only if Z > bAg/(bAa + A1). If we set v =
ba/(bA2 + A1), we see that Ay < Aq if and only if v > b/(b+ 1).

Thus we have

EbX;y | X1 > bXs] =bMEW(1 - 2)|Z >+
= (g +a2)bE[l—-Z|Z>+] and
E[X; | X1 2 bXo] = MEWZ | Z > ]
= (a1 +a2)(bra+ M)A —~Y)E[Z | Z > 4].

Therefore

EpXolx,>ex,] _ EbXs | X2 2bX3] _ v BA-Z|Z>19] _ ()
EXiIx;>bx,]  E[X1|X12bXo] 1-v E[Z|Z2z2q] — 7

Since we show that T'(y) is an increasing function of - it is minimal when v =b/(b+ 1)
or A\; = A and

E[bX2 I X1 2 bXQ] > Eo[sz , X]_ Z ng] _ E{l -7 l A 2 p]
E[X:1 | X1 2 bXa] = Eo[X1| X1 > bXy] E[Z|Z > p]

Since Z is random variable with Beta distribution Beta{a;, az), we have

1
/ 2% (1 — 2)*2 14z
ElZ|Z>p =%

221711 — z)2~1gy
p

1 1
za1+1—1 1—2 a2_1dz
B(og + 1,a9) Bay +1,a3) /,, ( )

1
Bler, a2) 1 / 22711 = 2)*2 714y
B(oa,a2) J,

a;r 1-1I (01 +1,a0)
ay+oag 11— Ip(a1,a2) ’
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To show that T'(vy) is an increasing function of -y, we express it as

1
/ b 221711 — 2)*2d2
v 1=

T(1) = =1
/zal(l—z)“z_ldz

In both integrals we make the change of variable v = (1 — z)/(1 — ) and have
1
i ay,oz—1
e {1 — (1 — y)v}* 0™ N dy

T('Y) = 1
‘/0 {1—(1—~w}erv*2"dy

If we put
{1 - (1 =)o

1
/ {1 -1 =ywi*v*2tdy
0

then f(v;<) is a density function with parameter v, and T'(7y) is the expected value of
©(v;Y) = 1=(i =y and we denote it as E,[p(V;7)]. We show that f(v; <) has monotone

likelihood ratio in v. Suppose that v > +'. Then
fo37) ( 1 (1= )
floiy)  \1-(1—7)

is an increasing function of v. Furthermore, since (v;) is an increasing function of =,
we have

flu;y) =

T(y) = Ey[e(V;7)] 2 Ey[p(V5)] > Ey[p(Viy)] = T(Y).
This completes the proof.

A.2.  Proof of Corollary 3.1.
From Theorem 3.1 we see that it is enough for us to show that

p 2—-p—R
Al A S
(A1) ' l-p R-p 20
or R < 2—pif and only if oy > 1, where p = a;/(a1 + a2) and R = {1 — I,(a1 +

L a2)}/{1 — Ip(au, a2)}.
By applying an integration by parts we can easily show that

p(1 — p)°e

(o +1,p) = Ip(aly ag) — (a1 +a2)B(ag + 1,09)°

Thus we see that (A.1) is equivalent to

1 P (1 — p)oe <
1-— Ip(al,ag) (Oll +C¥2)B(Ozl -+ 1,&2) T ooy + Otg'

(A.2)
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We note that
(a1 + ag)B(al + 1,a2){1 - Ip(al,az)}

1
=0y / :c"“—l(l —x)* g
)

1 oy ~—1
1 —
= (a1 + a2)p™ (1 — p)*2 / (1 + ; pu> (1 —u)*2~1du,
0

if we make the change of variable
z—p

1=, =u.
Therefore we see that (A.2) is equivalent to the condition
1 a1 —1
1- 1
(A.3) f (1 + ”u) (1 —u)2dy > —,
0 P ()]

Since (1 + -l—;;ﬂu)"‘l‘l > 1 if and only if a3 > 1 and since

! 1
/ (1 - w)e Ly = —,
0 Q2
we see that (A.3) is true if and only if a; > 1.

A.3. Proof of Corollary 4.1.
We need only to show that if @y > @y and ag > 1, then

(A4) pR < (o' +1)/2.

By the same argument given in Appendix A.2 we can show that the inequality (A.4) is
equivalent to the one

! 1-p el 2(a1.+ 1)
A5 1 1 —u)*2 " 1dy > )
(A5) /0 ( * P u> (- u_a2(a1 +og+3)—m

If we express the left-hand side of (A.5) as :f;E[(l + 1—;fL,U)°‘1‘1], where U is a
random variable having Beta distribution Beta(l, az), then we see that the inequality
(A.5) is equivalent to the one

oA Ql—l
(A.6) E (1 + L7£U> > 2ag(a1 +1) )
0(2(0&1 + o + 3) — Q1

When oyq > 1, the left-hand side of (A.6) is greater or equal to 1, and the right-hand
side of (A.6) is less than or equal to 1, if ay > ;. When oy < 1, we first note that
1+ 1—;,31-u)"‘1‘l is a decreasing function of u. Thus we see that for as > 1 the left-hand
side of (A.6) is minimized when ay = 1. Since the right-hand side of (A.6) is a decreasing
function of ap, we need only to show the inequality (A.6) for the case az = 1. In this
case it reduces to the one {(a1 + 3)/(ay +1)}** > a; + 1 which is true for 0 < oy < 1.
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