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Abstract. In this paper, the more convenient estimators of both parameters of the
gamma distribution are proposed by using its characterization, and shown to be more
efficient than the maximum likelihood estimator and the moment estimator for small
samples. Furthermore, the distribution of the square of the sample coefficient of vari-
ation is obtained by computer simulation for some various values of the parameters
and sample size, and thus the simulated confidence interval of its shape parameter is
established.
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1. Introduction

The gamma distribution is widely used and plays an important role in the reliability
field and the survival analysis, therefore a successful estimation of its parameters will
be very important. Unfortunately, there exist some difficulties in present estimation
schemes. Maximum likelihood estimation method for its parameters are described in the
literature by Johnson and Kotz (1970), Cohen and Norgaard (1977), Cohen and Whitten
(1982), Harter and Moore (1965), Bowman et al. (1987) and Bowman and Shenton
(1988). Also some difficulties and modified MLEs are mentioned in these papers. On
the other hand, Bai et al. (1991) and Bowman and Shenton (1988) pointed out a high
degree of deviation of the estimators from the parent distribution if one uses the methods
involving the moments.

Hwang and Hu (1999, 2000) proved the independence of sample coefficient of varia-
tion V,, with sample mean X,, when random samples are drawn from gamma, distribution.
In the next section, we use this characterization to derive the expectation and the vari-
ance of V.2, and then propose the new moment estimators of the shape and the scale
parameters of gamma, distribution. Furthermore, by simulation, we compare in Section 3
the new estimators with the maximum likelihood estimator and usual moment estimator
in term of mean square error.

For finding a simulated confidence interval of the shape parameter, the simulated
distribution of V;2 will be derived in Section 4. In Hu (1990), a set of non-linear transfor-
mations of order statistics was devised to derive the sample distribution of V;,; its explicit
probability density function has been obtained only for sample size n = 3,4 and 5. In
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Hwang and Lin (2000), the detailed c.d.f.s of V;, and V,2 under exponential population
are presented for n = 3,4 and 5 only. Until now it is still difficult to derive explicitly
the sample distribution of V;2, thus simulation is used to find the sample distribution
of normalized V;? for shape parameters = 0.5,1.0,1.5,2.0 and scale parameters = 1,0.5
and 0.25 when n = 5, 10, 15, 20 and 25 respectively; it looks almost like gamma distribu-
tion for the cases mentioned above. Finally, the simulated confidence intervals for shape
parameter are established.

2. New moment estimator of parameters of the gamma distribution

For deriving new moment estimator of parameters of the gamma distribution, we
need the following theorem taken from Hu (1990) and Hwang and Hu (1999).

THEOREM 2.1. Let n > 3 and let X1,A, X, be n positive i.i.d. random variables
having a probability density function f(z). Then the independence of the sample mean
X, and the sample coefficient of variation V,, = S, /X, is equivalent to that f is a gamma
density where S, is the sample standard deviation.

The next result and Theorem 2.1 are useful in deriving the expectation and the
variance of V;2 = (8,,/X,)?, where X,, and S,, are respectively the sample mean and the
sample standard deviation.

THEOREM 2.2. Letn > 3 and let X1,A, X, be drawn from a population having a
gamma density

g(z;a, ) = F( ) z% e BT £>0,a>0,8>0.
Then
- (na + L)na
E(X’IZL) = n2,82
and

where X,, and S2 are respectively their sample mean and sample variance.

Proor. It is easy to prove that

_a ar 2 _ Var(X) _1
E(X)—ﬁY Vi (X) ,62’ |4 E2(X) a7
2.1) B(xk) = @tE- 1)ﬁ'k' (et e g k>,

and that X, has the following p.d.f.

o) = O o o

and moments

(na+k—1)--- (na+1)(na)

T for k>1.

(2.2) E(Xy) =
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Thus (2.1) and (2.2) together give the following relation:

E(S7) = (n—il‘)-E [Z(Xi - Xn)Q}
=1

= —[B(X?) - B(X2)]
a4

B2
and Theorem 2.2 is established.
Theorem 2.2 implies that the sample mean X, and the sample variance S2 are

respectively the unbiased estimator of population mean «/3 and population variance
a/B?, a property also possessed by the normal population. Thus we have the moment

estimators &, and Bm of & and S as follows:

THEOREM 2.3. Let n > 3 and let X1, A, X,, be drawn from a population having a
gamma density

{27
g(z;0,0) = %(x—)wa_le_ﬁm, z>0,a>0,6>0.

s2 n
E(2n)y_-_"
(X,%) 1+na

where X,, and S2 are respectively their sample mean and sample variance.

Then

Proor. By Theorem 2.1, we have

2 S g S 72

B _ B
Xz)  E(X2)

Applying Theorem 2.2, to the above identity yields that

S2 n
E(}‘z‘g)—Hna

and hence

and Theorem 2.3 is established.

Note that E(S2/X2) — 1 as n — oo and that 1 is the square of the coefficient
of variation. Thus S2/X?2 is an asymptotically unbiased estimator of the square of the
coefficient of variation.
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By Theorem 2.3 , V;2 is the unbiased estimator of TT5a, thus it seems reasonable to

propose Vl - ;1; as the estimator of @, namely

1 1

Qe = —-‘V2 o
n

It is easy to show that &, > 0. Therefore, by the identity E(X,) = % and moment
estimation method approach, it seems also reasonable to propose

N Ge 1 1 1
b= = (55-2)-
Xn X \VZ2 n
Note that &, — &, and ﬁc — 3,,, as n — 00, and their differences get bigger when
the sample size r2 gets smaller.
The fact that &. and ﬂc are more convenient to be computed than the maximum
likelihood estimators &z, and ,B ;, of o and S is quite trivial. For comparing the efficiency

of &, and ﬂc with &, and (g, respectively, we apply the next theorem to derive the
normalized behevior of V,,.

THEOREM 2.4. Let n > 3 and let X1, A, X,, be drawn from a population having a
gamma density

g9(z;0,8) = F(a) %7 le P £>0,a0>0,8>0.
Then
2y @ | 2na 6
(2.3) Var(S;) = iz [-———(n —1y + n]
and )
24) Var (:S’i) 2a(a+1)
: T2

(n—1) (a+%>2(a+%> (a+%>'

Proor. Since Mx(t) = (1 —t/3)™*, we have

E(X)=0a/B

E(X?) = a(a+1)/6°

E(X® = a(a+1)(a+2)/8°

E(XY = ala+1)(a+2)(a +3)/8*

and Mg (t)=(1- ﬁ,—t)‘"a gives
E(X,)=a/B

E(X§)=a(a+-1-> /ﬁ2
(o) (o2
s =a(arl) () (as2) /5"
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By using the above identities, we obtain

4 2] 2 1 2
E(S;) = Bl 1) [(n ——1)a+6(\/_— %) }

and combing the above identity and Theorem 2.2, we have
2no 6
Var(§2) = o | —o 4 2|
w58 = 5 [
Next, the independence of (52/X2)? and (X,,)? gives

E (5_4) _ B g

X:)  E(X%)
2
E(S_2>2 By M beds (v~ =)
R CHICH [C)
ar (;g—{—?é) = 20(a +1)

N2
(n——l)(a—i——) (a+g> (a+§>
n ') )
and Theorem 2.4 is established.

Theorem 2.4 implies that both Var(S2) and Var(Vz) tend to zero as n — 00. Thus
S2 and V2 are respectively consistent estimators of £; el and - for large samples. After
some computations, we find the following inequality:

4

Var(VZ) ( n8 \'_[_8
Var(S2) < <na+1) N o+ 1
n

Var (V2) < Var(S2), fB<a+ %

Furthermore, the fact that Var(V;2) — 0 as n — oo also confirms the reason: why
V,, can always considered approximately as constant for large samples, and it can be
used in checking experiment results and in estimating the standard deviation.

3. The comparison with previous estimators

In this section, the comparison of our estimators (&, ﬁc) with maximum likehihood
estimators (&r, B1) and moment estimators (Gun, Bm) would be done in terms of mean
square error by using the simulation procedures proposed by Greenwood and Durand
(1960) which improved Thom (1958). Note that (dr, Br) are more difficult to compute
than (&, Bc) and (@, Brm)-

We have done more than 100,000 times simulation for o = 0.5,1,1.5,2and § = 1,2,4
when n = 5,10, 15,20 and 25, and obtain the following conclusions:

(1) (ac,ﬁc) is the best estimators of (o, 3), (aL,,BL) the next and (G, Bm) the
worse for n < 25, and the smaller n the better (&, ﬂc)

(2) (61,Br) is the best estimators of (a, B), (6, B.) the next and (&m,Bm) the
worse for n > 25, and the larger n the better (Gy, BL)-
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4. The confidence interval for shape parameter

For deriving the confidence interval of the shape paramter, we need to study the
behavior of V,2.

By Theorem 2.3 and Theorem 2.4, we construct the normalized distribution of
V.2 under gamma distribution with various parameters values: o = 0.5,1,1.5,2 and
B =1,2,4 when n = 5,10,15 and 20 by 100,000 simulations . Its simulated c.d.f. are
presented in Hwang (2000). Comparing our simulated results with the results presented
in Hwang and Lin (2000) for @ = 1 and 8 = 1 when n = 5, they are quite same; for
example P(VZ < 1.10) = 0.7599 in Hwang and Lin (2000) while it is equal to 0.7630
in this paper. From the simulated results we conclude that V;2 looks almost like a
gamma, distribution for any «, B and any n. This conclusion is justified by both of the
Kolmogorov-Smirnov test and x? test.

Furthermore, we obtain also by simulations the frequencies of V;? falling in one
standard deviation; two standard deviation and three standard deviation interval (with
its mean as their center) respectively from Hwang (2000) for a = 0.5,1.0,1.5,2.0 and
B=1,2,4when n =5,10,15,20,25 and 30. The results are presented in Table 1. The

Table 1.

n o" 1o 20 3o

5 0.5 72.620 94.710 98.870
1.0 75.680 95.153 98.297
1.5 76.010 95.313 98.220
2.0 75.943 95.310 98.300

10 0.5 T76.920 95.340 98.287
1.0 76.323 95.530 98.440
1.5 75.717 95.467 98.433
2.0 74897 95.833 98.707

15 0.5 77.160 95.550 98.443
1.0 75.800 95.593 98.487
1.5 74.853 95.773 98.553
2.0 73.843 95.760 98.627

20 0.5 77.010 95.577 98.353
1.0 75.047 95.967 98.700
1.5 74.027 95.983 98.723
2.0 72993 95.827 98.657

25 0.5 76.813 95.657 98.410
1.0 75.037 95.977 98.647
1.5 73.227 95.680 98.730
2.0 72450 95953 98.957

30 0.5 76.233 95.623 98.460
. 1.0 73.780 95.820 98.683

1.5 72173 95.647 98.763

2.0 71990 95.697 98.803
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behavior of sample mean of V;2 is also investigated, and the conclusion is the same as
central limit theorem; this fact can be justified by any of the Kolmogorov-Smirnov test
and x? test.

By Theorem 2.1 and Theorem 2.3, we have the mean and the variance of V;? as

follows: 5
n
In) =
E (X,%) 1+ no
Sz

o2 = Var (—-—- 2alo+ 1)

X?) -1 (a#%) (‘”;22) (a+%>‘

For finding the confidence interval of a, we need to manipulate the following probabilities
for various values of « and n,

and

n 52 n
P —ko < =% < .
1”(na-i—l U‘Xﬁ‘na+1+ka>

Since it is quite difficult to derive, we present its approximate probabilities in Table 1
and the conclusions would be drawn for some values of « = 0.5,1.0,1.5,2.0, and n =
5,10,15,20,25 and 30 as follows:

n 2
P —g < 2L = (.
I‘(ncH-l 7= X2~ na+1+a\) 0.75,
n 52
- < et < (.
Pr(na+1 20_X,%‘na+1+2a> 0.95

and

na+1 -

n 52 n
P — < == <L = ().98.
r( 30‘_X% na+1+30) 0.98

Here 0.75, 0.95 and 0.98 will be assumed to be the mean probabilities respectively
for various «,8 and n. Thus the approximated 75.5%, 95% and 98% confidence intervals
for o could be concluded respectively as follows:

(

1 1 1 1 1 1 1 1 and

g2 o 52 BN I q2 o2 R
L - n 26 "’f—%—za n
Xn Xn Xn Xn

( 1 1 1 1
52 n’ S2 n
== 4+ 36 —= — 36
X2 X2

where 62 = 26o(dct1)

= DA 1) (6t E) (3.7 E) and &, is the new moment estimator of a pro-
posed by using Theorem 2.3. "
After simplification of the following probability, we write

n S2 n
P —ko <2<
1r(na+1 ka“X,%‘na+1+k0)
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X2 k 1 X2 k 1
PriZn({1- —=—)-~-<a<Z{1-—=)-=
(82( n—l) n—“—sz( n—l) n)

and the approximate 75%, 95% and 98% confidence intervals for o are

X2 k 1 X2 k 1
ket O RS Nt R SR k=1,2,3
(5 () w5 (o y) 5) Fmree

respectively for large sample.
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