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Abstract. In this article, we review, consolidate and extend a theory for sufficient
dimension reduction in regression settings. This theory provides a powerful context
for the construction, characterization and interpretation of low-dimensional displays
of the data, and allows us to turn graphics into a consistent and theoretically moti-
vated methodological body. In this spirit, we propose an iterative graphical procedure
for estimating the meta-parameter which lies at the core of sufficient dimension re-
duction; namely, the central dimension-reduction subspace.
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1. Introduction

The overarching goal of a regression analysis is to understand how the conditional
distribution of the univariate response Y given a vector X of p predictors depends on
the value assumed by X. Attention is often restricted to the mean function E(Y | X),
and perhaps the variance function Var(Y | X). In full generality, though, the object of
interest is the conditional distribution of Y | X, meant as a function of the value of X.

Graphical displays can be quite useful for investigating Y | X, especially when
an adequate parsimoniously parameterized model is not available. Graphical displays
can also be useful in the diagnostic phase of a model-based analysis, particularly when
looking for patterns in the residuals. In the past decade, much literature has been
devoted to using graphics in concert with dimension reduction. The latter is a leitmotif
of statistics. For instance, if we are given a sample 21, ..., 2z, from a normal distribution
with mean p and variance 1, we know that the sample mean Z is sufficient for p. Thus,
we can replace the n-dimensional sample with the one-dimensional mean 2z without
loss of information on x. With an analogous rationale, one can attempt to reduce the
dimension of X without losing information on Y | X, and without requiring a model for
Y | X. Borrowing terminology from classical statistics, we call this sufficient dimension
reduction. Sufficient dimension reduction has a two-fold connection with graphics: On
the one hand, it leads to the pursuit of sufficient summary plots; that is, plots containing
all of the regression information available from the sample. On the other, it provides a
clear-cut setting for applying graphical methods in such a pursuit. As we will see, these
methods employ so called supporting views.
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1.1 An introductory illustration

Consider a regression involving counterfeit Swiss bank notes (Flury and Riedwyl
(1988), p. 5). The binary response indicates a note’s authenticity: ¥ = 0 for genuine
notes and Y = 1 for counterfeit notes. There are p = 6 predictors in X, each giving a
different aspect of the size of a note: length at the top, bottom, left and right edges,
and along the diagonal and center. There are many ways to start an analysis of this
regression. For example, we might inspect a scatter-plot matrix of the predictors, with
the points marked to indicate the states of Y. Or we might begin with a logistic model,
adding or deleting terms in the model as necessary in response to graphical or non-
graphical diagnostics.

However, the idea of sufficient dimension reduction and the methods we describe
later in the paper took us down a rather different data-analytic path. Without specifying
a model for Y | X, we were able to assess that only two linear combinations of X, say
B1X and B4X, are needed to characterize Y | X fully. Letting 8 = (51, 52), this is
based on the inference that Y is independent of X given §'X, so that the conditional
distribution of Y | X and Y | 8’X are the same. In effect, we were able to reduce
the dimension of the analysis, passing from the original six predictors to (81X, 85X),
without any evidence in the data that this reduction would result in loss of information
onY | X. Since all the information about Y that is available from X is contained in
the two linear combinations, a 3D plot of Y versus (8] X, 85X) is a sufficient summary
plot for the regression. With a binary Y, this is equivalent to a 2D binary response plot
(Cook (19964)) with (31X, 85X) on the axes, and points marked to indicate the states
of Y.

In the previous description, 8; and (3> are unknown. Again using the methods we
describe later on, we estimated these vectors and hence the linear combinations b X
and b5 X. This yielded the estimated sufficient summary plot for the regression shown
in Fig. 1(a) (the values in b; and be being unimportant for the present discussion). We
thus concluded that all the information about Y that is available from X is contained
in this one plot. The bimodal distribution within the counterfeit notes could indicate a
change in the manufacturing process, or two different counterfeiting operations. Also,
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Fig. 1. Swiss bank note data. Open circles denote authentic notes; filled circles counterfeit notes.
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there appears to be a outlying authentic note, which could be a mislabeled counterfeit
note or an indication of a second low-frequency mode among the authentic notes. It
seems unlikely that we would have found this summary plot without using the graphical
methods discussed in this article. Fig. 1(b) will be discussed later.

There are a variety of approaches to the graphical exploration of regression data and
the pursuit of interesting low-dimensional projections. The approach based on sufficient
dimension reduction differs from others because it allows us to identify views that contain
all the regression information. Thus, all subsequent analysis, including model building,
can flow from the sufficient summary plot.

1.2 Things to come .

The previous illustration makes use of a body of literature devoted to dimension
reduction and graphics in regression. Although with different emphasis, vocabulary and
levels of symbolic description, much of this literature draws upon a common core of
population level concepts, results, and related inferential methods.

One aim of this article is to consolidate this core into a general and consistent frame-
work. This is accomplished translating, integrating and generalizing existing concepts,
results and methods at a new level of abstraction. Once in place, the framework allows
us to clarify the geometry of dimension reduction, and to shed light on the conditions
underlying effectiveness of various methods. Moreover, it allows us to design a new
iterative procedure that combines graphical and non-graphical methodology.

When organized in the framework we describe here, sufficient dimension reduction
provides a powerful context for the use and interpretation of low-dimensional graphical
displays of the data, establishing fundamental connections between such displays and
Y | X. In particular, we consider projective regression views. These are objects of the
type {Y,PsX}, where S is a linear subspace of IR” and Ps indicates the orthogonal
projection operator on S with respect to the standard inner product. With a slight
abuse of language, we often call {Y, PsX} a marginal view, or simply a view when no
confusion seems likely. When discussing graphical methods, we also consider special
varieties of marginal views that are obtained conditioning (i.e. restricting attention to
subpopulations), and replacing Y and/or X with properly defined residuals.

In practice, the view {Y, PsX} is constructed by plotting ¥ against plotting co-
ordinates which are just linear combinations of X determined by any basis for S. For
instance, the view shown in Fig. 1(a) can be thought of as a coordinate version of the
marginal view {Y, Ps, X}, where S, denotes the subspace spanned by {b;,b2}. The con-
cept of marginal view, which refers to a subspace of IR?, facilitates discussion of general
results, while coordinate versions of a marginal view are necessary for implementation
in practice.

Section 2 is devoted to the definition of a meta-parameter characterizing Y | X;
the central dimension-reduction subspace Sy|x C IRP. The view shown in Fig. 1(a) is
based on an estimate Syl x of the central subspace and can be described symbolically as
{Y, P§Y|XX }. In terms of our previous notation, S, = S’y, x. In Section 3, we consolidate
non-graphical methods for inference on Sy x, while Section 4 concerns graphical methods
to investigate Sy x through low-dimensional supporting views.

The new iterative procedure we propose is graphical, in the sense that it targets Sy x
by employing supporting views at each stage. At the same time, it takes advantage of
non-graphical methods, which can be used to select these views, and to enhance the
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overall performance. The procedure is first introduced in the examples of Section 4,
and further discussed later in the article. Besides its direct application to inference on
the central dimension-reduction subspace, this procedure can also be used in the more
familiar model-building phases of a regression analysis. Subsection 4.2.5 shows how it
can serve as a model-checking device when used on residuals. The bank note data are
revisited at various stages of the article, while Section 5 contains a separate data example.
We conclude with general discussion in Section 6.

Special cases and/or coordinate versions of some of the statements in this article have
been discussed in Cook (1998a). However, here we present some crucial facts as formal
propositions, and provide detailed proofs for them in a technical appendix. The goal is
to give full insight into the conditional independence reasoning, and the mathematical
machinery, that lie behind our framework.

2. Dimension reduction subspaces and sufficient views

Consider a regression with response Y € IR! and random predictor vector X € IR”.
We assume the data to consist of n iid observations from the joint distribution of (Y, X),
and that first and second moments exist. When the dimension of the predictor vector
p is larger than 2 or 3, only low-dimensional projective regression views {Y, PsX} can
be visualized in practice, so we need to determine their relationship with Y | X in order
to understand the regression information they contain. Interesting projective views can
often be found easily with modern visualization tools. For example, we encountered the
view shown in Fig. 1(b) during a preliminary visual tour of the bank note data. This
view seemed interesting, as it provides a fairly good separation between the authentic
and counterfeit notes. However, marginal views {Y, Ps X} can be misleading, unless we
know how they relate to Y | X. To resolve this issue, we study the existence of low-
dimensional projective views that provide sufficient information about the regression.
For the bank note data, an estimated sufficient view is given in Fig. 1(a).

The approach we use permits reduction to occur in terms of linear combinations
of X. In symbols, we investigate the existence of k& < p linearly independent vectors
{m,-..,nk} in IR? such that

(2.1) YIX|(mX,... ,mX)

where Il indicates independence. The statement is thus that Y is independent of X
given the k linear combinations n; X, j =1,...,k.

Let S, = Span(n1,...,M). (2.1) would equivalently hold for any other spanning
system of the subspace. We therefore prefer to write

(2.2) YLX|PsX.

Passing from the basis notation in (2.1) to the subspace notation in (2.2) moves us
away from interpretability in terms of the original predictor variables, but simplifies the
discussion and facilitates geometric understanding. In particular, it shows us that the
conditional independence we are after is a “coordinate-free” attribute of subspaces.

Let Qs, = I — Ps, be the projection on the orthogonal complement of our subspace
(throughout the rest of the article, Q(.) will always stay for I — Pyy). If (2.2) holds, then
Y | Ps,X ~Y | X and Qs,X can be neglected in all further analyses, without loss of
information on the regression. In other words, the view {Y, Ps, X} is equivalent to the
full view {Y, X}.
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We call any subspace S C IR? for which (2.2) holds a dimension-reduction subspace
(DRS) for the regression of Y on X (Li (1991), Cook (1994a)). The corresponding view
{Y, PsX} is called a sufficient view.

Note that this set-up admits as a special case sufficient variable selection, which
occurs when some of the coordinates of X can be used as the linear combinations guar-
anteeing conditional independence in (2.1)—the corresponding coordinate space can then
be used in (2.2). In symbols, partitioning X as X' = (X}, X3), sufficiency of X; (redun-
dancy of X3) is expressed by Y IL X | X, or equivalently Y Il X | X;. Interestingly,
some variable selection methods proposed for regressions with multivariate responses em-
ploy very similar notions (see McKay (1977), Fujikoshi (1982), and references therein).
If response and predictor are jointly normal, and the response is univariate, the null
hypothesis these authors consider is exactly equivalent to ¥ 1L X5 | X;.

Back to the general set-up expressed by (2.2), it is straightforward to show that the
origin {0} is a DRS for the regression of Y on X if and only if response and predictor
vector are independent (Y 1L X unconditionally). At the other extreme, any regression
admits at least one obvious DRS; namely the whole IR?. The conditional independence
in (2.2) becomes interesting when it holds for a non-obvious S which has dim(S) < p.
Most regressions admit several DRS’s and therefore several sufficient views, because any
subspace containing a DRS is itself a DRS. Naturally, we are interested in reducing the
dimension as much as possible. A subspace S,, C R? is called a minimum DRS for the
regression of Y on X if it is a DRS of minimal dimension; that is, if dim(Sy,) < dim(Sars)
for any other DRS S4, (Cook (1994a)). The corresponding view {Y, Ps,, X} is called a
minimal sufficient view. Since all regressions admit at least one DRS, they also admit
at least one minimum DRS.

Unfortunately, requiring minimal dimension is not always enough to single out a
unique subspace. Cook avoided this problem first restricting attention to regressions
with a unique minimum DRS (1994a), and then introducing a new type of space into the
picture (19945, 1996a): Consider the subspace obtained by intersecting all the DRS’s for
the regression of Y on X. If this subspace is itself a DRS, we call it the central dimension-
reduction subspace for the regression, and indicate it with Sy|x. The corresponding view
{Y, Psy x X } is called the central view, and the dimension dy|x of Sy x is called the
structural dimension; we will refer to regressions as having 0D, 1D,...,pD structure.
The view in Fig. 1(a) is exactly the estimated central view for the Swiss bank note data,
for which we inferred 2D structure; LiY! x =2.

Although the central DRS does not always exist, it does exist for a wide class of re-
gressions (see Subsection 2.2). When this space exists, it is unique by construction, and
thus constitutes a well-defined object of inference. It is important to notice that unique-
ness is achieved replacing the minimal dimension requirement dim(S,,) < dim(Sgys) with
the stronger inclusion requirement Sy x C Sars- On a technical note, if the central DRS
exists, it clearly is also the unique minimum DRS. However, one can construct examples
in which there is a unique minimum DRS, but the central DRS does not exist (see Cook
(1998a), p. 106). Cook and Weisberg (1999) recently gave an introductory account of
regression graphics based on central subspaces.

2.1 Conceptual importance of the central subspace
So far we have identified three types of subspaces, an arbitrary DRS, a minimum
DRS, and the central DRS. In his development of sliced inverse regression, Li (1991)



SUFFICIENT DIMENSION REDUCTION AND GRAPHICS 773

used an effective DRS, which was represented as the span of (81, ..., %) in the “model”
(2.3) Y = f(BiX,...,5:X,¢€)

where f is an unknown function and ¢ Il X. Effective DRS’s are similar in spirit to those
under discussion, but were not defined explicitly. Additionally, as pointed out by Cook
((1998b), rejoinder), the “model” representation in (2.3) complicates matters when the
response is binary (see Carrol and Li (1995)), as for example in the Swiss bank note
data—the problem being how to conceptualize the error € when dealing with a binary
response (Cox and Snell (1968)). Nevertheless, Li’s approach is a clear signpost in the
evolution of regression graphics.

Since Y 1L X | Ps, X, knowledge of the central DRS allows us to reduce the
whole regression analysis to ¥ on Pg, , X. Regardless of how Y depends on X, such
dependence will be entirely embodied by Ps,,, X. The issue can be turned around: the
central DRS is not affected by the way Y depends on X, as long as the dependence is
exhaustively (and minimally in terms of algebraic dimension) conveyed by the projection
Ps, xX. In particular, the definition of a central DRS does not rely on a modelforY | X.
Correspondingly, neither do the methods to investigate DRS’s that we present later in
this article. The definitions and methods are also independent of some traits of the
response’s nature, as for example being discrete as opposed to continuous. In this sense,
we can unify the treatment of all regressions for which Sy|x exists.

Our next task is to gain an understanding of this class of regressions. This is
important from a practical point of view, because inferential methods for Sy x can be
quite elusive when the central DRS does not exist in the first place. For example, suppose
a regression has two minimum DRS’s, represented by two distinct lines (1-dimensional
subspaces) of IRP. Then a method such as sliced inverse regression (Li (1991)) will be
prone to take their intersection {0} as sufficient, and hence lead us to the erroneous
conclusion that Y 1L X. Additionally, the ability to distinguish between an arbitrary
DRS and the central DRS is critically important in both theory and application.

2.2 Existence of the central subspace

Since we intend to restrict ourselves to regressions for which the central DRS exists,
we need to determine whether this class of regressions is large enough to be relevant
in practice. The following propositions characterize the class by means of sufficient
conditions (detailed proofs can be found in the technical appendix). The law of X is
denoted by Lx, and Suppx is its closed support (the intersection of all closed sets having
probability 1 under the law).

PROPOSITION 2.1. Assume that Suppx contains an open set Q with Lx(Q2) = 1.
Moreover, suppose that Y 1L X | E(Y | X), and that E(Y | X) can be expressed as an
analytic function of X, X-a.s. Then, the central DRS Sy |x for the regression of Y on
X exists.

The first condition concerns the distribution of the predictor, and is usually guar-
anteed when Lx is absolutely continuous with respect to the Lebesgue measure on IR?
(some absolutely continuous predictor distributions make exception to this rule, but they
are so peculiar as not to represent a concern in practical applications).

Second and third conditions concern the conditional distribution ¥ | X. With
Y 1L X | E(Y | X) we restrict ourselves to location regressions, in which Y depends on
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X only through the conditional mean E(Y | X). Moreover, we require the conditonal
mean to be an analytic function of the predictor.

This set-up is met by virtually all standard regression models, including generalized
linear models like logistic and Poisson regression. For instance, consider the additive-
error model Y = g(X) + ¢, with £ IL X, E(e) = 0. In this type of model all dependence
is conveyed by E(Y | X) = g(X), and g(X) is usually a relatively simple parametric
function of the X coordinates (e.g. a polynomial). As a matter of fact, the requirements
of Proposition 2.1 are looser in that they allow, for instance, heteroschedasticity as a
function of the mean: if Y = g(X) + o(g(X))e, with € IL X, E(¢) = 0, one still has
EY |X)=¢g(X)and Y ILX | g(X).

However, we wish to provide conditions for the existence of the central DRS that
do not constrain Y | X in any fashion. This is achieved in the next proposition.

PROPOSITION 2.2. Assume that Suppx contains an open and convexr set §) with
Lx(Q) = 1. Then the central DRS Sy|x exists for the regression of any response Y on
X.

Eliminating constraints on Y | X is important because of the asymmetric roles
played by the distribution of Y | X and X in regression analysis. In fact, while ¥’ | X
is the object of study, the distribution of X may be at least partially known, and may
be controllable in some studies. The condition on X we pose in Proposition 2.2 always
holds when Ly is absolutely continuous and Suppx is convex. So it holds, for example,
for any predictor with an everywhere positive density on IR”.

The above propositions generalize results first introduced by Cook ((1994a), (1996a),
Lemmas 1 and 2). These results employed similar but tighter assumptions, referred to
location regressions only, and were proved in coordinate-based and non measure theo-
retical terms. Moreover, although we use convexity in the statement of Proposition 2.2
because of its intuitive appeal, the result we prove in the Appendix is more general,
as it relies on linked sections—a condition weaker than convezity. The possibility of
guaranteeing existence through requirements other than convexity has been hinted at
elsewhere in the literature (see for example Carrol and Li (1995)). Relaxations beyond
linked sections may be possible, but no complete and rigorous argument for them has
been developed at this time.

We consider the class of regressions identified by Propositions 2.1, 2.2, and the
generalization of the latter to linked sections, to be wide enough to recover a large share
of practical applications. Also, results similar to Propositions 2.1 and 2.2 can be given
for discrete predictors. From now on we always assume the central DRS to exist.

2.3 Some properties of the central subspace
Our next step is to introduce some general properties of the central DRS, which
are employed in developing the dimension reduction methods we describe in following
sections. Coordinate versions of these properties are proved in Cook (1996a, 1998a).
First, it is easy to show that full rank affine transformations of the predictor vector
do not affect sufficient dimension reduction. If a € IR?, and A : IR? — IR? is a full rank
linear operator, then the central DRS obeys the transformation law

(24) Sylatax = (A") 7' Syix
where (A’ )“ISy| x = {(4)7'z,z € Sy|x}. In particular, the structural dimension does
not change (dy|o+ax = dy x), and the central views relative to X and a + AX are
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equivalent: A set of plotting coordinates for Ps, X can be obtained from a set of
plotting coordinates for Ps, ., ,x (a+ AX) by a translation and a linear transformation.
As an instance, consider standardization of the predictor: If ¥x = Var(X) is positive
definite, taking Z = 2}1/2(X — E(X)) we have Sy|z = 2%28y|x.

Second, we consider transformations of the response. Transforming the response
does not lead us outside the central DRS, and whenever the information picture is not
altered (that is, for bijections), the central DRS is left unchanged. In symbols

(2.5) Sq,(y)p( - Sy'x, © bijection = S‘p(y)p( = Sy|X.

An important corollary of this fact is that strictly monotone transformations of the
response normally employed to improve the appearance of plots do not affect Sy|x.

As another instance of useful response transforms, consider a binary version of the
response obtained by setting Y =1if Y > cand Y = 0 otherwise, for some constant c.
(2.5) tells us that Sy|x C Sy|x, and thus that we may be able to reconstruct a portion
of Sy|x by investigating S?I x- The advantage is that SY’I x can be investigated graph-
ically when p = 3 using 3D binary response plots (Cook (1996a); (1998a), Chapter 5).
Extensions of this idea are immediate: We can partition the range of Y into slices, L,
s = 1,...,K and define the sliced response: Y =sif Y € L,. Again, SY|X < Sy|x-
Sliced responses are used in non-graphical methods for inference on the central DRS, as
described in Section 3.

Third, we consider projections of the predictor vector. It is easy to show that
projecting X onto any DRS does not affect the central subspace. In symbols

(2.6) YL1X |PSX¢SY|PSX=SY|X-

Passing from the original view {Y, X} to the sufficient view {Y, PsX} does not affect
the regression, and hence, a fortiori, does not affect the central DRS. This intuitive
fact has far-reaching consequences, as it constitutes the basis for any rigorous formula-
tion of sequential dimension reduction procedures. We will see an instance of its use in
Subsection 4.2.4, which describes a novel iterative procedure for the estimation of Sy |x.

Having addressed the issue of existence of the central DRS, and described a few of
its properties, we now pass to non-graphical and graphical methods for making inference
on this space based on data from (Y, X). Throughout the rest of the article, we work
mostly in terms of standardized predictor Z. This involves no loss of generality because
of (2.4), and will facilitate presentation. For use in practice, Z is constructed with Xx
and E(X) replaced by the usual estimates.

3. Non-graphical methods for dimension reduction

This Section provides a unified account of four non-graphical methods for inference
on Sy|z. As we will see shortly, these methods allow us to recover linear portions of
the central DRS, i.e. lower bounds to Sy|z, estimating directions within it. From our
perspective, they are useful as pre-processors and aids to the graphical tools we describe
in Section 4.

Suppose we have a consistent estimate M of a p x m population-level kernel matriz
M, whose column span Sps = Span(M) is contained in the space of interest: Sys C Sy|z-
Then, at least a linear portion of Sy|z can be estimated based on M. Let 4q,... ,Ug

denote the left singular vectors of M ordered according to the magnitude of its singular
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values from largest to smallest, where ¢ = min(p,m). Assuming that k = dim(Sy) is
known (k < q)

SM = Span(ﬂl,..‘,ﬁ,k)

is a consistent estimate of Sps. For use in practice, k will typically need to be replaced
with an estimate k equal to the number of singular values which are inferred to be
non-zero in the population. Many existing non-graphical methods can be fit under this
umbrella, for proper specifications of the kernel matrix M, and conditions to guarantee
Sar € Sy|z.

A first instance is Ordinary Least Squares (OLS). Under the assumption that

(3.1) E(Z | Psy,Z) = Psy,, 2, Z-as.

the p x 1 kernel M = E(YE(Z | Y)) = Cov(Z,Y) belongs to Sy|z (see Li and Duan
(1989) and Cook (1998a), Proposition 8.1). Consequently, if we believe the structural
dimension to be dy|z = 1, we can take Sy| 7= Span(M ): The 2D plot of Y versus MZ
is an estimated central view. Because of (2.4), this plot is equivalent to the plot of ¥
versus the fitted values from the OLS linear regression of Y on the non-standardized X.
If the structural dimension of the regression is larger than 1, the OLS vector will still
estimate a direction within the central subspace.

A second instance is Sliced Inverse Regression (SIR), as introduced by Li (1991).
Again under assumption (3.1), the column span of the p x p kernel matrix E[E(Z |
Y)E(Z | Y)'] lies within Sy|z. SIR thus employs the “approximate” kernel M = E [E(Z |
Y)E(Z | Y)'], where Y is a sliced response as described previously. Inference methods
for the dimension of Sy are discussed in Li’s original paper, and extended by Cook
((1998a), Chapter 11).

A third instance is Sliced Avemge Variance Estimation (SAVE). Under (3.1), and
the further second moment assumption

(3.2) Var(Z | Ps, ,Z) = Qsyz» Z-as.

the column span of the p x p kernel matrix E(I — Var(Z | Y)) lies within Sy|z. Again,
a sliced version is used: M = E(I — Var(Z | Y)). SAVE was proposed by Cook and
Weisberg (1991), and developed further by Cook and Lee (1999) who discuss inference
methods for dim(Saz).

Last, Principal Hessian Directions (pHd), proposed by Li (1992) and extended by
Cook (1998b), refers to the p x p kernel matrix

M = E[(Y - E(Y))ZZ/|
= E[(Y -E(Y))E(Z|Y)E(Z|Y) - (I —Var(Z|Y))]l.

Under (3.1) and (3.2), also this matrix has a column span within Sy|z.

Cook and Lee (1999) demonstrated the common nature of these methods proving
that under (3.1) and (3.2), any linear combination and/or (weighted) averaging of E(Z |
Y), E(Z|Y)E(Z|Y) and (I — Var(Z |Y)) is guaranteed to span a subspace of Sy|z.

Condition (3.1) is equivalent to requiring that E(Z | Ps, ,Z) be linear (Cook
(1998a), p. 57), while (3.2) is equivalent to requiring that Var(Z | Ps, ,Z) be constant.
Both conditions involve Z and Y | Z through Sy|z. However, they can be guaranteed
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through stronger requirements on Z alone. For example, they hold when the predictor
is normally distributed (for further discussion see Cook ((1998a), Subsection 8.3).

While it has been demonstrated that each of these methods can perform well in
practice, they are all potentially fallible in the right situations, depending on the appro-
priateness of (3.1) and (3.2), the accuracy of the large sample methods for inference on
dim(Sys), and their intrinsic operating characteristics. However, from our perspective,
we are less concerned about the performance of these methods per se. In fact, we use
them as pre-processors to construct linear combinations of Z that are ordered based on
their likely relation to the central DRS. These new predictors are then used in concert
with the graphical methods developed in the next section.

For future reference, we will denote by {ai,...,a,} the left singular vectors of the
estimated SAVE kernel, and call a;Z , j = 1,...,p, the SAVE predictors. Similarly,
{Rhi,...,hp} will denote the left singular vectors of the estimated pHd kernel, and h;Z,
j=1,...,p will be called the pHd predictors.

4. Graphical methods for dimension reduction

This section is devoted to graphical methods for inference on Sy|z. At the core
of these methods, is the possibility of using low-dimensional supporting views as tools
to produce a DRS S; that is, a sufficient view {Y, PsZ} for the regression of Y on Z.
Our aim is then to employ supporting views iteratively, generating a sequence of nested
DRS’s, This will allows us to “approach” the central DRS from above. Moreover, we
will use non-graphical methods to aid the choice of supporting views at each stage.

We introduce results concerning three main types of supporting views; namely, con-
ditional, marginal and residual views. We discuss conditions under which they produce
DRS’s (effectiveness), details of their iterative application, and conditions that can im-
prove their performance (efficiency). The bank note data are used as running example.

In the following, the symbol @ indicates the sum of subspaces, implemented as
T®S = {t+s,t € T,s € S} (note the operation does not require NS = {0}). A simple
+ is used when adding matrices corresponding to linear operators (e.g. with orthogonal
projections, Pr + Qgs).

4.1 Using conditional views to assess sufficiency of a view

One approach to producing a DRS is to select a candidate subspace, and assess
whether it is sufficient for the regression of Y on Z. Through the use of conditional views,
we can turn this problem into assessing independence for a collection of regressions with
a low-dimensional predictor vector. The theoretical basis is provided by the following:

PROPOSITION 4.1. Let S and T be subspaces of RP such that S@®T = IRP. Then,
S is a DRS for the regression of Y on Z if and only if Y L PrZ | PsZ.

Thus, S is a DRS if and only if the regressions of ¥ on PrZ defined for each
conditioning value of PsZ, all have 0D structure. These regressions are captured by the
conditional views {Y,PrZ | PsZ}.

In practice, one considers a candidate with dim(S) = p — 1,p — 2 or possibly p —
3, and takes T with dim(T) = 1,2 or 3 as to complement it with {0} intersection.
Conditioning is approximated by “slicing” on PsZ, and considering a finite collection
of “intra-slice” regressions of Y on the low-dimensional predictor PrZ. Within each of
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Fig. 2. Two views from a pHd analysis of the Swiss bank note data. Plot (b) shows only those
points in the selection rectangle of plot (a).

the low-dimensional “intra-slice” views, 0D structure can be easily assessed by visual
inspection, as described in Cook (1994a, 1996a, 1998a) and Cook and Weisberg (1994).

Proposition 4.1 guarantees effectiveness of conditional views, posing no assumptions
on either Z or Y | Z. The price for this is two-fold: First, one has to analyze a whole
collection of low-dimensional views. Second, those low-dimensional views are constructed
by “slicing” on a possibly high-dimensional S. If dim(S) = p — dim(T’) is larger than 3,
serious practical complications due to sparseness of the data can result.

One possible choice for the complementary space is the orthogonal complement
to S, T = S1. The corresponding conditional views {Y,PrZ | PsZ} are called the
uncorrelated views for S, since Cov(PrZ,PsZ) = 0. In this respect, Proposition 4.1
generalizes the notion of uncorrelated views used by Cook and Weisberg (1994).

Returning to the bank note data, a candidate S might be chosen by using any of
the methods mentioned in Section 3, or from a visual tour using, for example, XGobi
(Swayne et al. (1998)). We selected the candidate S = Span(hi, h2) based on pHd. The
corresponding binary response plot is shown in Fig. 2(a). The issue now is whether
there is information in the data to contradict the sufficiency of this view. Accord-
ing to Proposition 4.1, we can check this possibility by studying the conditional views
{Y, PrZ | PsZ} for a suitable choice of the subspace T. We selected T' = S+, which is
the same as the 4-dimensional subspace corresponding to the remaining four pHd pre-
dictors, Span(hs, ha, hs, he). Figure 2(b) shows a projection of the 4D uncorrelated view
containing the points in the 2D slice shown in Fig. 2(a). Since Y is clearly dependent on
PrZ in this view, we can conclude that {Y, PsZ} is not sufficient.

4.2 Using a marginal view to identify a sufficient view

When p < 2, (or 3 when the response is binary or perhaps trinary) the central
subspace Sy|z can be estimated from 2D or 3D plots along the lines described in Cook
(19944, 1996a, 1998a, Chapters. 4-5) and Cook and Weisberg ((1994), Chapters. 6-
8). The methods for these low-dimensional settings are straightforward and free of
assumptions, because of our ability to view {Y, Z} fully. In the following, we use them
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on low-dimensional marginal views to gain information on Sy|z when p > 2.

The approach we describe here is an alternative to the use of conditional views.
Through the use of a marginal view, we can turn the problem of identifying a DRS for
the regression of Y on Z into that of identifying the central DRS for a regression with
a low-dimensional predictor vector. The idea is to select a low-dimensional subspace T,
which plays the role of a sort of “reduction window”. Then, we find the central subspace
Sy|pyz for the regression of Y on PrZ, applying the methods referenced above to a
coordinate version of the marginal view {Y, PrZ}. Last, we piece together Sy|p,.z and
the complement of 7. Under a crucial assumption we discuss below, this piecing together
produces a DRS for Y on the whole Z.

For dimension reduction within a low-dimensional marginal view {Y, PrZ} to be
useful in the identification of a DRS for Y on Z, and ultimately in the pursuit of the
overall central subspace, we must clarify the relation between Sy|p.z, the subspace that
we can estimate straightforwardly, and Sy |z itself. The next proposition is our first step
in this direction.

ProrosiTION 4.2. For any subspace T C lR,p, SYIPTZ C PTSy|Z D SPVZ|PTZ
where, for notational convenience, V is the projection of Sy|z onto TL: e V =
QrSy|z-

This proposition expresses a fully general property of marginal views. The inclusion
means that PrSy|z ® Sp, z|p,z is a DRS for the regression of Y on PrZ. The marginal
central DRS Sy|p,z can depend on Y | Z via the coordinate subspace PrSy,z, and on
Z via Spy, z|pyz, the central DRS for the regression of PvZ on PrZ, which we call the
predictor subspace. What we would like, is to use the marginal central DRS Sy |p,.z to
infer about the coordinate subspace PrSy|z, which would then tell us something useful
about the overall central subspace Sy|z.

Before proceeding, we illustrate the meaning of Proposition 4.2 through a small
example: Consider the typical linear regression Y ~ ap + 04Z + €, € IL Z, E(e) =
0. Following (2.1), the central DRS is Sy|z = Span(c). Within the marginal view
{Y, PrZ} the mean function is

(41) E(Y l PTZ) = (g + (PTal)’Z + E[(QTal)’Z [ PTZ]

We see clearly how the coordinate subspace PrSy|z = PrSpan(a; ) captures the term
(Pro1)'Z. The term E[(Qra1)'Z | PrZ), on the other hand, is captured by the predictor
subspace Sp, z|pyz- In fact, here V = QrSy|z = QrSpan(a1).
4.2.1 Marginal consistency

Proposition 4.2 allows for the possibility that the marginal central DRS Sy |p,z is
a proper subset of PrSy|z @ Sp, z|p,z- In particular, it allows for the possibility that
the marginal central DRS does not contain the coordinate subspace: PrSy|z € Sy|pyz-
In this case, an investigation of the marginal central DRS in {Y, PrZ} will miss part
of the coordinate subspace. On the other hand, if one has equality in Proposition 4.2
Sy|prz = PrSy|z ® Sp, z|prz or more generally if

(4.2) Sy|\prz 2 PrSy|z

the marginal view {Y, PrZ} contains all the information that is relevant to the coordinate
subspace. We call this the marginal consistency assumption.



780 FRANCESCA CHIAROMONTE AND R. DENNIS COOK

Marginal consistency is the key condition for effectiveness of a marginal view. In fact,
under (4.2), the space obtained piecing together the marginal DRS and the complement
of T' contains the overall central subspace

S = Sy|prz ®T* 2 PrSy|z ®T+ 2 Sy|z

and is therefore a DRS for the regression of Y on Z. As a consequence, we can use
the marginal view {Y, PrZ} to identify the central DRS for Y on PrZ, and construct a
sufficient view for Y on Z as

(4‘3) {Y7 (PSY|PTZ + QT)Z}'

Marginal consistency is a fairly weak condition, likely to hold in most cases of practical in-
terest. For example, in the typical linear regression example introduced above, PrSy|z =
PrSpan(ay) € Sy|p,z cannot occur, because of the term (Pray)'Z = (Proq) (PrZ) in
the mean function (4.1). Whenever this term is not 0, PrSpan(a;) € Sy|p,z. Moreover,
the term will be 0 if and only if the subspace T is orthogonal to Sy|z, i.e. Pra; =0, in
which case PrSpan(a;) = {0} C Sy|p,z holds trivially—note that by using a standard-
ized predictor vector we are assuming its non-singularity, but if Z were singular and 7'
orthogonal to its linear support, i.e. PrZ = 0, Z € T+ would imply Syjz C T+, and
therefore again Praj = 0.

In general, PrSy|z = PrSpan(a;) € Sy|prz would imply existence of a direction
7 that is relevant to the regression of Y on Z, is not annihilated by the marginalization
(Prn # 0), and yet becomes irrelevant when considering the regression of Y on PrZ.
Loss of relevant directions by marginalization is not impossible, but requires peculiar
combinations of regression structure and predictor distribution. The regression of ¥ on
Ps,,,Z is irreducible by construction, in the sense that (see (2.6)) Sy Psy 2 = Sy|z.
Instances in which (4.2) fails can be constructed if this irreducible, and often very low-
dimensional, “core” of the original regression admits some reducible marginals. For
example, suppose there were a subspace W C Sy|z such that Y Il Pw Z. Because of irre-
ducibility, Y and Py Z cannot be conditionally independent given Py, 15y ; Z; otherwise
Y LPs, ,Z | Pyyisy)z Z and Wiz C Sy|z would be a dimension reduction subspace
for the regression because of (2.6). But at the same time, Y and Py Z are marginally
independent. For any subspace contained in this “special” marginal independence region
within the central space of the regression, TC W C Sy|z, we would then have

YIPywZ < Sy‘pTZ = {0}, PTSY|Z =T.

This type of situation is seldom in applications, especially since it ought to pertain
not to the original regression, with all its potential redundancies, but to its irreducible
“core”. Moreover, coexistence of marginal independence and conditional dependence,
when it occurs, is often conveyed by dependencies among the predictors themselves.
Thus, working in terms of the standardized Z, which eliminates linear dependencies
among predictors, reduces the chances of (4.2) failing—advantages of standardization
will be discussed again relative to efficiency of marginal views in Subsection 4.2.6.

Assuming (4.2), we now illustrate how the above results can be exploited in practice
through an iterative strategy. Non-graphical methods are employed to aid the choice of
marginal view at each stage.



SUFFICIENT DIMENSION REDUCTION AND GRAPHICS 781

4.2.2 Bank note data using iterated marginal views based on SAVE

Our estimated central view {Y, (0] X,0,X)} in Fig. 1(a) contains the first two SAVE
predictors: b} X = a{Z and b4X = apZ, apart from additive constants that can be
neglected because of the affine invariance in (2.4). We next describe how we reached this
as conclusion, assuming marginal consistency (4.2).

We used the last three SAVE predictors to form T = Span(a4,as,ag), our first
“reduction window”, and thus {Y, PrZ}, our first marginal view. A corresponding co-
ordinate version is given by the 3D binary response plot of Y versus (a}Z,a5Z,a57).
We found no visual evidence of dependence, because the relative density of authentic
notes appeared uniform throughout the plot (see Cook (1996a) for more details on the
interpretation of binary response plots). Thus, we inferred that Y Il PrZ, i.e. that
§y|pTZ = {0}. Using (4.2), this allowed us to take

S1 = S’y|pTZ & T+ = {0} D T+ = Span(al, as, a3)

as a DRS for the regression of Y on Z.

Because of (2.6), we know that the search for the central DRS can be restricted
to any DRS. Thus, we passed to the regression of Y on Pg, Z. This can be visualized
directly in the 3D binary response plot of Y versus the first three SAVE predictors
(a1Z,a4Z,a3Z); we inferred 2D structure with Sy = .§'y| ps,z = Span(ai,az) which
constitutes a second DRS for the overall regression, Sz C S1. The regression of ¥ on
Ps,Z could not be reduced any further, so we set Sy z = Sy Ps,Z = Span(ay, ag) itself.
This resulted in the estimated central view in Fig. 1(a).

4.2.3 Bank note data using iterated marginal views based on pHd

We now turn to a similar analysis based on pHd. Taking the last three pHd pre-
dictors to form the first “reduction window” T = Span(hg4, hs, he), we found clear ev-
idence of marginal dependence in the corresponding 3D binary response plot of Y on
(hyZ,hsZ,hiZ). Thus we inferred that Span(hi, bz, ha) is not sufficient. Here, assuming
that (4.2) holds in Z, we were able to go a step further by estimating Sy |p;z and hence
constructing a DRS through (4.3). Using again methods described in Cook (1996a), we
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Fig. 3. Two views from a pHd analysis of the Swiss bank note data under condition (4.2);
h)seZ is on the horizontal screen axis of (a).
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inferred that dim(Sy|p,z) = 1, and replaced (h4, hs, he) with a single linear combination
of them, hyse: S'y| prz = Span(hase). Figure 3(a) shows a projection of the 3D binary
response plot of Y versus (h}Z, hiZ, hi; Z) with hly;4Z on the screen horizontal axis. This
allowed us to take

Sy = Sy|ppz ® T+ = Span(hase, h1, ha, hs)

as a DRS for the regression of Y on Z.

Because of (2.6), we next considered the regression of Y on Ps, Z. Since this can
not yet be visualized directly, we iterated the above reasoning within S;. We formed
our second “reduction window” as T' = Span(hase, ho, hg). The corresponding 3D binary
response plot of Y on (h}Z,hiZ, hgZ) presented again 1D structure, with SY] Prz =
Span{h2sase). Hence, we took

Sy = S'YIPTZ @ T*5 = Span(h1, haaass)

as anew DRS for Y on Z, contained in the one identified at the first stage; So C S;. The
resulting regression, Y on Ps,Z, can be visualized directly in the 2D binary response
plot of Y versus (k] Z, hy3456Z). Since this could not be reduced any further, we set

Syiz = SYIPS2Z = Span(hi, hasase)

itself. This resulted in the estimated central view in Fig. 3(b) which, aside from orien-
tation, is nearly identical to SAVE’s estimated central view in Fig. 1(a).
4.2.4 Iterating

In Subsections 4.2.2 and 4.2.3 we saw how estimation of the central DRS can be
approached iteratively by estimating a sequence of nested DRS’s for the regression on
Y on Z. At the population level, this is justified by (2.6), which indicates that the
search for Sy|z can be performed within any sufficient view {Y, PsZ}. From a practical
standpoint, it is interesting because, even when operating in large dimension, DRS’s can
be identified using low-dimensional marginal views under the sole marginal consistency
assumption (4.2).

We produce a first DRS S; for Y on Z chosing a subspace T' C IR?, and using the
view {Y, PrZ}. We then restrict ourselves to the regression of Y on Ps, Z, and produce a
DRS S, for the latter chosing a subspace T' C S, and using the view {Y, PrZ}. Iterating
the procedure we generate a sequence of nested DRS’s S; 2 Sz--- D S; descending
towards the central DRS. Iteration is continued until an irreducible regression is reached.
In fact, if Y on Ps,Z does not admit a DRS strictly contained in S;, then Sy|z = S; by
construction.

At any iteration stage, the subspace T corresponds to the “reduction window”,
i.e. the linear region of the current DRS within which we attempt a further reduction.
Although the T’s could in principle be taken in any fashion, e.g. at random, we cus-
tomarily use the ranked directions produced by a non-graphical method, as SAVE or
pHd. In other words, we attempt reduction in linear regions spanned by low-ranking
directions, as those are the ones less likely to be relevant to the regression (i.e. to contain
a portion of Sy|z). The ways in which directions produced by non-graphical methods
can be used to improve the performance of an iterative graphical investigation will be
further discussed in Subsection 4.4.

In practice, if dim(S;) < 2 (or 3 when the response is binary) we can positively
asses irreducibility because we can visualize {Y, Ps, Z} directly. This is what happened
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in the bank note example: we were able to proceed all the way down to a 2-dimensional
subspace, at which point irreducibility could be checked by direct visualization.

On the other hand, suppose at stage t of the iteration, with dim(S;) still too large
for direct visualization, we found Sy|p,z = T. In this situation, we are stuck with
T @ T15 = S, itself. We do know that our current space, being a DRS, contains the
central DRS; Sy|z C S;. However, Sy p.z = T is not enough to conclude that Sy|p, z,
and therefore that Sy|z coincides with S;. Whatever approach we used to select T (even
if we used the ranked directions of a non-graphical method), we might just have gotten
the wrong “reduction window”; that is, a viewpoint from which we could not see that
the central DRS is smaller than the current S;. In such a situation, if indeed Sy|z C S,
attempting reduction with several T’s (i.e. considering several viewpoints) could lead us
to by-pass the obstacle. Conversely, finding Sy|p,z = T for several T’s in S; enforces
our confidence that Sy|z = St, but does not yet guarantee equality.

Another important issue here is the dimensionality of our “reduction window(s)”.
Ceteris paribus, the larger dim(7T"), the lower the chances that a strict containment
Sy|z C St will not show when we view the data from T'. This motivates taking dim(7T")
as large as practically possible with the available software. A second rationale is that the
variability along the response axis in {Y, PrZ} tends to be larger the smaller dim(T"). As
an illustration, consider two nested subspaces T C T. Reasoning in the familiar terms
of variability partitioning

EVar(Y | PrZ)] = Var(Y) — Var[E(Y | PrZ)]
< Var(Y) — Var[E(Y | Ps2)] = E[Var(Y | Ps2)).

Hence, dim(T") should be large to maximize visual accuracy in detecting dependencies.

In his development of pHd, Li ((1992), Section 6) suggested that under certain
conditions it may be desirable to inspect all possible p(p — 1)/2 coordinate views of
the form {Y,(h{Z,h;Z)} in an effort to identify the linear combinations driving the
regression. The procedure proposed here is quite different, requiring fewer assumptions
and fewer plots. As the bank note example illustrates, we may be able to reach the
estimated central view by inspecting only p/2 plots, which is considerably less than the
number suggested by Li. Moreover, the possibility of premature termination can be
eliminated in many circumstances. We will come back to this issue several times in the
reminder of the paper.
4.2.5 Assessing independence between response and predictors: an application of the

iterative procedure to residual analysis

In the procedure described in Subsection 4.2.4, iteration proceeds all the way down
to Sy|z when its dimension is dy|z = 0. In other words, our iterative procedure always
“recognizes” situations in which Y Il Z. Formally, this means that reaching S; = {0}
is a necessary and sufficient condition for declaring Sy|z = {0}. Sufficiency is straight-
forward: S; = {0} implies Sy|z = {0} because we traveling along DRS’s guarantees
S¢ 2 Sy|z. Necessity is the crucial point here, as it means that we will indeed travel all
the way down to {0} without incurring in premature termination. This is guaranteed
by the fact that if Y Il Z, then Y 1L PrZ for any subspace T'; that is, if Sy|z = {0}, we
will find Sy|p,z = {0} for any choice of “reduction window” T" along the way, and thus
necessarily keep reducing our current DRS all the way down to S; = {0}.

A lengthier argument can be given here, that emphasises the roles of coordinate
and predictor spaces introduced near Proposition 4.2 (this type of reasoning will be
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used when discussing premature termination in a later section). Assume again that
Sy|z = {0}. Then, for any choice of T', the coordinate space is PrSy|z = {0}. Moreover
V = QrSy|z = {0}, and therefore the predictor space is Sp,, z|prz = So|prz = {0}.
Now Sy|p,z = {0} follows immediately from Proposition 4.2. In other words, when
Sy|z = {0}, regardless of the selected “reduction window” T', we have that (a) the
coordinate subspace PrSy|z cannot be misleading on the dimension of Sy|z, and (b) the
predictor subspace cannot affect {Y, PrZ} by “inflating” Sy|pyz with respect to PrSy|z.

This capability of reliably recognizing independence allows us to use the iterative
procedure in residual analysis. Suppose we have a model for Y on Z, with the usual
property that the model is correct if and only if its population residual r is r 1L Z. Diag-
nostics for model adequacy is often performed in practice by plotting sample residuals
versus individual predictor variables or fitted values, in effect checking whether r 1L b'Z
(i.e. Sppz = {0}) for a few selected values of the vector b, which is not enough to
conclude 7 L Z (i.e. S,z = {0}).

On the other hand, assuming marginal consistency ((4.2) with r in place of Y)
for the regression of r on Z, the iterative procedure provides a necessary and sufficient
condition for the model to be correct: S,z = {0} if and only if we reach S; = {0}.
The possibility of developing a graphical procedure for exhaustive model checking was
discussed by Cook and Wetzel (1993) and Cook (1994a).

4.2.6 Refinements: efficient marginal views and improved iteration

In this section we consider various situations that can improve the performance of
a graphical analysis, and we explain one reason why working in the Z scale is desirable.

Whenever marginal consistency (4.2) holds, a marginal view {Y, PrZ} is effective,
because it contains all the information relative to the coordinate subspace PrSy)z.
This is what allows us to take S = Sy|p.z ® T1 as a DRS for Y on Z. However, the
marginal view can be affected by the distribution of Z, as well as by Y | Z. Following
Proposition 4.2, even under (4.2), the marginal central DRS Sy |p,.z can be anywhere
between PrSy|z and PrSy|z ® Spyz|prz- A large predictor space allows Sy|p,z to
exceed PrSy,z substantially, which in turn makes the marginal view unefficient, in the
sense that the DRS it produces might be larger than it needs to be. At the extreme,
we can have Sy|p,z = T even if PrSy|z = {0}. It is therefore desirable to limit the
potential predictor contribution to the marginal view, by reducing the dimension of
Spyz|Prz-

Since there are no linear dependencies within the standardized predictor Z, we
would expect the dimension of a predictor subspace in Z to be less than the dimension
of the corresponding subspace in X. Thus, working in terms of Z will usually facilitate
the analysis without loss of generality or introduction of constraints.

Ideally, we would like Sp, z|p,z € PrSy|z- In this case Sy|prz C PrSy | x; that is,
the marginal view {Y, PrZ} contains only information that is relevant to the coordinate
subspace PrSy|x. This, combined with marginal consistency (4.2), gives an efficient
marginal view defined as one in which Sy|p,z = PrSyx. When using an efficient
marginal view, one achieves the largest dimension reduction allowed by the chosen “re-
duction window” T. Generalizing Lemma 4.1 in Cook (1994a), the desired inclusion is
achieved when C = PrSy |z is a DRS for the regression of PyZ on PrZ. In symbols

PVZJLPTZ | Pcz = SYIPTZ C PTSy[Z.

This condition involves both Z and the conditional distribution of Y | Z via the central
subspace Sy|z. We can eliminate the involvement of ¥’ | Z by adding to the constraints
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on Z:
(44) QTZ.ILPTZ = SY|PTZ C PTSylz.

Here Q7Z I PrZ ensures that Sp, z{p.z = {0}, regardless of Sy|z and V' = QrSy|z-
In particular, if Z is normal, QrZ 1L PrZ holds for any choice of subspace 7. It is
important to stress that predictor normality is not related to effectiveness of marginal
views, which relies on (4.2) alone. The bank note predictors are clearly not normal, for
example. Normality guarantees efficiency, and is therefore a desirable but not a necessary
condition for our graphical analysis.

In terms of the iterative procedure, efficiency accelerates the descent towards Sy|z.
Moreover, it allows us to make progress on premature termination: If the marginal views
employed at each stage are efficient and based on “reduction windows” that exceed the
dimension of the central subspace, then iteration is guaranteed to proceed all the way
down to Sy|z. The argument for this is as follows: (a) If dim(T) > dy)z the coordinate
subspace cannot be misleading about the dimension of Sy|z, because PrSy|z C T. (b)
Efficiency removes the predictor space from the picture, ensuring Sy|p.z = PrSy|z-
Thus, Sy|p,z C T. For example, employing marginal views with dim(T) = 2 we will
reach Sy|z when dy|z = 0 or 1. And when the response is binary, with dim(7T") = 3 we
will reach the central DRS when its dimension is 0,1 or even 2.

This discussion has another important consequence. Suppose we got stuck at Sy with
dim(S,) still too large for direct visualization. While it could still be that Sy z C S;
strictly, efficient views would allow us to positively conclude that dy|z > dim(T).

4.3 Using residual views instead of marginal views

In this section we introduce the use of various residuals as another means of refining
our graphical analysis. Consider again a low-dimensional subspace T, define the predictor
residual

T2 =Tprz|Qrz = PrZ — E(PrZ | QrZ) €T

and let w(Y, @ Z) be a function of Y and QrZ, which is to play the role of a “working
response”. This could be a second residual from a fit of Y on Q7Z. We now introduce the
analogue of marginal consistency in this setting. Suppose we had (residual consistency
assumption)

(45) Sw|r1|2 2 PTSY|Z

then S = Sy, ® T1 would provide a DRS for the regression of Y on Z in the same
way that Sy|p.z @ T+ provided a DRS following (4.2). Consequently, we could use
the residual view {w(Y,QrZ),r1j2} to identify the central DRS for w on 7y, and then
construct a sufficient view for Y on Z as

{Y, (Pswlr1|2 + QT)Z}.

We have again turned the problem into identifying the central DRS for a regression with
a low-dimensional predictor vector. The effectiveness of a residual view is guaranteed
by condition (4.5), which is similar to condition (4.2), and can be interpreted along the
same lines. The difference is that in (4.2) we define the marginal central DRS through
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the regression of Y on PrZ, while in (4.5) we define it through the regression of w on
the residual 71j5. Under (4.5), residual views can be used in the same way as marginal
views were used in Subsections 4.2.2-4.2.5.

Like marginal views, residual views can be inefficient, albeit effective, under their
consistency assumption. But there are situations in which we can guarantee the inclusion
Swlry2 € PrSy|z, and therefore equality under (4.5):

PROPOSITION 4.3. Let T C RP. If PrSyz is a DRS for the regression of QrZ
on ry|2, then Sw|7‘112 - PTSYIZ-

As for marginal views, we can add to the constraints on Z to avoid involving Y | Z
through Sy,z. For example

(46) QTZ.J.I_T]_IQ = Swl"‘1|2 C PTSY|Z-

Residual views are generally preferable to marginal views because they remain efficient
under a wider variety of dependencies among the predictor variables. Regardless of the
choice of w, the condition Q7 Z 1L PrZ in (4.4) is more restrictive than the corresponding
condition QrZ L 7y in (4.6). As a special case, if Z is normal the two conditions are
equivalent since ) = PrZ, and hold for any T'

Concerning the choice of w, one possibility is to stay with the original response,
w(Y,QrZ) =Y, and hence consider {Y,r|2}. However, other specifications are possible.
In particular, if w(-, QrZ) is a bijection Z-a.s., the marginal central DRS’s coincide due to
(2.5); Swlrijz = SY|rya- Thus, there is no loss of information on the coordinate subspace
PrSy|z when passing from {Y,ry2} to {w,71)2}, and the same residual consistency
assumption works for both cases; S‘,,|,.1|2 = Sy|r1|2 2 PrSyz.

The above discussion has an interesting practical consequence, which further in-
creases the appeal of residual views. When we try to identify the central DRS in a
low-dimensional view, the spread of the data along the response axis affects the resolu-
tion with which we are able to discern dependency patterns, and thus the accuracy of
our visual investigation. If the view in question is a residual view, and if we can find a
bijection such that Var(w(Y, @72)) < Var(Y), switching from {Y, 72} to {w,ry2} will
improve resolution at no cost because all the information on PrSy|z is retained.

Consider w(Y,QrZ) = ey|s, the residual from the population OLS linear regression
of Y on Q7Z. This transformation reduces (or leaves unchanged) the variation. If Z is
normal, ey is a bijection in Y. Moreover, the residual from the OLS linear regression
of PrZ on QrZ is ey = r1)2 = PrZ. Applying (4.6) and imposing consistency we have
then

(4.7 Seypo|Prz = PrSy|z

which allows us to use {ey2, PrZ} as residual view: {Y, (PSCYIQIPTZ +Qr)Z} will be a
sufficient view for the regression of Y on Z. This represents a novel application of added-
variable plots (AVP’s). In the standard use, an AVP serves to explore the dependence of
Y on PrZ after QrX (See Cook (1996b) for an introduction to the literature). Notice
that using {ey|2, PrZ} as residual view does not require modeling assumptions on the
conditional distribution of ¥ | QrX (the OLS linear regression used to generate ey|o
need not be the correct model).
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4.4 Where not to look: (non-graphical) lower bounds and further improvements on
iteration

In this section, we go back to the issue of premature termination of the iterative
procedure presented in Subsections 4.2.2-4.2.5, and show how the situation can be im-
proved if we know a lower bound to the central DRS, say S(z) € Sy|z. This knowledge
tells us where we should positively not be looking when attempting reduction, and thus
allows us to modify the procedure by limiting ourselves to the complementary linear
region.

At stage t, let S; indicate the current DRS, and R = S(lL“i‘ the orthogonal com-
plement of the lower bound within S;. Suppose S is still too large for us to look at
{Y, Ps,Z}, but the portion of the space complementary to the lower bound is actually
small, so that we can visualize {Y, PrZ} directly. In other words, suppose that the
difference dim(S;) — dim(S(r)) is < 2 (or 3 if the response is binary). Then we can
positively assess irreducibility inspecting the second view. In fact, since Sy C Sy|z,
SYIPS,Z = St if and only if Sy|pRZ = R.

A similar logic allows us to extend the discussion at the end of Subsection 4.2.6 to
cases in which an Sy, is available. If we select a “reduction window” that is orthogonal to
the lower bound within the current DRS, T' C R, then the coordinate subspace PrSy |z
cannot be misleading about the dimension of Sy |z, as long as dim(T") > dy|z—dim(5 L)
Adding efficiency to remove potential predictor space effects, we have the following: If
the marginal views employed at each stage are efficient, orthogonal to the lower bound,
and based on “reduction windows” that exceed the dimension of the unknown portion
S(lLSY‘Z , then iteration is guaranteed to proceed all the way down to Sy|z.

In Section 3 we saw how non-graphical methods can be used to estimate directions in
the central DRS, and thus lower bounds for it. For example, under the linearity condition
(3.1), the OLS direction is in the central DRS. Suppose the distribution of Z is such that
linearity and efficiency of marginal views hold. Then, taking Sy = Span(Cov(Z,Y))
and employing 2-dimensional “reduction windows” selected in its orthogonal complement
at each iteration stage, we will reach Sy|z when dy|z = 0,1 or 2. And if the response is
binary, so that we can increase the dimension of our “reduction windows” to 3, we will
reach the central DRS when dy |z = 0,1,2 or even 3.

Potentially stricter lower bounds Sjs C Sy|z could be obtained through the other
non-graphical methods we mentioned, but besides the stronger requirements on Z, their
reliability would depend crucially on the accuracy of the inference concerning dim(Ss).
The example in the next section employs the iterative procedure with residual views in
place of marginal views, and the OLS lower bound.

5. The reaction yield data

Box and Draper ((1987), p. 368) reported 32 observations on the percentage yield
Y from a two-stage chemical process characterized by temperatures Ty, T5 (in degrees
Celsius), log reaction times log(t1), log(t2) at the two stages, and percent concentration
C of one of the reactants. Previous studies using steepest ascent indicated that the
maximum yield was likely to be found in the region of the factor space covered by the
experiment. Accordingly, Box and Draper fitted a full second-order response surface in
the five predictors X1 = Tl, X2 = log(tl), X3 = C, X4 = T2 and X5 = log(tg).

Cook (19984a,1998b), and Cheng and Li (1995) analyzed these data with different
versions of pHd. Using tests on the singular values of pHd’s M, Cook concluded that the



788 FRANCESCA CHIAROMONTE AND R. DENNIS COOK

regression of Y on X has 2D structure. Cheng and Li effectively based their analysis on
an assumption of at most 2D structure at the outset. Working in the Z-scale, we revisit
these data, arguing that our graphical approach identifies a third relevant dimension.

We assume (4.2) and (4.5) to hold whenever needed. The scatter-plot matrix of the
predictors showed no notable nonlinearities, and hence no evidence against the linearity
condition (3.1) and efficiency. See Cook (1998b) for further discussion of the behavior of
the predictors in these data.

We started the analysis by obtaining the sample coefficient vector by from the OLS
linear regression of Y on Z; under the linearity condition, this estimates the direction in
Sy|z that corresponds to the linear trend, as discussed in Section 3. Next, following Cook
(1998b), we applied pHd to the regression of the residuals Y — b4 Z on Z and obtained
the vectors hj, j =1,...,5. These have a reasonable chance of spanning directions that
correspond to curvature in the data, although whether they do so or not will not affect
the overall effectiveness of our graphical analysis. Finally, we sequentially orthogonalized
the first four pHd directions against by to obtain an orthonormal basis of IR® consisting
of the five vectors bj, j =0,...,4. Here, b; is the projection of hy onto Span(bg)™, bs is
the projection of hy onto Span(bg,b;)* and so on. The 3D plot of Y against (b Z, b} Z)
is quite similar to the summary plots found by Cook (19984,1998b) and Cheng and Li
(1995). Figure 4 contains the two marginal views {Y,b3Z} and {Y,b; Z}.

For the first iteration, we took T" = Span(bs,bs) C Span(bp)*, and constructed a
coordinate version of the corresponding view as the 3D plot of Y versus (b3Z,b5Z). The
plot was difficult to interpret, so to improve resolution we replaced Y with the residuals
w from fitting the full second-order model in byZ, b1 Z and b5Z. Using the methods
discussed by Cook ((1998a), Chapter 4), analysis of the 3D plot of wy versus (b3Z,b;Z)
resulted in an inference of 1D structure, with Sw1| prz = Span(b3, Z). The correspondlng
central view {wi,b4,Z} is shown in Fig. 5(a). Thus, we took S; = Sw1| prz ® T+
Span(bo, b1, b2, b34) as a DRS for Y on Z, and restricted ourselves to a regression Wlth
four rather than five predictors.

For the second iteration, we took T = Span(by,bss) C Span(by)'1. Repeating

S o
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Fig. 4. Two marginal views from the reaction yield data.
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Fig. 5. Central views extracted from the 3D residual views (lowess smooths superimposed).
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Fig. 6. Two dichotomized-response views from the central subspace Sy(z (x = high-response
points). Reaction yield data.

the analysis of the first iteration, we once again inferred 1D structure with 5'“,2‘ PrzZ =
Span(bs4Z). The corresponding central view is shown in Fig. 5(b). Consequently, we
took S = Span(bg, b1, b234) as a DRS. At this point, although we were not yet in the
position of visualizing Y on Ps, Z, we could visualize directly what was left between the
lower bound Span(by) and So; that is, Span(by, begs) = Span(bg)1 2. Analyzing the 3D
plot of Y versus (b} Z,b4347), we inferred 2D structure. This allowed us to positively
conclude that Y on S5 is irreducible, and therefore to take S’y] z = Span(bg, by, b23s). To
illustrate the need for a third dimension after by and by, we passed to a binary version Y
of the response that isolates the eight observations with highest Y. We then constructed
the 3D binary response plot of Y versus (b} Z, b, Z, bys, Z). Figure 6 shows two projections
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of this plot. In Fig. 6(a), which corresponds to the solutions of Cook (1998b) and Cheng
and Li (1995), high-response points are intertwined with low-response points, and no
clear spatial separation seems possible. On the other hand, if we rotate using the third
direction bags, we get to the view shown in Fig. 6(b) which gives a perfect spatial mapping
of the maximum yield: The eight high-response points are concentrated in a small region,
and the low-response ones are scattered around it.

6. Discussion

As we mentioned in the Introduction, there are a variety of approaches to the graph-
ical exploration of regression data, and the pursuit of interesting low-dimensional views.
Our basic premise in this article is that the usefulness of modern graphics might be
greatly increased if one could recognize situations in which low-dimensional views pro-
vide exhaustive information on the regression. The ability to recognize such situations
requires a context for connecting the graphics with the statistics.

The one we proposed relies on the idea of sufficiency, and has at its core a meta-
parameter named the central dimension-reduction subspace. We devoted most of our
attention to graphical inference methods for it; that is, to procedures that pursue the
central view by means of other low-dimensional views. But we addressed non-graphical
methods, and showed how they can be used to enhance the graphical analysis.

The context we described is quite broad; it requires few scope-limiting conditions,
most of which can be guaranteed through the predictor distribution. While the concepts
and inference procedures in this article can be effectively applied to model-checking,
they do not rely upon the introduction of a model, or more generally on substantial
constraints on the form of Y | X. Because of this, reduction to Sy|x can be interpreted
as the “phase-0” of a regression study, after which the modeling effort can be guided by
the estimated central view. Without any loss of information, the usual practice of model
construction and selection will begin where dimension reduction ends.

Throughout our discussion, the term “low-dimensional” referred to a view small
enough to be visualized directly. In practice, with one axis devoted to the response, this
means dimension < 2 for the predictor, or possibly < 3 when the response is binary or
trinary. Computer-aided tools allowing quasi-direct visualization in 4D would extend
this domain. They would allow us to employ 3-dimensional “reduction windows” in
our iterations, (4-dimensional, when the response is binary or trinary), and thus further
decrease the chances of premature termination: With such windows, and using the 1-
dimensional OLS lower bound, we would be guaranteed to reach the central subspace of
any regression with structural dimension < 3 (4 when the response is binary).

It is important to remark that the concepts and results we introduced do not rely
on Y being 1-dimensional. But visualization, and thus the implementation of graphical
methods, clearly do. With two axes devoted to two continuous responses, we are left
with only one axis available for the predictor; if one of the responses is binary or tri-
nary, an additional axes can be freed for the predictor representing the discrete response
through different plotting symbols, etc. But in general, a bivariate response forces us to
employ smaller “reduction windows” in our iterations, possibly increasing the chances
of premature termination. Of course lower bounds obtained from non-graphical meth-
ods can be used to balance out the risks involved in using smaller reduction windows.
In particular, Cook (1998a) implemented and demonstrated the use of bivariate sliced
inverse regression. Previously, Li et al. (1995) proposed a variant of SIR for multivari-
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ate response regressions, involving Hotelling’s notion of most predictable variates (these
developments can be related to those in Fujikoshi (1982)).

Also, existence of first and second order moments of (Y, X) clearly plays a role in
the non-graphical methods summarized in Section 3, but is not crucial to most of the
graphical developments. What we presented in terms of the standardized Z can be re-
phrased in terms of the original X, and moments really come into the picture only in
Proposition 2.1 and in Subsection 4.3.

Interesting issues concern the application of dimension reduction methods to data
(¥;,X;), i = 1,...,n that do not represent an iid sample from the joint distribution of
(Y, X), or in which the predictors are not random, as for example in designed experi-
ments. In principle, nothing prevents the extensions of dimension reduction methodol-
ogy to the case of non-iid observations; this is an extremely promising and challenging
research venue, for which no literature is yet available. In the case of designed experi-
ments, while the meaning of the conditional distribution Y | X at the available X values
is unchanged, that of the joint distribution (Y, X) becomes elusive. However, designed
predictors may actually help in avoiding “geometrically pathological” data clouds, or
failure of some basic assumptions. Regarding estimation of relevant directions through
non-graphical methods such as OLS, SIR, SAVE or pHd, one can simply take expec-
tations involving predictors with respect to their empirical (design) distribution. The
biases thus introduced can be controlled through the choice of experimental design itself.
So, for example, assumptions such as (3.1) or (3.2) could be “enforced by design”. The
situation is more delicate regarding some tests commonly employed by non-graphical
methods for dimensional inferences, but as we remark at the end of Section 3, this is of
little concern for the approach we propose in this paper. We use non-graphical methods
only as pre-processors generating a set of directions to guide the graphical analysis, and
we never employ any of the tests associated with them. More on the issue of designed
predictors can be found in Cook ((1998a, Comment by Li and Rejoinder), Ibrahimy and
Cook (1995) and Cheng and Li (1995).

Finally, issues related to dimension reduction and graphical exploration are of pa-
ramount importance also in multivariate settings in which no variable is elected to the
role of response. In these cases, one would like to recognize situations in which low-
dimensional projections provide exhaustive information on some target defined to em-
body structural traits of a multivariate distribution. Furthermore, one would like to do
so assuming as little as possible on the nature of the latter. Developments along these
lines can be found in Chiaromonte (1997, 1998, 2001).
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Appendix

Existence of Sy|x results

We will make use of a well known lemma from real analysis:
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LEMMA A.1. Let © C IR? be an open set, and a : RP — IR! an analytic function.
Then given any two subspaces S1,S2 C RP, a(z) = o Ps,z) = a(Ps,x), Yz € ) implies
a(z) = a(Ps,;ns, ), Vr € Q.

For a set A and two subspaces V, W consider T' =V N'W and the sections
A(TLV @ T‘LW;t) ={Privgrwz,x € A: Prz = t}, t € PrA.

We say that A has linked sections if for any choice of subspaces, any t € PrA and any
y1,y2 € A(THY @ TW;t), there exists a sequence I, € AT oTWit),n=1,...,N
such that: (i) I; =y and Iy = yq, (ii) for all n = 2,..., N either Privl, = Privi, 1
or Priwl, = Priwl,_1. Notice that an open and convex set has linked sections.

LEMMA A.2. Let Q C IRP be a set with linked sections, and o : IRP — R!. Then
given any two subspaces S1,S2 C RP, a(z) = a(Ps,z) = a(Ps,z), Yz € Q implies
afz) = a(Ps,ns, ), YV € L.

ProoF. Let T = S; N S,. Since € has linked sections, for any ¢ € Pr{? and any
y1,y2 € QTS @ T+52: 1), there exists a linking sequence within the section as defined
above. Thus, for any y;,y2 in the section one can move along such sequence keeping
the value of a(-) constant. In fact, a(y1) = a(l1) = a(Ps,li) = a(Pris,li +1) and also
= aPrisyly +t). Suppose Ppis,ly = Ppis,li, then a(y1) = a(Pris;lz +t) simply by
coincidence of the argument points. The same reasoning applies with the third point of
the sequence, etc. At the last step, one will have for example a(y1) = a(Pris.In + 1)
= a(Ps,In) = a(ln) = a(y2). The statement follows.

Let Sy|x indicate the class of all DRS’s for the regression of Y on X € IRP. By
construction, the central DRS exists if and only if Syix S € Sy|x, or equivalently, if
Sy|x is closed under intersection. We are now in a position to prove Propositions 2.1
and 2.2 restated as follows. Recall we indicate with £x and Suppx the law and closed
support of X. Existence the first moment for Y is required in 2.1.

PROPOSITION A.l. Assume that Suppx contains an open set Q with Lx () = 1.
Suppose furthermore that Y admits finite first order moments, Y L X | E(Y | X), and
E(Y | X) can be expressed as an analytic function of X, X-a.s. Then 51N Sz € Sy|x
for all 81,8 € Sy|x-

PROOF. By definition, S € Sy|x if and only if Y L X | PsX. Since Y L X | E(Y |
X), the conditional independence statement is equivalent to E(Y | X) = E(Y | PsX),
X-a.s. Using an appropriate measurable function, this can be rewritten as a(X) =
a(PsX), X-a.s. Taking S1,S2 € Sy|x we have then a(z) = a(Ps, 7) = a(Ps,z), Vz €
C Suppx. By Lemma A.1 this implies a(z) = a(Ps;ns,%), Yz € Q, which in turn implies
S1NSy e Syix as ﬁX(Q) =1.

PROPOSITION A.2. Assume that Suppx contains an open and convex set Q0 with
ﬁx(Q) =1. Then S1NS; € Sy|X for all S1, S3 € Sle

ProOF. The conditional independence statement Y Il X | PsX can be equivalently
expressed as Ly|x(B) = Ly|p;x(B), X-as., for any measurable B C IR!. Using appro-
priate measurable functions, this can be rewritten as ap(X) = ap(PsX), X-as., VB.
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Taking 51, S2 € Sy|x we have then ap(z) = ap(Ps,z) = ap(Ps,t), Yz € @ C Suppx,
VB. Furthermore, being open and convex, (2 has linked sections. By Lemma A.2 we have
a(z) = a(Ps,ns,), Yz € Q, VB, which in turn implies S; N Sz € Sy|x as Lx(2) = 1.

Clearly the same proof works whenever Suppx contains a set having linked sections
and probability 1. Relaxing convexity is very important, given the crucial role played
by existence of the central DRS in the sufficiency-based theory of dimension reduction.

Results for conditional, marginal and residual views. Results are established in terms
of X, and we introduce moments only when referring to predictor residuals. We make
use of two lemmas that easily follow from Dawid (1979, 1980); see also Basu and Pereira
(1983). Z here indicates a generic random variable, and not the standardized predictor.

LEMMA A3. Let U W and Z be three random variables defined on a common
probability space, and let v(-,-) be any measurable function defined on the domain space
of (W,Z). ThenU LW | Z implies U L~v(W, Z) | Z. If furthermore (-, z) is a bijection
for every z, U LW | Z is equivalent to U L~(W,Z) | Z.

LEMMA A4. Let U W and Z be as above, and let 6(-) be any measurable function
defined on the domain space of Z. Then U LW | Z and U L Z | 6(Z), implies U L W |
8(2).

We thus can prove.

LEMMA A5. Let S € Sy|x and p,6 : R? — R! be measurable functions such
that p(X) L PsX | 6(PsX). Then n(Y,PsX) 1L p(X) | 6(PsX) for any measurable
n:R! x R? - R

PROOF. Since S € Sy|x, Y Il X | PsX. Applying Lemma A.3 twice we have
n(Y,PsX) L p(X) | PsX. At the same time we have p(X) I PsX | 6(PsX). So
n(Y,PsX) 1L p(X) |6(PsX) by Lemma A.4.

Proposition 4.1 is an immediate consequence of Lemma A.3: Y IL X | PsX is
equivalent to Y 1L PrX | PsX, as T & S = RP guarantees that X is a bijection in PrX
once PsX is given. Recalling that V = QrSy|x, 12 = PrX — E(PrX | QrX) and
w: R! x R — IR! is a measurable transformation, Propositions 4.2 and 4.3 can be
restated and proved as follows:

PrOPOSITION A.3. For any subspace T C R, PrSy|x ® Sp, x|prx s a DRS for
the regression of Y on PrX.

Proor. For notational simplicity, let C = PrSy|x, R = Sp, x|p;x, and set S =
C®V®R. Sisclearly aDRS for Y on X, as Sy;x € C@®V C S. Also, set p(X) = PrX
and §(PegverX) = PcorX. C @ R is clearly a DRS for Py X on PrX, as it contains
the central DRS R. So we have Py X I PrX | PogrX (Pcer(PrX) = PogrX).
But since PogygrX is a bijection in Py X once PogrX is given, this is equivalent to
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PTX i PCQBV@RX ! PC@RX. Hence, by Lemma A.5, T](Y, PCGBV(BRX) i PTX | PCEBRX
for any choice of 9(-,-). In particular Y I PrX | PogrX.

PROPOSITION A.4. Let T C IRP. Assume that X has finite first order moments
and that PrSy|x is a DRS for the regression of QrX on ry)2. Then PrSy|x is a DRS
for the regression of w(Y,QrX) on ry)2.

PROOF. Again, let C = PrSy|x, and set S = C @ T+. S is clearly a DRS for
Y on X, as Syjx € C @® T+. Also, set p(X) = ry2 and §(Pogr:X) = Porip. C
is a DRS for QrX on 72 by assumption: we have QrX 1L ry2 | Pcryje, which im-
plies QX + PcE(PrX | QrX) I ryj2 | Poryje. But since Pogr X is a bijection in
QrX + PcE(PrX | QrX) once Poryj is given, this is equivalent to rqjz 1L Pogri X |
Pcry)2. Hence, by Lemma A.5, n(Y, PogrL X) L ry)2 | Poryje for any choice of n(-,-). In
particular w(Y,@QrX) 1L 2 | Poryj2-
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