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Abstract. The problem considered is that of identifying two finite dimensional
probability distributions G and H from their convolution, F' = G * H, when all that
is known about them is that H is symmetric. This problem arises in looking for hidden
structure in multivariate data, for example. It is shown that one can always find a
solution in which G has no nondegenerate symmetric convolution factor. However
the solution is not unique in general. Examples of such “completely asymmetric”
distributions are given. Existence and examples rather than estimation are the focus
of the paper.
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1. Introduction

In this paper we consider the problem of identifying two finite dimensional proba-
bility distributions G and H from their convolution, F' = G x H, when all that is known
about them is that, like any uni- or multi-variate normal distribution with mean 0, H
is symmetric about the origin. We define what a “solution” to this problem is, show it
exists, and consider uniqueness of the solution. We also give some examples. We do not
consider estimation of the solution from data. Thus our interest is in existence and iden-
tifiability in deconvolution (see also Teicher (1961)). We will assume for mathematical
convenience that F' has finite variance.

The problem of deconvolution comes up in practical settings. In image restoration,
G is the “original image” and convolution with H can be interpreted as “blurring”
(Jain (1989)). The data, “the blurred image”, is F' itself, a density estimate of F', or a
discretization of F' or its density estimate. Thus in image processing nomenclature we
are interested in blind deconvolution when the blurring filter is phaseless (i.e., has even
transfer function) and is spatially invariant. An example of a blurred image is a positron
emission tomography (PET) image (Daghighian et al. (1990)).

Deconvolution has been studied by applied mathematicians (see, for example,
Baumeister (1987), Chapter 10). In fact, the deconvolution problem is a form of “integral
equation of the first kind” (Wing (1991)). Conversely, the “backward heat problem” is
really a deconvolution problem (Friedman and Littman (1994), Chapter 3). These au-
thors treat deconvolution assuming one of the convolution factors is known.

Two statistical applications of deconvolution are errors in variables and nonpara-
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metric empirical Bayes (Berger (1985) and Maritz and Lwin (1989)). A few of the many
theoretical statistical papers on deconvolution are Carroll and Hall (1988), Edelman
(1988), and Fan (1993). Here again, one of the convolution factors is assumed known.

Another statistical application is looking for hidden, preferably low dimensional,
structure in multivariate data. Statisticians have examined a number of approaches to
this problem. The technique of principal curves (Hastie and Stuetzle (1989)) is used
to find a hidden curve or surface in a multivariate point cloud. For Dasgupta and
Raftery (1998) and Byers and Raftery (1998) the mechanism hiding the structure is the
superposition of homogeneous Poisson “clutter”.

In the papers cited in the preceding paragraph, the mechanism “hiding” the struc-
tural component, G, in the population, F', from which the data are drawn is not necessar-
ily convolution with some noise distribution. On the other hand, Chiaromonte (1998),
Section 3, considers the problem of looking for hidden structure in multivariate data
when the mechanism for hiding the structure is convolution with some member, H, of
a class of “noise” distributions. The problem treated in this paper can be considered as
Chiaromonte’s (1998) problem with the class of noise distributions taken to be the class
of all symmetric distributions with finite variance.

In this paper, we only assume that H is symmetric, otherwise we are “blind” to
it. The problem of blind deconvolution has been considered in the signal processing
literature, but there it has a temporal dimension not considered here (see, e.g., Liu and
Chen (1995)).

Given F = G * H the distributions G and H are not identifiable. Suppose H; and
H, are each symmetric and H = Hj x Hs, so H is also symmetric. Note that unit mass
at 0, &y, is also a symmetric distribution. Thus F = (GxH)* 6y = (GxHy)xHy =G+ H
all represent F' as-a convolution of a distribution with a symmetric distribution. Since
the symmetric factor is completely unknown, we do not know which of these expressions
to regard as the solution to the deconvolution problem. There is a prima facie lack of
uniqueness to the solution of our problem.

In this paper we try to resolve this issue by taking as our problem that of remov-
ing as much symmetry from F as possible. Call a distribution with no nondegenerate
symmetric convolution factor “completely asymmetric”. (“Degenerate” means having all
mass at just one point.) From the standpoint of practical image analysis, say, it is rea-
sonable to assume that original images typically do not have nondegenerate symmetric
convolution factors, i.e., they are completely asymmetric. Blurring, on the other hand,
is known to occur sometimes in image acquisition. So if the observed image does have a
nondegenerate symmetric convolution factor, that factor is likely to be an artifact. The
problem considered, then, is that of extracting from an arbitrary distribution with finite
variance a completely asymmetric convolution factor. In the case described in the last
paragraph, unless H; = &y, G might be a solution but G * H and G * H; cannot be
solutions.

We show that the problem of removing all symmetric blurring from a probability
distribution has a solution. Unfortunately, we shall see that the solution may still not
be unique. However might it be that in many situations met in practice the solution is
unique? In order to answer this question, sufficient conditions on F for the uniqueness
of its completely asymmetric factor should be found. We do not attempt to do this in
this paper.

Actually, in practice it might not be necessary to formulate the problem in such
generality. One might be willing to make some assumptions concerning the symmetric
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factor (Chiaromonte (1998), Section 3). This leads to an expanded class of asymmetric
distributions (see Corollary 1) and, prima facie, a larger class of distributions for which
the deblurring problem is identifiable.

We give precise definitions and statements of results in Section 2. We briefly sum-
marize our findings in Section 3. An appendix contains the proofs of the results.

2. Results

Let F, G, and H be (Borel probability) distributions on RP (R = real line; p =
positive integer) having finite variances. Say that F has “finite variance” if s(F) =
[ |z]2F(dz) < oo. A distribution, H, is “symmetric” if H(—B) = H(B) for every Borel
set B C RP. Here, —-B = {—z € R? : ¢ € B}. Thus in two or more dimensions
a distribution may be invariant under reflection across a linear subspace but not be
symmetric by this definition. Call a distribution F' “completely asymmetric” if whenever
H is symmetric and F = G * H then H = 8y, where §; = unit mass at z. Recall that
the convolution, G x H is defined by (G * H)(B) = [ H(B — z)G(dzx), where B C R? is
Borel and, forr € R?, B—z={y—z € R?: y € B}.

These ideas can be re-expressed in terms of random vectors. Let X, Y, and Z
be random vectors with distributions F', G, and H, resp. (respectively). Then F has
finite variance if E(|X|?) < oo. H is symmetric if and only if Z and —Z have the same
distribution. It follows that the convolution of two symmetric distributions is again
symmetric. F is completely asymmetric if whenever Y and Z are independent, H is
symmetric and X =Y + Z, then Z = 0 almost surely (a.s.).

The following is the basic existence theorem for completely asymmetric factors. We
give proofs of the results in this paper in the Appendix. A referee suggests that a similar
result with a similar proof might apply to “clutter” removal as described in Byers and
Raftery (1998) and Dasgupta and Raftery (1998).

PROPOSITION 1. If F has finite variance then there exist distributions G and H
such that G is completely asymmetric, H is symmetric, and

(2.1) F=GxH.

Since the support of the convolution of two distributions is the closure of the sum of
their supports, any distribution on the line of the form A6, +(1—\)6, where 0 < A < 1/2
and a # b, is completely asymmetric. Using this fact one sees that in gemeral the
decomposition (2.1) is not unique. For consider the following simple example on the
line. Let G = (3/5)5._1 + (2/5)61, H = (1/2)5_1 + (1/2)51 ,and p = (1/5)5_4 -
(1/10)6_2 + (4/5)60 — (1/10)62 + (1/5)84. Thus G is completely asymmetric, H and
u are symmetric, but u is a signed measure. Nonetheless, it turns out that G * p and
1 * H are both probability distributions. Let F = (G x u) * H = G * (u* H). Now,
F =G x(u* H) is a representation of the type (2.1). By Proposition 1, G * s also has a
decomposition of the form (2.1). That is, there is a completely asymmetric distribution
G’ and a symmetric distribution H' s.t. (such that) G * p = G" x H'. However p is not
a probability measure so H' # u. Therefore G # G' and F = G’ + (H' x H) is a distinct
representation of F' in the form (2.1).

The following result describes a class of absolutely continuous completely asymmet-
ric distributions on the real line. It suggests that very sharp edges in an original image
can be discerned through any kind of symmetric blurring (see Example 1 below).
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PROPOSITION 2. Let F be a distribution with finite variance and support in [a, o),
where a is finite. Suppose F' has a density, f, satisfying

Condition 1. f is locally bounded on (i.e., bounded on compact subsets of) (a,o0)
and

Condition 2. limejo f(a + €) = 0.
Then F is completely asymmetric.

The reason a distribution F' satisfying the hypotheses of Proposition 2 is completely
asymmetric is, roughly speaking, as follows (see the Appendix for a rigorous proof).
Suppose F = G x H, where H is symmetric and nondegenerate. Since the support, supp
F, of F is bounded on the left, for some finite b6 > 0, — inf supp H = sup supp H =
(inf supp G) — a = b. The left “edge” of H and the left edge of G come together in
convolution to produce the infinite spike in f at a. Since H is symmetric, the right
edge of H is the same as its left edge. But this means that the right edge of H and the
left edge of G must combine in convolution to produce an infinite spike in f at a + 26,
contradicting Condition 1.

If F is a distribution on the line, define its “reflection” to be the distribution that
assigns to a Borel set B C R the probability F(—B). Clearly, the reflection of a com-
pletely asymmetric distribution is also completely asymmetric. Thus Proposition 2 also
provides examples of absolutely continuous completely asymmetric distributions on the
line with long left hand tails.

In the proof of Proposition 2, we make no use of any moment properties of the
distributions involved. Thus Proposition 2 holds for a stronger definition of complete
asymmetry involving no assumptions concerning moments.

One can also weaken the definition of complete asymmetry. So far we have put
no conditions on the symmetric factor H, except that it have a finite second moment.
If additional conditions are put on H then the class of distributions having no sym-
metric convolution factor satisfying the additional conditions obviously broadens. An
examination of the proof of Proposition 2 yields the following generalization.

COROLLARY 1. Let c € (0,00] and let F be a distribution with finite variance and
support in [a,00), where a is finite. Suppose F' has a density, f, satisfying

Condition 1. f is locally bounded on (a,a + 3c| and

Condition 2. lim.jo f(a +€) = co.
Then F has no nondegenerate symmetric convolution factor with support in (—c,c).

Let X be a two-dimensional random vector with distribution F. Let v be a nonran-
dom unit vector in R2. Define the “projection”, F'?, of F onto the line spanned by v to
be the distribution of the random variable v- X, where “.” indicates the usual Euclidean
inner product. (Define the projection f¥ of a density f similarly.) All projections of F’
are determined by {F" : v = (cos 6,sin6),8 € (0, 7|} (essentially the “Radon transform”
of F (Deans (1993))). It is easy to see that if ' = G« H then F¥ =G+ H". If H is
symmetric, so are all its projections. If H is also nondegenerate not all its projections
will be degenerate. Therefore if all projections of F' are completely asymmetric then so
is F. Exploiting this fact and Proposition 2, we generate an example of an absolutely
continuous completely asymmetric distribution on R2.

Ezample 1. Let 1/2 < a < 1. Consider the following density. For convenience it
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is written in polar coordinates but still think of it as a density on z-y space.

_Jefl—=r)" if 0<r<land 0<@<m;
(2:2) fl@y) = {O, otherwise,

where (x,y) = (rcos8,rsinf). Here, c is a positive constant chosen to make f integrate
(in z, y) to 1. In the Appendix we show that such a c exists and that all projections of
f (or their reflections) satisfy Conditions 1 and 2 of Proposition 2. Hence all projections
of the distribution, F', having density f are completely asymmetric. Therefore F is also
completely asymmetric.

Note that f blows up on the semicircular arc {(cos8,sin@), 6 € (0,m)}. It appears
that the semicircular shape is not crucial. Probably it suffices only that the arc along
which the density blows up have appropriate Holder continuity (Gilbarg and Trudinger
(1998), pp. 52 and 94). Thus it appears that certain sharply defined “corners” in an
image can be recovered after any amount of symmetric blurring. With some care, more
complex examples based on Corollary 1 instead of Proposition 2 might be constructed.

3. Conclusions

The problem of removing all symmetric blurring has a solution. Unfortunately,
that solution may not be unique. However I conjecture that for completely asymmetric
distributions G of the sort met with in applications, G often can be uniquely determined
from the distribution of the data. As evidence for this we found that very distinct
“corners” are features that can be discerned through symmetric blurring.

Appendix: Proofs

PrROOF OF PROPOSITION 1. The method used to prove Khintchine's theorem
(Linnik (1964), p. 88, or in Linnik and Ostrovskii (1977), p. 79) might be modified
to prove Proposition 1. We present an alternative proof that is an application of Zorn’s
Lemma (Halmos (1974), Section 16).

It is easy to see that

(A.1) If G is completely asymmetric then for every z € RP,
the distribution G x 8, is also completely asymmetric.

Therefore without loss of generality [zF(dz) = 0. Let S denote the set of all
distributions G on RP s.t.

S(G) (z / |:1;|2G(dz)) < 0.

Let M = Mp denote the set of all distributions, G € S, s.t. there exists a symmetric
distribution, H € S s.t. F = G x H. M is not empty since F' = F x §y. If G € M then
J2G(dz) = 0.

If G1,Gy € M, write G; <aq Go if there exists a symmetric distribution, H € S,
s.t. G4 * H = G4. One easily sees that <, is a partial ordering. (Chiaromonte (1998),
makes use of a similar ordering on probability laws.)

The proposition amounts to saying M contains a minimal element with respect
to <aq. We will prove this using Zorn’s Lemma (Halmos (1974), Section 16). Let
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G = {Ga € M : a € A} be totally ordered with respect to <x4. Then it suffices to
show that G has a lower bound in M. Let v = inf{s(G,) : @ € A}. Choose a countable
sequence {Gy(n) € G} s.t. 8(Go(n)) | v and write G™" = Gy(ny, = 1,2,.... Since G is
totally ordered, if —m < —n then G™™ <y G™™.

Claim. If {G~"} has a lower bound in M then so does G. For suppose not. Let
G € M be a lower bound for {G~™} which is not a lower bound for G. Then there exists
a € Ast. G £rm Go. Suppose s(Gy) > v. Since G is totally ordered and s(Gu(n)) | v,
for some n we have, G <a G™" <p G, , contradicting the way G, was chosen. Thus
s(G,) = v. But this implies G,, itself is a lower bound for G. The claim is established.

Thus we need only find a lower bound for {G™"} in M. We will do this by con-
structing a reversed martingale whose marginal distributions are G™ , n > 1, and then

applying a martingale limit theorem. If k = 1,2,3,..., then there exists a symmetric
distribution K_; € S s.t. G = G~F x K_; (G° = F). For each n, let X_, , be
a random vector with distribution G™ and let Y_1 ,,...,Y_, », be independent random

vectors independent of X_,, ,, s.t. Y_i , has distribution K_. Let

k

X—n+k,n ZX—n,n+ZY—n+j—l,n7 k= 17"')”’
Jj=1

Then X_, 1k » has distribution Gtk Note that for each k, Y_,4,n is independent of
X nny---sX-ntkn. Let P, denote the joint distribution of (X_p 5,..., Xon)-

By the Kolmogorov Extension Theorem (Ash (1972), p. 191, Theorem 4.4.3) there
exists a process {..., X _3,X_2,X_1, X} s.t. P, is the joint distribution of X_, ..., Xo.
Thus X_x has distribution G=%, k > 0.

Let Y =X _py1 — Xk ,k>1. Thenfor k > 1,

e Y_; has distribution K_j, (in particular EY_, = 0),

oY 1,Y_,,... are independent, and

e Y_; is independent of X_;_;,5 > 0.

It follows that, for each i (= 1,...,p), {X_x[i],n > 0} is a (reversed) martingale.
(Here, X _,[i] is the i-th component of the random vector X_,.) Therefore by Chung
(1974), Theorems 9.4.7, p. 338 and 4.5.2, p. 95, {X_,} converges a.s. to a random vector
X _ o with finite variance.

As a consequence, for each n > 0, Zzo:n 41 Y— converges a.s. to W_ oon =X_p —
X o Now, W_,, ,, has a symmetric distribution, s(W_q ) < 00, and W_, o + X_o
has distribution Go = F. Furthermore, W_, ,, is independent of X_,. But this means
that if G_, is the distribution of X_,, then G_o, € M and G_,, <y G™ for all n.
The proposition follows.

PROOF OF PROPOSITION 2. Write F' = G x H, where H is symmetric. By (A.1)
we may assume a = 0. By Condition 2 of Proposition 2, infsupp F = a = 0 (“supp”
= “support of”). Since supp F = (supp G + supp H) (the overbar indicates closure),
it follows that if —b = infsupp H, then —b > —oo0 and b = infsupp G. Since H is
symmetric, b = supsupp H > 0. We will see that f must blow up at a+2b, contradicting
Condition 1, unless b = 0, i.e. unless F’ is completely asymmetric.

Assume F is not completely asymmetric. This amounts to assuming that b > 0. We
make H and G absolutely continuous by convolving them with a symmetric, unimodal,
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differentiable density, whose support we will shrink to {0}. Let a; be a symmetric
probability density with support [—1,1] and unique local maximum at 0. Suppose a;
is everywhere differentiable with bounded derivative. Then ay(z) > 0if -1 <z < 1,
aj(z) > 0if £ <0, and &f(z) < 0if z > 0. Let 31 = oy * @;. Then £; has support
[-2,2]. For € € (0,b/2), let ac(z) = e tai(z/e), Be(z) = € *Bi(z/e). Then o, and
B have supports [—¢, €], [—2¢,2¢], resp. and B = a. * a.. The convolution of a, with
any distribution, K, has bounded derivative, [ o.(z — y)K(dy). In particular, 3 has a
bounded derivative.
Define functions g. = G*x a. , he = H * a, , and f. = f = §.. Notice that

supp g. C [b—€,00), supp he C[-b—¢€,b+¢€], and fc=gc*hc.
Now,

6(z) = /“, il )Gl

Since a/ > 0 on (—o00,0], it follows that g. is nondecreasing on (—oo,b]. Similarly, A is
nondecreasing on (—oo, —b).
In a moment we will prove,

(A.2) fe(2b) 200 as e—0.

On the other hand, for € sufficiently small,

2b+42¢
fo(2b) = / B -)fWdy< s fy)< sup fy) < oo
2b—2¢ 2b—2e<y<2b+2¢ b<y<3b

by Condition 1 (we are assuming b > 0). This contradicts (A.2). The proposition follows.
(A.2) is a consequence of two further facts:

(A.3) feo(—€) 00 as €]0, and
(A.4) f(2b) > fo(—e) for €€ (0,b/2).

PROOF OF (A.3). Since S is symmetric with support [—2¢, 2¢],
s = [ Blern)i®dy = [ Blern)iway
0 0

[oif;ief(y)] /1  Bu(2)de.

Since supp 81 = [-2,2], (A.3) now follows from Condition 2.

v

PROOF OF (A.4). Since supp ge C [b — €,00) and supp he C [-b—€,b+ €],

b )
fe(2b) — fe(—¢€) = / [he(2b — ) — he(—€ — y)]ge(y)dy + /b he(2b — y)ge(y)dy

b—

6b—e/z b
(/ +/ ) [he(2b — y) — he(—€ — ¥)]ge(y)dy.
b—e b—e/2

v
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Making the change of variables y = 2b — z — € in the first integral in the last expression
in the preceding and using the fact that h. is symmetric, we get,

b
(A'5) fe(2b) - fe(—e) 2 / [he (y - 2b) - he(_y - 6)][96(?4) - ge(2b —Yy—- 6)]dy'

b—e/2

Now, if y € (b — €/2,b), then —b >y —2b> -b—¢€¢/2> —y—cand b>y >2b—y—e.
Since h. and g, are nondecreasing on (—oo, —b] and (—o0,b], resp., it follows that the
integral on the right hand side of (A.5) is nonnegative, i.e. (A.4) holds. I

ProOOFS FOR EXAMPLE 1. To study the behavior of f we will use the following
simpler function.

otherwise.

f y):{(l—\/xz—i-yZ)_”‘, if 0<r<l;
) 0,

So f is symmetric about the origin. Thus all projections of f onto lines are the same.
So for convenience project it onto the z axis. The projection is

(A.6) Fe) = {/_o; (K'(y;2)) “dy, if -1<z<Ll.
0’

otherwise,

where, for -1 <z < 1,

— 2 2 s — 3.
kl(y)=k1(y;x):{(1) VTR, iyl < VI

, otherwise.

k! vanishes at y = v/1 — 22 and is concave (i.e., its derivative decreases) in the interval

(0,v/1 — z2). Therefore over the interval (0,1 — z?)
(A7) g<k'<h,
where g(y) = g(y; z) and h(y) = h(y; z) are the linear functions satisfying

g(V1-22)=0,¢9 = —\/kl_l—(:(g_z,h(\/l —22) =0, and &' = (k') (V1 - z2).

Thus

g<y)=(1_|m|)(1_\/l__y__?> and  hy)=1—a? — gV T 22,

(A.6) and (A.7) can be used to compute bounds for f!(z):

h(y)~dy < fl(z) <2

/ = 9(y)~“dy.

(A8) 2 / e

0 0

Simple calculations show

Vi=z?
(A.9) 2/0 h(y) *dy=2(1-a)"' (1-2?)""v1-22 and
Wier
(A.10) 2/0 g(y) "%y =2(1 —a) "' (1 — |z|)"*V1-22, for z€(-1,1).



766 STEVEN P. ELLIS

Write f = cf. Le., f(r,0) =8(1—7)"®for0<r <1land 0 <6 < 7 and f = 0 otherwise.
Then from (A.8), (A.10), and the fact that o < 1,

RE W/upf w/_oof (z)dz
1 pVi=z? 1
< 27r/ / g(y;2)~*dydz = 47(1 — @)~ ! / (1 —z)"*V1 - 2%z
—1Jo 0

4r(1 - a)_lx/i/ol(l — z)A/D -y = 47/2(1 — o) (—g— — a) - < 00

IA

so the promised finite positive constant “c” in (2.2) exists.

Next, we investigate the projections of f. Let ¢ € (0,7] and let v = (cos ¢,sin ).
Let fs = f¥. We show that f; is the reflection of a density satisfying the hypotheses
of Proposition 2. Obviously, fs(z) = 0 if |z| > 1. Because fy < 7mc f1, from (A.8) and
(A.10) we see that f; is locally bounded on (—1,1).

Since, by assumption, ¢ € (0, 7], there exists 6 > 0 s.t. if z € R is sufficiently close
to 1, f,(2) is an integral of f along a line segment only involving values of 6 € (6o, 7).
Therefore by (A.8) and (A.9)

F5(2) > cof1(2) = 2c00(1 — )™ (1 - z2)(1/2)_a Too as 211,

since 1/2<a<1l.

Assume 0 < ¢ < 7. Then, since f is supported by the upper half unit disk, f4(2) =0
for z in a neighborhood of —1. It follows that for ¢ € (0,7) the reflection of f, satisfies
the hypotheses of Proposition 2.

It remains to show that f, is bounded in a neighborhood of —1. Note that

(A.11) 2sinf > 6 for 6 € [0,7/3].

Let arctan(z,y) denote the angle in (—m, 7] that the ray from the origin passing through
(z,y) € R%, (z,y) # 0, makes with the positive z-axis. Then, if -1 < 2 < -1/2 =
—cos(w/3), by (A.11), (A.8), and (A.10),

oo V1=22
ful2) = / H=zy)dy = /0 arctan(—z, )k (y; —2)~*dy

VI=2Z
< 20/ sin[arctan(—z, y)|k' (y; —2) " *dy

0
VI=22 y )
= 2¢ —k(y; —2) " %dy
0 V22 +y? ( )
A .2 VI=22 1 _ .2 .
< —1—5—0/ k' (y; —2)"%dy = L2 (=)
|2| VI=Z |2

< de(l—a) Y1 —|2))7* (1 - 2%) < 8c(1 - a) ta—-|z)'"* 10 asz] -l

Since fr(2z) = 0 for 2 < —1, this shows that f, is bounded in a neighborhood of —1. [J
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