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Abstract. Let Xy, Xa,... be a sequence obtained by Polya’s urn scheme. We
consider a waiting time problem for the first occurrence of a pattern in the sequence
X3, Xo,..., which is generalized by a notion “score”. The main part of our results is
derived by the method of generalized probability generating functions. In Polya’s urn
scheme, the system of equations is composed of the infinite conditional probability
generating functions, which can not be solved. Then, we present a new methodology
to obtain the truncated probability generating function in a series up to an arbitrary
order from the system of infinite equations. Numerical examples are also given in
order to illustrate the feasibility of our results. Our results in this paper are not only
new but also a first attempt to treat the system of infinite equations.
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1. Introduction

Exact distributions on runs and patterns in independent trials have been studied
for a long time. Distribution theory of runs and patterns has been developed in various
situations by many authors, with applications in many areas (see Shmueli and Cohen
(2000)), since Ebneshahrashoob and Sobel (1990) solved sooner and later problems for
success and failure runs. Furthermore, many problems are treated when the condition
that the random variables are independent and identically distributed is widely relaxed.
The sooner and later waiting time problems between a success run of length k£ and a
failure run of length r in the first order Markov dependent trials are studied by Aki
and Hirano (1993). The problems are extended by Aki et al. (1996) in the higher order
Markov dependent trials. Uchida (1998) studied some waiting time problems for the
patterns in the higher order Markov dependent trials.

There are two standard approaches to these problems. One is a finite Markov chain
imbedding technique introduced by Fu and Koutras (1994). This method provides a
unified procedure for the distribution of runs, scans and patterns. By this approach, Fu
(1996) studied the exact and joint distributions of the runs and patterns in a sequence
of multi-state trials. In case of a finite state space, a large number of studies have been
made, however, nobody has ever tried to study the case of an infinite state space. The
other is to solve a system of equations of conditional probability generating function
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(p.gf.)’s. Then, some characteristics such as probability function and moments are
derived from an expansion of the solution. Here, the system of equations is derived by
considering the condition of one-step ahead from every condition. Since the number of
the conditions are finite until the trials are finished, the system of equations is composed
of the finite conditional p.g.f.’s, so that we can solve it. By this approach, Uchida
(1998) studied some waiting time problems for the patterns under a certain assumption.
However, it is a disadvantage of this method that the system of equations can not be
solved when the system is composed of infinite conditional p.g.f.’s. So far as the authors
know, the waiting time problems related to such a system of infinite equations have never
been examined and no studies have ever tried to treat the system of infinite equations.

The aim of this paper is to propose a method to obtain the probability function
from the system of infinite equations. Our methodology is based on the idea of using
the conditional p.g.f.’s recursively within the finite procedures. Then, we can obtain the
truncated p.g.f. in a series up to an arbitrary order. Of course, our method is useful
also for the system of equations composed of finite conditional p.g.f.’s. We consider the
generalized waiting time problem for the first occurrence of a pattern in the sequence
X1,Xa,... obtained by Polya’s urn scheme. Polya’s urn scheme is an interesting process
whose conditions of the balls change as the trials, so that the system of equations is
composed of the infinite conditional p.g.f.’s.

Let us consider Polya’s urn scheme (See Feller (1968)). Suppose that we have aq
balls labeled “0”, a; balls labeled “1”, ..., a,, balls labeled “m” in an urn. We draw a
ball at random and, before drawing the next ball, we replace the ball drawn, adding also
¢ balls of the same label. This procedure is repeated. We denote the number of the balls
by e = (o, 01,...,qn) and the amount of the balls by |a| = ap + a1 + - -+ + am. Let
e; = (0,0,...,0,1,0,...,0)1x(m+1) (the (j + 1)-th element is 1, and the other elements
areall 0, § =0,1,...,m). If the ball labeled j is drawn, the number of the balls changes
to o + ce;.

Let X1, X9, ... be a sequence of random variables obtained by Polya’s urn scheme,
which take values in a finite set B = {0,1,2,...,m} and let T = (a1, az,...,a;) be a
pattern whose elements are integers in B. In this paper, we shall use the term “pattern”
to refer to the finite sequence.

We generalize the waiting time problem for the first occurrence of the pattern by
introducing a “score”. Suppose that the balls labeled “;j” have a score “r;”, r; € N =
{1,2,...}, (j = 0,1,...,m). We consider the distribution of the total score until the
occurrence of the pattern in the sequence X1, X5, ... for the first time.

We consider such a generalized waiting time problem for the pattern in Polya’s urn
scheme and give a general method to obtain the probability function.

Remark that if all the scores r; are equal to 1, this problem corresponds to the
waiting time problem for the occurrence of the pattern in the sequence Xi, Xs,... for
the first time.

In Section 2, we consider the distribution of the total score until the first occur-
rence of the pattern in the sequence X, Xs,.... We derive the system of equations of
conditional p.g.f.’s, which is composed of the infinite equations. We present the method
to obtain the truncated p.g.f. in a series up to the arbitrary order. In this method, the
score plays an important role. :

The results in this paper are not only general and new but also available to nu-
merical and symbolic calculations by using computer algebra systems. In Section 3, two
numerical examples are given to illustrate the method and results developed in the pre-
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vious section. We can obtain the truncated p.g.f. of the waiting time distribution for the
pattern by using computer algebra systems. ’

2. Distributions of total scores

Let X1, Xa,... be a sequence of random variables obtained by Polya’s urn scheme,
which take values in a finite set B = {0,1,2,...,m}. Let T = (a1, 02,.--,ax) be a pat-
tern, which is a finite sequence whose elements are integers in B. Let Tg = 0,17, =T,T;, =
(a1,02,...,a;)(E = 1,2,...,k), then, we define a set P(T) by P(T) = {To, Th, - .-, T}
Let P;; be the longest pattern among {(a1,...,a:,J), (agy-..,8i,5),-.-,(5), 0} N P(T).
Let f : (P(T)\ {T}) x B — P(T) be a mapping defined by f(T;,j) = Fij.

Ezample 2.1. Assume that B = {0,1,2}, T = (0,0,0,1) and P(T) = {To,T1, T3,
Ty}. Suppose that we have currently T3 = (0,0,0). After the next draw, if the ball
labeled 0 is drawn, we have f(T3,0) = T3, if the ball labeled 1 is drawn, we have
f(T3,1) = Ty, if the ball labeled 2 is drawn, we have f(73,2) = To.

Let r(-) be a function which maps from B to N. To simplify the notation, denote
(i) by r;, and we call this non-negative integer r; “score”. By considering the following
example, we will find it natural to introduce the score.

Ezample 2.2. Suppose that a machine is inspected once a day and its condition is
recorded, whose condition is classified into 5 levels (say 1,2,3,4,5). If 4" (i =1,...,4) is
observed, then, the machine costs r;(i = 1,...,4) for the each repair. If “5” is observed,
the machine must be stopped by the replacement.

In Example 2.2, the cost 75(i = 1,...,4) for the each repair corresponds to the score
and the expenses of the repair until the replacement corresponds to the total score.

Suppose that we have T;(i = 0,...,k), the balls & = (&, 01, - - . ,&m) and the score
n and the first 7" has not yet occurred. Then, we denote by S(Tj, &, n) the score obtained
from this time until the pattern T' occurs for the first time. Let W be the waiting time
for the first pattern 7. The total score S(To, ao,0) until the pattern T' occurs for the
first time is expressed by

Wr m
_ — cyy_ [y i Xi=7j,
S(To, Qy, O) ; jgo T(J’ XZ)’ where, T(J’ X’) 0 otherwise.

We consider the distribution of the total score until the first occurrence of the pattern
T. Let ®(t) be the p.g.f. of the distribution of the total score until the pattern 1" occurs
for the first time in X3, Xo,... under the initial balls ap in the urn. Suppose that we
have currently T;(i = 0,1,...,k), the score n and the balls @ in the urn. Then, we
denote by ¢(T}, a,n;t) (i = 0,1,...,k) the conditional p.g.f. of the distribution of the
total score from this time until the pattern T' occurs for the first time. Easily, we see
that ®(t) = ¢(Tp, o, 0;t). ®(t), ¢(T;,a,m;t) (i =0,1,...,k) are defined by

(2.1) 3(t) = E[t5To- 000,
(2.2) &(T;, a,m;t) = Et5T%™] §=0,1,...,k.

From the definitions of ®(¢) and (T, @, m;t) (i = 0,1,...,k), we can derive the following
system of infinite equations:
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THEOREM 2.1. The p.g.f. ®(t) and the conditional p.g.f.’s ¢(T;,a,m;t) (i =
0,1,...,k) satisfy the following system of equations:

(2:3) o(t) = Z Y Tyt O (Tos9), a0 +cej i),
(2.4) (Ti, o, m;t) = 2;0—5— "io(f(T5,5), e + cej,n +rj;5t),

i=0,1,2,... k-2,
(25) ¢(Tk 1, &, n1t)—z ]trg(b(f(Tk 1,]),a+cej,n+'r3,t),

(2'6) (Tk7 o, 1 t) = 13 where, Q(t) = ¢(T07 g, 0; t)

PROOF. It is easy to see that ¢(Ty,a,n;t) = 1 and ®(t) = ¢(Tp, o, 0;t) by the
definition of p.g.f. Let 7 be the total score until the first occurrence of the pattern T and
let n'be the arbitrary score. Recall that ¢(T5, a, ;) (8 =0,1,...,k—1) is the p.g.f. of
the conditional distribution of the random variable 7 —n given that T;(¢ = 0,1,...,k—1)
has just occurred with the score n. We note that ¢(7}, a,n;t) (i = 0,1,...,k—1) depends
on the event that we have currently T;(: = 0,1,...,k — 1) and the balls « in the urn.
Therefore, by considering the condition of one-step ahead from every condition, we see
that ®(¢) and ¢(T;, a,n;t) (i = 0,1,...,k) satisfy the above equations. The proof is
completed. O

Ezample 2.3. Waiting time for T = (1). Assume that B = {0,1}, ro =, = 1,
To =0 and Ty = (1). eg = (1,0), e; = (0,1). Then, the system of the equations is

(2.7) B(t) = ~20 44(To, cto + ceo, 1;t) + —L th(Ty, o + cer, 1;t),
o] o]
(28) ¢(T07 o, n; t) = %tQS(To, « +ceg,n+ 1; t)
+ %tqﬁ(ﬂ, a +cep,n+ 1;t),
(2.9) ¢(Tr,a,n;t) =1, where, ®(t) = ¢(Tp, ap,0;t).

We will show that the truncated p.g.f. of ®(t), say <i>(t), is obtained in a polynomial form
of ¢ by using the equations (2.8) and (2.9) for the right-hand side of the equation (2.7)
recursively. The idea of truncation is also illustrated.

From the equation (2.8),

agpo + ¢
2.1 T, 1;t) = —90TC 44Ty, o + 2ce, 2; t
( O) ¢( 01a0+ceﬂa ;) Ia0+ce|¢(0a0+ CEq )
o1
+————td(T7, a0 + c(eg +€1),2;t
!OC()+C€]¢( 1 0 (0 1) )

By substituting (2.10) into the right-hand side of (2.7), we have

o Qgo + ¢
(2.11) B(t) = lo(f):l ¢ (laooi o td(To, ceo + 2cep, 2;1)
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Qo1
20 (T, e 2t
|a0+ |¢( 1a0+c(0+€1) ))
(87
+ =L tb(T1, g + cex, 1;t).
ool

If we need the truncated p.g.f. of ®(¢) in a polynomial form of ¢ up to the first order, we
should set ¢(Ty, g + 2ceq, 2;t) = ¢(T1, a0 + c(eg + €1),2;t) = 0 and use the equation
(2.9) in the right-hand side of (2. 11). Then, we obtain the truncated generating function
of ®(t), say &(t);

Thus, the above substitution leads to the truncated generating function &(t). If we
need the truncated p.g.f. of ®(t) in a polynomial form of ¢ up to the second order, again,
we substitute the equation (2.8) into the term ¢(Tp, ag +2ceq, 2; t) in the right-hand side
of (2.11), respectively. Setting ¢(Tp, co+3ceq, 3;t) = ¢(T1, o +2cep+cer, 3;t) = 0 and
using the equation (2.9), we have the truncated p.g.f. which is truncated in a polynomial
form of ¢ up to the second order. If we need truncated p.g.f. of ®(t) in a polynomial form
of t up to ng-th order, we should continue this procedure until the score in the conditional
p.gf. ¢(To, a,n;t) in the right-hand side of the equation (2.11) becomes greater than
no. Then, we let all the conditional p.g.f.’s whose scores are greater than ng be equal
to zero and use the equation (2.9) in the right-hand side of the equation (2.11). Notice
that we have the polynomial form up to the no-th order and the order of the vanished
terms is greater than ng. Consequently, we obtain the truncated p.g.f. of ®(t) in a series
of t up to the ng-th order.

THEOREM 2.2. For any positive integer no, the following system of equations leads
to the truncated p.g.f. of ®(t), ®(t) say, which is ezpanded in a power series of t up to
the ng-th order.

(2.12) @(t)—Z "”t% (To, ), o + cej, 753t),

(213)  #(T;, e, nt)—z ’t”¢(f(ﬂ,j),a+cej,n+r],t)
1=0,1,...,k—2, n<ng,

m
4 O o2 .
(2.14)  ¢(Tp-1,,n;t) = E l—aj—lt”qﬁ(f(Tk_l,]),a+cej,n+rj;t), n < no,
3=0

(2.15) (T, a,n;t) =0, i=0,1,...,k n>ng,
(2.16)  ¢(Tr,c,n;t) =1, n<mo.

PRrROOF. In the equations (2.4) and (2.5), we see that the score in the right-
hand side is greater than the one of the left-hand side. Notice that ¢(T;, a,n;t) (i =
0,...,k—1) is expressed by the conditional p.g.f.’s with the larger scores. By using the
equations (2.4) and (2.5) for obtaining every term of the right-hand side of equation (2.3)
recursively, the p.g.f. ®(t) is expressed by the conditional p.g.f.’s with the larger score. If
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we need truncated p.g.f. of ®(¢) in a series of ¢t up to ng-th order, we should continue this
procedure until all the scores in the conditional p.g.f’s ¢(T;, o, n;t) (¢ = 0,...,k — 1)
in the right-hand side of the equation (2.3) become greater than ng. Then, we let all
the conditional p.g.f.’s whose scores are greater than ng be equal to zero and use the
equation (2.6) in the right-hand side of the equation (2.3). We should notice that the
polynomial terms are up to the ng-th order and the order of the vanished terms is greater
than ng. We obtain the truncated p.g.f. of ®(¢) in a series of ¢ up to the ng-th order.
Consequently, we can obtain the truncated p.g.f. of ®(t) in a series of t up to all order,
since a positive number ng is arbitrary. The proof is completed. O

Remark 1. As mentioned previously, if all the score r;(¢ = 0,1,...,m) are equal
to 1, the p.g.f. ®(¢) corresponds to the p.g.f. of the waiting time distribution for the first
occurrence of the pattern. Our method in Theorem 2.2 can apply to the waiting time
problem as well.

3. Numerical examples

In this section, we give some examples and illustrate the waiting time distributions.
For numerical computation, Theorem 2.2 is convenient, since the system of equations
(2.12), (2.13), (2.14), (2.15) and (2.16) is just the algorithm for computer algebra systems
to-obtain the truncated p.g.f. of the waiting time distribution for the pattern. We derive
the truncated p.g.f. of the waiting time distribution for the pattern by using computer
algebra system.

Ezample 3.1. Assume that T = (0,1,0), B = {0,1}, apo = @01 = 2, ¢ =1 and
ro = 3, 1 = 2. By using the algorithm given by Theorem 2.2, for ng = 100, we can get
the truncated p.g.f. of ®r(t), ®r(t) say. Since it is very large, we give Fig. 1 and &r(t)
in a series of ¢ up to #2° for lack of space.

. 1 3 2 3 3 1 2
Sor(t) = 484 D10 21 12 13, 1 14 415
) = 1ot t7gt T35t tiaet tit tart T ios

2 16 4 17 29 18 27 19 47 20
_— e t t t
st 1050 tma’ Tisa00 1540

Figure 1 is the graph of probability function of waiting time in Example 3.1.
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Fig. 1. Probability function of the total score of Example 3.1, given ng = 100.
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Fig. 2. Probability function of the waiting time of Example 3.2, given no = 100.
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Example 3.2. Assume that U = (1,1,0), B = {0,1}, ago = @01 = 2, ¢ = 1 and
ro = r1 = 1. By using the algorithm given by Theorem 2.2, for ng = 100, we can get the
truncated p.g.f. of @y (t), ®y(t) say. Since it is very large, we give Fig. 2 and &y (t) in
a series of ¢ up to ¢!® for lack of space.
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Figure 2 is the graph of probability function of waiting time in Example 3.2.
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