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Abstract. Let (X,Y) have an absolutely continuous distribution with parameter 6.
We suggest regularity conditions on the parent distribution that permit the definition
of Fisher information (FI) about § in an X-order statistic and its Y-concomitant that
are obtained from a random sample from (X,Y"). We describe some general properties
of the FI in such individual pairs. For the Farlie-Gumbel-Morgenstern parent with
dependence parameter §, we investigate the properties of this FI, and obtain the
asymptotic relative efficiency of the maximum likelihood estimator of 6 for Type
11 censored bivariate samples. Assuming (X,Y) is Gumbel bivariate exponential of
second type, and @ is the mean of Y, we evaluate the FI in the Y-concomitant of an
X-order statistic and compare it with the FI in a single Y-order statistic.

Key words and phrases: -Concomitants of order statistics, Fisher information, Farlie-
Gumbel-Morgenstern family, Gumbel Type Il bivariate exponential distribution, Type
I1 censoring, maximum likelihood estimator.

1. Introduction

Suppose we have a random sample of size n from a continuous distribution with
cumulative distribution function (cdf) Fy(z;6) and probability density function (pdf)
fi(z; ), where 6 is a real valued parameter and the sample is arranged in ascending
order. The question about which part of the ordered sample has more information has
been discussed by Tukey (1965) and Nagaraja (1994) in terms of linear sensitivity, a
measure based on the first two moments of linear functions of order statistics. Mehrotra
et al. (1979), Park (1996), and Zheng and Gastwirth (2000) have studied properties of
the Fisher information (FI) measure in blocks and collections of order statistics. The
FI plays a valuable role in statistical inference through the information (Cramer-Rao)
inequality and its association with the asymptotic properties of the maximum likelihood
estimators (MLE).

Now suppose (X,Y) is absolutely continuous with joint cdf F(z,y;d) and pdf
f(z,4;8). For 1 < r < n, let X,., be the r-th X-order statistic and Y}, be its
concomitant obtained from a random sample of size n from f. David and Nagaraja
(1998) provide a review of the area of the concomitants of order statistics.

The joint pdf of (Xrun, Yjr.n)) is given by

(1.1) Frn(T,9;0) = cf(z,y;0)[Fu(z; 0)]" 1 — Fi(=;6)]"7,
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where

!

(12) €= (r—Di{n—r)’

The marginal pdf of Y., is given by

(13) frm(;0) =c /_ - F(2, 5 0)[F1(z: )" L - Fa(z; 0)]" " de.

For a fixed n, we use the notation f, instead of fy., in (1.1) and we write f,) for fir.n)
when n is fixed in (1.3).

We investigate the properties of Ig(Xr.n, Y{r:n)) and Ig(Yr.n), the FI contained in
(Xrins Yjriny) and Yjp.p, respectively. These play an important role in the asymptotic
properties of MLE’s based on censored bivariate samples. In Section 2 we show that the
“standard” regularity conditions used to define Iy(X,Y), the FI contained in (X,Y’), are
enough to define Io(Xy.n, Yjr:n)) and Jp(Y}r.n)). Under the assumption that Fj is free of
6, we obtain a simple useful recurrence relation satisfied by Iy(Xy.n, Yr:n)) and show that
it is additive in r. This permits easy computation of the FI in an arbitrary collection of
order statistics and their concomitants. In Section 3 we give an explicit expression for
Ig(Xoom, Y{rm]), when 6 is the dependence parameter of the Farlie-Gumbel-Morgenstern
(FGM) cdf

(1.4) F(z,y) = Fi(z)F2(y)[1 + 0(1 — Fi(z))(1 - F2(y))};

where —1 < 8 < 1, and F5 is the marginal cdf of Y. We prove the monotonicity property
of FI as a function of v and evaluate Io(X;.pn, Yjr.n)) for selected 0, r, and n. We find the
asymptotic variance and the asymptotic relative efficiency (ARE) of the MLE of 6 under
Type 11 censoring. In Section 4 we consider the Gumbel Type II bivariate exponential
distribution (GaBV E) where we take § = E(Y) and give an explicit expression for
I(Y}r.n))- We compare it with Iy(Y;.,) and discuss some implications.

2. Fisher information regularity conditions and properties

2.1 Regularity conditions for Ip(Xr.n, Yirm])

The FI about the real parameter 6 contained in X is defined by Iy(X) =
E(Ql—cig—%@(—}—(—@y under the following regularity conditions (see, for example, Rao (1973),
p. 329):

(1) The parameter space 2 is a real non-degenerate interval.

(2) The pdf of X w.r.t. the o-finite measure y, fi(z;8), is differentiable w.r.t. 4 for
all 8 € Q.

(3) For every measurable set C' C S, the sample space,

2 , _ [ 9f(z;6)
%/Cfl(x,a)d#—/c“—?fa‘—"dﬂ,

assuming the existence of the right side integral. One commonly used condition which

validates (3) is:

, ({?;*) There exists an H(z) integrable (w.r.t. u) such that ]éﬁﬁl < H(z) for all
[SHYR
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Nagaraja (1983) showed that conditions (1), (2) and (3*) on fi(z, 6) serve as regu-
larity conditions for defining Iy(X,.,,). Now assume: .
(Al) Qis a real non-degenerate interval.
(A2) f(z,y;0) is differentiable w.r.t. 6 for all § € Q.
(A3*) There exists an integrable H(z,y) such that léﬂa%’—’io—)] < H(z,y) for all 6.
Note that (A3*) validates the required assumption
(A3) For any measurable set C C S, the sample space,

0 ) _ [ Of(=, ?/,9)
%Lf(w,y,e)d#~LT 1

Conditions (A2) and (A3*) imply that f.(z,y;0), given by (1.1), is differentiable
w.r.t. 8, for all 8 € Q. Further, since 0 < Fi(z;0) < 1, (1.1) implies that

- ST PLIC T GOl
Now since
Ok (x %) / / Bf(u v;9) —————"dvdu from (A3),
]i@é(;——’ﬂ < /_oo /_oo H(u,v)dudv from (A3*)
(2.2) = ¢; say.
Then
(2.3) Iaf (2.y; 9)‘ < cH(z,y) + (n — 1)cey f(z,y; 6)

< CH(CC, y) + C2f($7 Y 0)’
where ¢o = (n — 1)ce; and H(z,y) is integrable. We will now show that

9 : _ [ 0fr(z,y;6)
(2.4) géfc'fr(x,y,ﬁ)dxdy—/c———ae———dxdy

for all interior points of 2, and for all (two dimensional) measurable sets C. Let 6y be
an arbitrary but fixed point in . Then from the mean value theorem

fr(z,y;0) — fr(z,y:00) _ 8fr(z,y;6)
0= 6o a9

for some §(1) between 6 and 6g. In view of (2.3), we have

(2.5) fr(xayiog - gr(x: ¥; 0o) < cH(z,y) + c2f(z, y; 9(1))'
— Vo

But

. o(
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for some 6(2) between 6y and 6(1). So from (2.5) and (2.6) we have, for |§ — 6| < 1,

fr(2,9;0) = fr(x,9; 00) < ¢ {f(x,y; 6o) + (9(1) — GO)M} + cH(z,y)
9= 6, 00

< co{f(z,y;00) + [0 — 60| H(z,y)} + cH(z,y)
< cof(z,y;00) + (c+ c2)H(z,y)-

Let {fm,m > 1} be a sequence converging to . Without loss of generality one can take

|6, — 80| < 1 for all m. Then with g, (z,y) = &% '") fr(z’y’a") , we have [gm(:c y)| <
G(z,y), where G(z,y), the function on the right hand "side of (2. 7) is integrable. So at
6 = 6y,

(2.8) /dedy :/ lim gn(z,y)dzdy
C Cm'—)OO

(2.7)

= lim gm(w, y)dxdy

fC fr(2,y; 0m)dzdy — [ fr(z,y;00)dzdy
m——»oo 9 —00

a
= %/Cfr(:c,y,e)dxdy.

The second step above follows from the Lebesgue Dominated Convergence Theorem.
Since 6y is arbitrary, (2.4) holds for all §. Hence we have the following result.

THEOREM 2.1. Conditions (A1), (A2), and (A3*) on f(z,y;8) can serve as regu-
larity conditions for defining Ig(Xrn, Yirm)), the FI in (Xpin, Yirm))-

2.2 Regularity conditions for Ig(Yr.n})
Now we show that Ig(Y},.,]) exists if (A1), (A2) and (A3*) hold. Conditions (A2) and
(A3) imply that fi(y;0), given by (1.3), is differentiable w.r.t. §. Since 0 < Fy(z;6) <1,

af['r] Ys 9) Bf(:c Y; )
] = L[5 e

+e(n —1)/ F(z,y ,())IBF-“(”3 9| 4

< c/ H(z,y)dx + (n — 1)061/ f(z,y;0)dz

from (A3*) and (2.2). Thus
0fir(%: )
o0

where Hy(y) = [0 H(z,y)dz, is integrable. Note that (2.9) resembles (2.3) and we
follow the approach used to prove (2.8) and conclude that

0 f['r](y70)
: T ;0)dy = —aaT
(2.10) ae/cf”(y )dy 66 dy

(2.9) < cHi(y) + (n — 1)ecr fa(y: 6),
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for all interior points 6 € Q, for all measurable sets C. This leads to the following.

THEOREM 2.2. Conditions (A1), (A2), and (A3*) on the bivariate pdf f(z,y;0)
can serve as reqularity conditions for defining Ip(Yjr.n)), for 1 £r < n.

Remark 1. In addition to conditions (A1)-(A3), with a regularity condition that
permits the interchange of integration with respect to 4 and second derivative of fi wr.t.
9, Iy(X) = —EQﬂQg—rMﬂ. Under a similar additional condition on f(z,y;8), parallel
results hold for Ig(Xr:n, Yjrin)) and Ip(¥r:n])- '

2.3 Properties of Io(Xr.n, Yirin))

THEOREM 2.3. If Fy is free of 0, the basic triangle relationship satisfied by the
moments of order statistics (see Arnold et al. (1992), p. 111) holds for Ig(Xrin, Yirn] )i
that is,

(211) nIG(Xr:n—h},[r:n—l]) = (TL - T)IQ(Xr:n, Y[r:n]) + TIG(Xr+1:n7 Y[r+1:n])-

ProOF. If Fj is free of 6, from (1.1) it follows that
dlog frn(z,y;6) _ log f(z,y;6)
09 - a0

Further, (1.1) also implies that nfrn-1(z,7;0) = (n — ) frin(2,9;0) + 7 fri1:n (2,95 0).
Consequently

=g(z,y), say.

(2.12)

nEh(Xr:n—l; Y[r:n~1]) = (’I’L - T)Eh'(Xr:na Y[r:n]) + TEh(Xr+1:n7 Y{r+1:n])
for any h. With h = g2 in (2.12) we obtain (2.11). O
THEOREM 2.4. If Fy is free of 6, Io(Xrin, Yirn]) 18 additive; that is,

k
IG(Xn:n, .. 7X'rk:n7 )/[rl:n]v v 7yirk:n]) = Z IB(X'ri:na Yr[n:n])-

i=1

Proor. The joint pdf of the collection is a generalization of (1.1) and is given by

fr($17"' s ThsY1,5--- 7yk10) = (rl _ 1)7!/’1(!n_rk)!{Fl(xl)}rl~1{]‘ - Fl(xk)}n—rk

k ri—rig—1 K
o 1:12 {F1(37i)(_ Fi(zi-1)} Hf(xi,yi;ﬂ).

Ty — Ti-1— 1)!

i=1
Hence,
2 k 2
Olog fr " _ 3 9log f(x:,y:: 0)
86 £ 06 '

We expand the right side before taking expectations, and note that the expected value
of éach of the cross product terms is zero. This yields the desired result. [
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Remark 2. When F; is free of 8, Theorem 2.3 indicates that one needs to evaluate
only n expectations in order to find Io(Xr.m, Yjr.m)) for all 1 < r < m < n. Further,
all the recurrence relations that hold for the moments of X, do apply for the FI
in (Xy.n,Yjr:n)). The additive property of the FI, proven in Theorem 2.4, makes the
computation of the FI in an arbitrary collection of order statistics and their concomitants
to be trivial once the FI in individual pairs are known.

3. Farlie-Gumbel-Morgenstern Family

3.1 FI of the dependence parameter

Hutchinson and Lai ((1990); Sec. 5.2) provide an excellent introduction to the FGM
family whose cdf is given by (1.4), and discuss its properties and applications to a vari-
ety of situations. One of its useful property is that the dependence parameter # and the
marginal distributions can be modelled separately. For the FGM family with normal,
exponential, and logistic marginals, the correlation coefficient is a scalar multiple of 4.
With Fi(z) = z and F(y) = y, one obtains the copula form of the FGM family. This
copula is a special member of the family having copulas with quadratic sections (see
Nelsen (1999), pp. 68-70) and for such distributions also, F} is free of the parameters
determining the dependence structure. Another example is the bivariate normal distrib-
uton where 8 is the correlation coefficient. Thus Theorems 2.3 and 2.4 are also applicable
to these distributions. Here we focus on the FGM family.

Recently Smith and Moffatt (1999) have investigated FI about 6 in FGM type
bivariate logistic models with some special sampling schemes. Scaria and Nair (1999)
have discussed some distributional properties of concomitants of order statistics from
the FGM family. The pdf for the cdf in (1.4) is

(3.1) f(z,9:0) = fi(z) fa(y)[L + 6(1 — 2F1(2))(1 — 2F2(y))),

where —1 < 6 < 1, and f; is the pdf of E, i =1,2. The copula form of the above density
(see Nelsen (1999) Chapter 2) is

(32) f(:E’ Y; 0) = [1 + 90($7y)]7 0<z,y<1,
where
(3.3) Clz,y) = (1 —2z)(1 — 2y).

Without loss of generality we use (3.2) to determine I5(X;.n, Yj.q)). Conditions (Al)-
(A3) are satisfied; in fact, in (A3*) we can choose H(z,y) = [1 — |C(z,y)|]~!. Now from
(2.12) and (3.2)

dlog fr(z,y;0)  C(z,y)

80 1+ 0C(z,y)’
and
C(JC y) r—l _ p\n-T
(3.4) Ip(Xromy Yigen)) = / / oo™ (L= a)" " dsdy.

With u = (1 — 2z) and v = (1 — 2y), we obtain

1 1 2
__ ¢ 2 n-rf1 _ ,\T—1 v
65 DoY) = g [ 200 | [ ] du
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The factor (1 + Guv) ™! above can be expanded as Y_22,(—6)7u/v”. Since this represen-
tation is uniformly convergent for all z,y € (0,1), one can integrate term-by-term in

(3.5). Upon doing so and noting that [ i1 vi+2dy = 0 whenever j is odd, we obtain

e 927 . 3 _
3.6)  Io(Xrmm, Yirm) = 2—nZ [2j+3/1u2”2(1+U)” "(L-u) 1elu]-
7 _

For r = 1 we get

n Z 0% ! 2j+2 n—1
IO(XI:n;Yv[l;n]) = on 2]—{—3 1’LL (1 +U) du )

and on expanding (1 + u)"! binomially, we obtain

oo o (25
n (2 n—1 1
(3.7) Io(X1ny Yirn)) = 571 ;:o 5773 i§=0 ( o; )———2j+ 53

With n = 1 in (3.7) we get the FI in a single pair to be
3.8 Li(X,Y 0
(3.8) o(X,Y) = ;::0 OO0

3.2 Properties of Ig(Xrin, Yirin))
From (3.6) it follows that Ig(Xym, Yirn)) = I6{Xn—r+1:n; Yin—r+1:n])- Now we show
that for 1 < r < (% + 1), I(Xr:n, Y[r:n)) decreases as r increases. For this, consider

1
(3.9) ar = c/ w1+ w)" (1 — u) " du,
-1

where n and k are fixed, k is an even number, and c is given by (1.2). Withw = (1+u)/2,
a, can be expressed as

1
(3.10) ay = c2"* / (w — 0.5)Fw™ " (1 — w) "tdw = 2"FE(W, — 0.5)F,
0

where W, is a Beta(n—r+1, ) random variable. Note that since k is even, £ (W,—0.5)F =
E(Wp_ry1 — 0.5)F. Thus

ar = 2"+k"1c/1(w ~05)"{(1 —w)" "w" " +w" (1 —w)" " }dw
= 2"+’“E(Wg‘ —0.5)%,
where the pdf of W is given by
(3.11) gr(w) = —;—{wr_l(l — W) w1l —w)™}, 0<w< 1.

Observe that g.(w) = g-(1 — w) and define h(w) = gr(w)/gr41(w).
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LeEMMA 3.1. When 1 <r < n/2, h(w) is increasing in w for 0.5 < w < 1.

Proor. We have, from (3.11),

r w1 = w)? T (1 - )L r
hw) = n—r { wr(l( - w)’)L_T‘1 + 'w"‘f“(l — '3))’ } )

where ¢ = ;2 and hy(t) = (1—3%,;;2—;1) Since hj(t) > 0 for t > 1 whenever r < %,

it increases for ¢ > 1. Since t increases with w and ¢+ > 1 whenever 0.5 < w < 1, we
conclude that h(w) increases for w € (0.5,1). O '

hl (t)7

- T

LEMMA 3.2. Let g-(w) be as defined in (3.11). Then, for z € [0.5,1],

T T
(3.12) [ awaws [ g
0.5 0.5
whenever r < 3 and equality holds in (3.12) only when z = 1.

Proor. From Lemma 3.1 we know that h(w) = gr(w)/gr+1{w) increases in (0.5, 1).
Consider

Jos 9r(w)dw
Jos gr+1(w)dw’
Note that r'(z) > 0 if, and only if,

an.:E’ g"(w)dw — f(;cs h(w)g,.+1 (w)dw
Jos grrr(w)dw s g1 (w)dw

Since h(w) strictly increases, the last term above is less than h(z) for 0.5 < z < 1.
Consequently, r{z) increases (strictly) in (0.5,1) and (1) = 1 since g,(w) and g,+1(w)
are both densities in (0,1) that are symmetric around 0.5. This establishes Lemma 3.2. (J

(3.13) r(z) = 05<z<1.

h(z) >

To show that a, > a4y for a, in (3.9) whenever r < %, we need to establish

that E(W; — 0.5)* > E(W}_, — 0.5)F where W has pdf g.(w) given by (3.11). Let
V, = (W} — 0.5)k. Then, we have to show that E(V;) > E(V,y1). This holds if
PV, < v) < P(Voy1 < v), 0 < v < 0.5% since both V. and V,,; are positive random
variables. Consider

P(V; <v) = P((W} — 0.5)% <v)
= P05 —v* <W*<05+v*), v =v'/F
=2P05<W:<z), z=0v"+05
X
= 2/ gr(w)dw
0

.5

T
< 2/ gr+1(w)dw from Lemma 3.2
0.5

= P(Vrq1 < ).

Thus, we have shown that when r < %,a, > a,41. Also, when r =n/2, a, = ar4+1 Since
(3.6) implies that
1o 0% _
IO(Xr:na Yir:n]) = 2_71, J_ZO 2% + 30,1-(_7)
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where a,(j) = a, of (3.9) with k = 2j + 2, we have established that Ig(Xriny Yirin))
decreases as r increases whenever 7 < (% + 1). Using (3.10), the above equation can be
expressed as

R 02(1:——1)
(3.14) Io(Xrin, Yirem)) = Y

i=1

E(2Uy. — 1)%
2i+1 (2Vrn — 1)
where Uy, is a Beta(r,n — r + 1) random variable (or the r-th order statistic from a
random sample of size n from the standard uniform distribution). Note that (3.14)
implies that Jg(Xy:n,Yjr.n) increases as |f] increases.

The above discussion leads to the following result.

THEOREM 3.1. For the FGM family with dependence parameter 0, Io(Xrn, Yirin))
is given by (3.14), and it has the following properties: (a) Ig(Xyin,Yjrm)) =
I—G(Xr:nay‘[r:n])a (b) IB(Xr:rn 1/[7-:77,]) = IG(Xn—r+1:n7 Yin—r+1:n])a (C) IH(Xr:n,}/[r:n]) de-
creases as T increases for 1 < r < (2 + 1), and (d) Ig(Xrn, Yjrn)) increases as 6(> 0)
increases.

Remark 3. TFrom (3.14) it follows that Ip(Xrn, Virm)) < Doemq 0271 (2i + 1)1
= 672{20" log{(1 + 6)/(1 — 6)} — 1} and hence the FI is bounded. For large n and
r = [np], 0 < p < 1, Up, — p in probability, and since (2Ur.n — 1)% is bounded,
E(2U,., — 1)% — (2p — 1)* (Lebmann (1999), p. 71). Hence

0 .
2¢-1) o 1 [ 1 1+6,
IO(Xr:ny)/[r:n]) ~ v 2% + 1 (2[7 - 1) YY) {2_01; log 1— ep - 1}

where 6, = 6(2p — 1).

3.3 Discussion

Table 1 provides the values of Jy(Xr:n, Yjrn)) as a function of n, r (£ (n+1)/2)
and 6, for n = 1(1)5(5)15, and 6 = 0.25,0.5,0.75,0.99. The entries were computed using
(3.6) and MATHEMATICA. For n = 1, (3.8) was used. The infinite series was truncated
after 11 terms and this provided adequate accuracy. The first row represents Jo (X,Y),
the FI in a single pair. Since the FI in a random sample of size n is nlp (X,Y), the table
can also be used to compute the proportion of the sample FI contained in a single pair
Iy(Xsim, Y[Tm]). For example, when n = 10, the FI in the extreme pair ranges from 21%
to 26% of the total FI as @ ranges from 0.25 to 0.99. When n = 15 the FI in the extreme
pair varies in the range of 16% to 21%. In contrast, the FI in the central pair is no more
than 1% of what is available in the complete sample. One could use (3.7) and (2.11) to
find Ig(Xyn, Yjumy) forall T and n, 1 <7 <n,ina recursive manner. But this leads to
significant rounding off errors for n as small as 15.

Since the FI is additive in this case, Table 1 can readily be used to obtain the
information contained in singly or multiply censored bivariate samples from the FGM
distribution. One just adds up the FI in individual pairs that constitute the censored
sample. For example, when n = 10, the FI in the Type II censored sample consisting of
the bottom (or the top) two pairs ranges from 35% to 39% of the total FI as 6 varies
from 0.25 to 0.99. With the two extreme pairs together, it ranges from 42% to 52%
of the total FI. We can also obtain an explicit expression for the FI in a Type II right
censored bivariate sample using (3.14) and Theorem 2.4.
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Table 1. Fisher information in (Xr:n, Yjr.n)) about the dependence parameter § in the FGM family.

0
0.25 0.5 0.75 0.99
0.1137 0.1226 0.1437 0.2073
0.1137 0.1226 0.1437 0.2073
0.1367 0.1482 0.1758 0.2619
0.0678 0.0714 0.0794 0.0979
0.1596 0.1738 0.208 0.3166
0.0678 0.0714 0.0794 0.0979
0.1793 0.1959 0.2360 0.3922
0.0808 0.0856 0.0961 0.1229
0.0482 0.0502 0.0543 0.0626
0.2393 0.2641 0.3257 0.5366
0.1550 0.1668 0.1938 0.2658
0.0925 0.0976 0.1086 0.1329
0.0511 0.0532 0.0572 0.0651
0.0306 0.0314 0.0331 0.0359
0.2681 0.2978 0.3728 0.6408
0.2012 0.2187 0.2598 0.3773
0.1451 0.1550 0.1768 0.2289
0.0996 0.1049 0.1159 0.1389
0.0645 0.0672 0.0724 0.0823
0.0396 0.0408 0.0432 0.0472
0.0247 0.0252 0.0263 0.0280
0.0197 0.0201 0.0208 0.0218

Tttt A i W W N~ 3

e
o o

otk e e et ped el et el
G ot ot ottt OO0 0O
0 T O Gt A W N R U OB ke OB R D) R DN R e |3

—
[4]

THEOREM 3.2. With (X0, Y rn) = (Xiin, Vi), 1 <4 < 7 < m),

n © 021, 1)

— 2i+1
(3.15) Ig(Xrn, Yrin) = 5 To(X,Y) + Z @ 1)21~3(2Um~1 —1)%

oo §2G-1)

PROOF. From (3.14) and Theorem 2.4 we have Ip(X, 0, Y rn) = D oy S
E(T;,) where T;, = Z;=1(2Uj:n — 1)%. Note that E(T;,) = E(E(T;r | Urt1n)),
and given U,41.n = U, Uy - - - Uy, behave like the order statistics of a random sample
of size r from a uniform distribution over (0,u). Hence

E(Ti,r I Ur+1:n = U) = ’I'E((ZU — 1)27: l U< u) {1 + (2u 1)212-{—1}.

2u (2 +1)

Thus, one obtains
E(T;,) = I ){1+E(2U,.n 1 — 1)%Hy

and
o p2(i-1)

L 4\2i+1
IG(X‘I‘,’IH Y'r,'n. 2 z (2 T 1)2 {1 + E(2Ur:n—1 1) }
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We now obtain (3.15) upon using (3.8). [

The above theorem can be used to obtain the asymptotic variance and ARE
(Lehmann (1999), Chapter 7) of the MLE under Type II right censoring of X values
and associated concomitants. Let 9T and 9,, be the MLE of 6 based the above censored
sample, and the entire sample, respectively. When r = [np], 0 < p < 1, and n is large,
Var(6,) = [Ig(X yn, Y o) "t and Var(d,) = [nlp(X,Y)]t. With 7 = [np], Upn-1 —p
in probability and, as argued in Remark 3, E(2Up.n—1 — 1)%*1 — (2p — 1)%*1. Hence
from (3.15) and (3.8), it follows that

00 _ (i—1)
%Ia(xr,nyyr,n) N % {Ig(X, Y)+(2p—1)3 Z [9(2&1‘ :)1])22 }

1=1
- -;_{Ig(X, Y) + (2p — 1)315, (X, Y)},

where 6, = 6(2p — 1). Thus

Io(X,Y) + (2p — 1)%I,(X,Y)
2I4(X,Y) ’

and the ARE can be computed for all § and p, if I4(X,Y’) is available for all # > 0. Hence
Table 1 has another application. For example, when 6 = 0.75 and p = 1/3, 6, = —0.25,
and upon using Table 1 entries, we obtain ARE(ér,én) = 0.49. In other words, when
6 = 0.75, the MLE based on bottom 33% of the X’s and their concomitants is as efficient
as using a random sample consisting of 49% of the pairs.

(3.16) ARE(6,,0,,) =

4. Gumbel's type il bivariate exponential distribution

4.1 FIin Y} about E(Y)
A special distribution in the FGM family is the Go BVE (Gumbel (1960)), where
the marginal distributions are exponential and the joint cdf takes the form

(4.1) F(z,y;0) = (1 —exp{—;Tx}) (1 —exp{%y}) <1+aexp{—0i1 -~ %}) ,

where z > 0,y > 0, 61, 8 > 0, and —1 < & < 1. Here, for convenience, we have labeled
the mean of Fy, the parameter of interest, as 4, and the dependence parameter as a.
The pdf of Yj,.,; (Balasubramanian and Beg (1997)) is

1 — —
(42) fr@:8) = sexpd =2 b (d +dpexp§ =

0 0 0
where

2ar
(4.3) dy =di(r,n;a)=1—a+ —T-L—%—I and dy = 2(1 - dy).
Since
Olog fin(w:6) _ 1)y | ¥ di

00 0 0 6d1+dzexp{——9—y}
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Olog f{'r} (Z/; 0) 2 1 2 4w?d;
(44) ( 26 s {1 B ey s o)
n 2wd, n w2d12 }
di +dpexp{~w} = (di + dpexp{—w})?

where W = Y/ has the pdf fiw(w) = e “(d1 + d2e™"). Upon taking expectation in
(4.4), we obtain

2 —
(4.5) Is(Ypin)) = 0% {1 —2dy + dy? w® exp{—w} dw}

o di+ deexp{~w}
upon simplification, with d; and dy given by (4.3).

4.2 Properties of Ig(Yjr.n))

Since dy(r,n; @) = di(n~r + 1,7 —0a), Ig(Yjrn); @) = Ip(Yn—r41:n}; —0). We now
fix @ > 0 and examine (4.5) as a function of r and n. For this purpose we relabel d; as
t=1-a+2ar(n+1)"! and note that Ip(V},.,) = 0~ 2g(t) with

1 o w? exp{—w
(4.6) g9(t) = 2 {1 —2+ t2/0 t+2(1— f){exP{}—W}dw} ’

and 0<1—-—a<t<1l+a<2 Weused MAPLE to evaluate g(t) and as Fig. 1 shows,
g(t) decreases in (0, 0.383) and then increases. Further its maximum value is 1.80823,
attained when ¢ = 2, and the minimum value is 0.82617. Thus, Ig(Y},.n)) increases with
r if 1 — & > 0.383; otherwise it decreases for a while and then increases. The maximum
Flis at Yjn.n)- Further I5(Y},.,)) does not exceed 1.81 and thus no single concomitant is
more efficient than the mean of a random sample of size 2 from the exponential parent.
In contrast, for r = [np|, 0 < p < 1, and n large, 67 2I5(Yy.n) = n(1 — p)p~{log(1 — p))%;
it becomes unbounded and peaks around 65% of the total FI in the complete Y-sample,
when p ~ 0.8 (Arnold et al. (1992), p. 166).

Table 2 provides Iy(Yj.n)) and Ig(Yr.n) values for 1 < r < n, n = 5,15, a =
0.25,0.5,0.75,0.99, for 6 = 1. The Iy(Y,.,) values are evaluated using (7.3.8) of Arnold
et al. (1992). As Table 2 and the above discussion show, Ip(¥[.n); @) is much smaller
than Ip(Yy.n).

Flabout E(Y) In Y ,,,
1

[ T T T
o 1 2
t

Fig. 1. Iy(Y}p.p) values for the Go BV E parent with 6 = 1; ¢ = 1 — a +2ar(n + 1)L
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Table 2. Fisher information in Yj.p), Yrin, and (X,Y) for 6 =1 where 6 = E(Y) of the
G BV E distribution with dependence parameter a.

& Ig(Yr:n)

0.25 0.5 0.75 0.99
0.92515 0.86872 0.83414 0.82743 1.00000
0.96042 0.92515 0.89447 0.86965 1.80000
1.00000 1.00000 1.000000  1.00000 2.87500
1.04370  1.09139 1.14299 1.19618 3.56944
1.09139  1.19847 1.32127 1.45493 3.66204

0.90542 0.84423  0.82722  0.87892 1.00000
0.91704 0.85785 0.82796  0.83761 1.93330
0.92932 0.87467 0.83873  0.82617 2.98980
0.94223 0.89447 0.85785  0.83481 3.97247
0.95577 0.91704  0.88421  0.85877 4.94029
0.96992 0.94223  0.91704  0.89532 5.88606
0.98467 0.96992  0.95577  0.94276 6.79997
1.00000 1.00000 1.00000  1.00000 7.66830

-
™
© 00 N M G A WO e T N S

15 1.01591 1.03240 1.04944 1.06634 8.47137
15 10 1.03240 1.06705 1.10392 1.14138 9.17998
15 11 1.04944 1.10392 1.16334 1.22501 9.74877
15 12 1.06705 1.14299 1.22768 1.31735 10.10290
15 13 1.08521 1.18423  1.29702 1.41889  10.10740
15 14 1.10392 1.22768  1.37155  1.53059 9.48492

15 15 1.12318 1.27334  1.45160  1.65442 7.51407
I,(X,Y) 1.00612 1.02540 1.05954  1.11182

How does I5(Yy.n) compare with the total information in the full bivariate sample,
nlp(X,Y)? Using the GoBVE cdf in (4.1), we obtain

dlog f(z,y;6)
00
e =T el )
0 1+0+T ~z ~y A
1+al2exps—p—1)|2exps~—7r—1
64 0
Onlettingu:m/ﬂl and v =y/6, we get

B (Blogf(X Y; ()))2

Il

A7) L(X,Y) =
- 5 {1 + o / / v? exp{—3v}{2exp{—u} — 1)* exp{u} dudv}

[1+ o (2exp{-v} — 1) (2exp{—u} — 1)]

upon simplification. By expanding the denominator of the integrand above as a power
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series in o and carrying out term-by-term integration, we get

18) LY =2l14a3 22 [0 ‘ 1)d
(4.8) (X, )-—5'2‘ + ;:(:)2],_‘_3/0 v* exp{—3v}(2exp{—v} — 1)dv

This indicates Ip(X,Y’) is increasing with |a| whereas Iy(Y;.,,) is nonmonotonic. The last
row of Table 2 contains Is(X,Y") values computed using (4.7) and these do not exceed
1.115 suggesting that the additional gain in efficiency while using the bivariate sample
is no more than 12% when compared to the complete Y-sample. see below”
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