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Abstract. In the order restricted statistical inference problem, moments of the
distance between a true parameter and the least square estimate are non-decreasing
when the true parameter moves along a half line from an initial point in the null
space. This follows from “stochastically larger” property of the distance.
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1. Introduction

The purpose of this paper is to show a monotonicity of moments concerned with
what is called an order restricted statistical inference problem (Barlow et al. (1972) or
Robertson et al. (1988)). We treat parameters of a location family. In such a statistical
problem the parameter space C becomes a closed convex cone in R™. Especially in a
testing problem, the null space is usually a linear subspace L contained in C, and the
alternative is C — L. In order to see the performance of a statistical procedure, it is
important to examine its behavior when the true parameter moves along a half line in
©, = C — L from an initial point of the null space @ = L. We will show that, in such
a case, the distance between the true parameter and the least square estimate (LSE)
becomes “stochastically larger.” Hence we have the monotonicity of its moments.

Anraku’s Order-Restricted Information Criterion (ORIC) motivates us to write the
paper. Anraku (1999) applies an Akaike Information Criterion (AIC) approach to simple
order restricted inference and proposes ORIC. AIC is defined by (the log-likelihood)
+ (a penalty) and used as a criterion in many model-selection problems, where the
penalty usually depends on the model itself, but not on each parameter in the model.
Anraku obtains such a similar quantity in the simple order restricted model about the
normal distribution. The penalty, however, depends on the parameters. Hence, he
proposes its minimum value as a penalty of the model and names the criterion as ORIC.
Our monotonicity property plays a key role in finding the minimum penalty, since the
maximum likelihood estimate (MLE) is LSE in his problem. He treats it in the simple
order restriction, but we will consider it under more general conditions. Hence the result
would extend the region where his ORIC approach is applicable, for example, to simple
tree order restriction or umbrella order restriction. ~

There are several similar results on monotonicity. It is well known that the distance
between the sample vector X and the MLE has a “stochastically larger” property (see
Perlman (1969) or Robertson et al. (1988)), from which the monotonicity of its moments
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follows. The monotonicity of the power function of the likelihood ratio test is also well
known (see Nomakuchi (1983) or Mukerjee et al. (1986)).

2. Theorems

Let X be a random vector in R™®. We assume that
(1) the # € R™ is a location parameter, that is,

X~Fx-0), z€R"

where F' is a distribution function;
(2) the parameter space C of 6 is a closed convex cone in R";
Under these assumptions, we consider a least square estimate (LSE) % of 8, that is, the &
is the orthogonal projection of z € R™ onto C which is defined as a unique point £ € C
satisfying
|z — 2| = min o — yl,

where | - | is a norm induced by an inner product (-,-) in R®. Note that maximum
likelihood estimate (MLE) is equal to LSE in the estimation of the mean of multivariate
normal distribution. Especially when the convex cone is given by the order restrictions,
MLE is also equal to LSE in many statistical problems (see Barlow et al. (1972)).

Let L be a linear subspace contained in C. For any non zero vector A € R™ and any
a € L, we define a ray such that

6(t) =tA+a, t=>0.
We also prepare a parallel ray with 6(¢) as follows
r(t) =tA+b, t>0,

where b is any vector in R™. Let £(¢t) € C be the orthogonal projection of z(t) onto C.
Setting a function as follows

¢(t) = 16(t) —2(t)l, ¢=0,
we have the following theorem.
THEOREM 2.1. ¢(t) is a non-decreasing function in t > 0.

PRrROOF. At first we assume that C is a closed convex polyhedral cone. According
to the notations and the definitions in Nomakuchi (1983), the cone C can be decomposed
into faces F;, i = 1,...,m, that is,

where these faces are mutually disjoint, hence we use a summation sign instead of a union
sign. Note that the definition of faces is slightly different from the one of Rockafellar
(1970), in which the faces are closed, but ours are relatively open and so disjoint. Hence,
there exists a unique face F; which contains the projection Z(t). Let M; be the smallest
linear subspace containing this F;. It is well known that #(¢) is obtained by projecting
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z(t) onto M; (see Theorem 1 in Nomakuchi (1983) for details). Since this projection
onto M; is linear, let P; be the corresponding projection matrix, that is, ‘

() = Pz(t) if &(t) € F.
Since a € L C M;, clearly Pia = a. Setting é(t) = P;6(t), we have

() =16(t) — (1)
= 16(t) — 6(t) +0(¢) - (1)
= 0(t) — (&) + 16(¢) — 2(t)I
= [tA+a — P,(tA+ a)> + | B,(tA + a) — Pi(tA +b)|?
=t3A - A% + |a— PbJ%

Hence, when the projection £(t) is in F;, the function ¢(t) is non-decreasing in t. On the
other hand, the projection z(t) onto a closed convex cone is continuous, therefore ¢(t)
is non-decreasing in t > 0.

Since any convex set can be approximated by a polyhedral one, we can take a
sequence of polyhedral closed convex cones Cy, such that

013023"'DC=02C_L_10]¢.

Since the linear subspace L is contained in all Cy, the ray 6(¢), t > 0, clearly satisfies the
assumption of the theorem with C. Therefore, if 2;(t) be the projection of z(t) onto
Ck, the function

oi(t) = [0(t) — 2k(t)], t=0

is non-decreasing. Since the ¢y continuously converges to ¢, we have a proof of the
theorem.

Remark 2.1. The result is also valid in Hilbert space though we proved it in R™.

Remark 2.2. We do not assume A € C. Hence the result holds true without it. It
is easy to see that, when A & C, the ¢(t) goes non-decreasingly to oco. On the other hand,
it is also clear that, when A € C°, the interior of C, the ¢(t) approaches non-decreasingly
to |a — b| because tA + b € C° for sufficiently large t and its projection onto C' is itself.

Remark 2.3. The assumption, a € L, is essential. Without this one, the theorem
does not hold. Tt is easy to construct a counterexample. Let us consider a following
example in R?;

C= {(01,92)’ : 92 > max(—Bl,O)}, A= '(1,0),, a = (——l, 1)/, b= (——1, ——1)’.

When 0 < t < 1, clearly £(¢) = 0, hence the ¢(t) = 1/(t — 1)% + 1 becomes decreasing in
this interval. This also implies that, unless a € L, the theorem does not necessarily hold
true even when the entire of 8(t), t > 0, is contained in C.

Assuming X; ~ F(z — 6(t)), we have the following theorems.
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THEOREM 2.2. When t moves from 0 to oo, |X; — 0(t)| becomes “stochastically
larger.”

PROOF. We can set X; = Xp + 0(t), where Xo ~ F. If we fix Xo as a constant,
we have from Theorem 2.1 that ¢(t) = | X; — 0(t)| is non-decreasing in ¢ > 0, from which
the proof follows.

_ We have easily the following theorem from the “stochastically larger” property of
| Xe — 0(2)]-

_THEOREM 2.3. Assume that v > 0 and E|X|" < 0o. Then, the absolute moment
E|X; — 0(t)|" is non-decreasing in t > 0.

Combining this with Remark 2.2, we have the following corollary.

COROLLARY 2.1. Let A ¢ L. If t moves from —oco to co then E|X; — 0(t)|" is
non-increasing in t < 0 and non-decreasing in t > 0.

COROLLARY 2.2. When X ~ F(x — 8), then the minimum value of E|X — 0[" is
attained at 0 = 0.

Remark 2.4. Let ¥(8) = E(|X — 0|"). When A € C°, 9(0(t)) goes to the r-th
moment E(|X — 0|"), which does not depend on the 8 or A. On the other hand, 1(6(¢))
goes to co when A € C°. Hence, the function (8) is not convex in 0. But, we have a
conjecture that the level sets

={0eR":(6) <a}, a>0,
would be convex. We have not obtained the proof.

Ezample 2.1. Normal distribution.

If we assume multivariate normal distribution Wil:h mean O and variance matrix I
as the underlying distribution F, the distribution of | X|? with = 0 becomes a mixture
of x? distributions, that is,

P(X*<z)= ZptP(Xz < z),
i=0

where the weight p; is a probability of the event that i is equal to the dimension of Fj

such that X € Fj, and x? is a random variable with x? distribution with ¢ degrees of
freedom. Hence, we have from Corollary 2.2

pil((r +1)/2)27/2
Z I'(¢/2) )

The minimum of the mean square error of X as an estimate of 6 is especially given when
6 = 0, that is,

MingE(|X — 4|")

MingE(|X — 0?) = ZZP“

which is used by Anraku (1999) to propose ORIC in the simple order restriction problem.
These results, however, are applicable in a much more general setting.
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