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Abstract. The distribution of Kolmogorov-Smirnov statistic can be globally ap-
proximated by a general beta distribution. The approximation is very simple and
accurate. It can be easily implemented in any statistical software. Therefore, we can
use a beta distribution to find the practical p-value of a goodness-of-fit test, which is
much simpler than existing methods in the literature.
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1. Introduction

Let X1, Xo, ..., X, be a random sample from a continuous population with dis-
tribution function F'(z), and let X1y, X(a), - --, X(n) be its order statistics. We wish to
test the null hypothesis

Hy: F(z) = Fp(z), forall =z
against the alternative
Hy: F(z) # Fo(z), forsome =z

where Fy(z) is a completely specified distribution function.
The most well-known goodness-of-fit test on Hp v.s. H; is Kolmogorov-Smirnov
statistic
D, = sup [Fu(z)— Fo(z)l,

-0 <LE <0

where F,,(z) is the empirical distribution function defined by
Folz)=#{1<j<n,X; <z}/n, =z € (—00,00).

The statistic D,, is distribution-free. The asymptotic distribution of D, under the
null hypothesis was derived by Kolmogorov (1933), and Smirnov (1939) gave a sim-
pler proof. However, the exact null distribution for finite-sample case is complicated
to express. Kolmogorov (1933) and Massey (1950) established recursive formulas for
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calculating the null probability P(D,, < k/n) for integer values of k. Then Birnbaum
(1952) tabulated these values for n =1,2,...,100 and k =1, 2,...,15.

Since the exact null distribution of D,, is only available at k/n for limited integer
values of k, approximate methods have been explored. For example, some critical values
of D,, based on interpolation were given by Massey (1951) and Birnbaum (1952), and the
most common-used approximate critical values in statistical tables and literature were
from Miller (1956). However, the approximation is only valid for the upper tail of the
distribution, since the critical values (with level a)) are approximated by the exact ones
(with level a/2) for one-sided test. See Conover (1980) and Gibbons (1992).

Research on the Kolmogorov-Smirnov statistics and their sampling distributions
remains very active. See, for instance, Cabaifia (1996), Cabaifia and Cabafia (1994, 1997),
Friedrich and Schellhaas (1998), Justel et al. (1997), Kim (1999), Kulinskaya (1995),
Paramasamy (1992) and Rama (1993) among others.

In this paper we use a general beta distribution to approximate the sampling distri-
bution of D,,, which will enable us to obtain the practical p-value of Kolmogorov-Smirnov
test with sufficient closeness to the true one. It can be easily implemented in any sta-
tistical software. Note that traditional methods of approximating the p-value are more
complicated and less accurate. For example, the current approximation method used in
S-Plus is based on interpolation for small sample (n <50) or the limiting distribution for
n > 50, which may not be accurate enough (see Section 2). Of course, with now-days
computers, it is likely for people to compute the p-value or critical point by Monte Carlo
methods rather than interpolating, but our beta approximation is easier to perform and
rather accurate.

The paper is arranged as follows: In Section 2 we will show that the distribution of
D,, can be globally approximated by a general beta distribution, and the approximation
is very simple and accurate. Therefore, by using a beta distribution, it is easy to get the
practical p-value for the Kolmogorov-Smirnov test. Approximation for one-sided test is
discussed in Section 3.

2. Beta approximation to the distribution of D,

Let By 4 denote a random variable having standard beta distribution Beta(p, q) with
density
bpe(z) =2P (1 —2)*/B(p,q), 0<z<]1,

and distribution function
T
Bpqo(z) = / by o(t)dt, —oo <z < 00,
—o0

where B(p, q) is beta function with p, ¢ > 0.

Our simulation study shows that the distribution of Kolmogrov-Smirnov statistic
D,, approximately equals that of a general beta variable aB, 4 + b, where constants
a,b,p,q are chosen such that D, and aB, 4 + b have the same first four moments, or
equivalently have the same mean u, standard deviation o, skewness 1 = fiz/o® and
kurtosis ro = fig/ o4, where [i, denotes the k-th central moment.

Let pn, opn, Tn1 and r,2 be, respectively, the mean, standard deviation, skewness
and kurtosis of D,. It is easy to prove that D, and aBp 4 -+ b(a > 0) have the same
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mean, standard deviation, skewness and kurtosis (or equivalently have the same first
four moments) if and only if

__ap _2(g-p) [ptg+l
p+q p+q+2 pg

__a g T2:3(p+q+1)[ 2(¢-p)? +1}
" p+tgVpte+1 " p+q+3 |pgp+qg+2) '

{p +q = P(rp1,mn2) with P = P(z,y) = 6(y — z2 - 1)/(3z% — 2y + 6),
g = Q(rp1,Tn2) with Q(z,y) = 4P?/[16 + z%(P + 2)?/(P + 1)].

Hn

+ b) Tnl

Note that

Hence, a, b, p, q(a > 0) are uniquely decided by

{pa q= [P('r"n,la "'n2) + ‘\/P('rnla Tn2)2 - 4Q(rn1,7'n2)]/2;
a=on(p+ V(0 +a+1)/(pg), b=pa—ap/(p+9),

with ¢ > p(g < p) if Ty > 0(ra1 < 0).

Then D,, and aB, 4+ b have the exactly same first four moments, as well as the ap-
proximately same moments of higher order based on our simulation (see below). There-
fore, they have approximately the same moment generating function or characteristic
function, and thus they have approximately the same distribution.

As a result, Fip_ () and fp,(z), the distribution and density functions of Dy, can
be simply approximated by those of aBp 4 + b, i.e.,

(2.2) Fp, (z) = Bpq (58 ; b) and  fp,(2) = bp,q (w ; b) /a,

where a, b, p, q are given by (2.1) and will be approximated by (2.3).

Usually, having the same first four moments is not enough to guarantee a very
good approximation, but (2.2) is a special case where the two distributions also have
sufficiently close moments of higher order. For n = 10, 100 and 1000, for example, the
first ten standard moments of the two variables are listed in Table 1, where the upper
nurobers in double entries are the moments of D, based on simulation with size of one
million, and the lower numbers correspond to aB, 4 + b. The specific values of a,b,p,q
are given in Table 2.

(2.1)

Table 1. The first ten standard moments of Dy, and aBp,q +b.

n © 4 fis/o® pajot bs/a® fe/o® pr/o”  Bg/o® [e/o® Piofd'®
10 0.25916 0.079832 0.8180 3.697 8.237 29.78 98.51 377.7 1500 6329
0.25916 0.079832 0.8180 3.697 8.399 30.60 104.1 408.7 1672 7315

100 0.08519 0.025916 0.8561 3.869 9.209 34.70 1242 516.00 2235 10533
0.08519 0.025916 0.8561 3.869 9.311 35.10 127.1 529.6 2329 10999

1000 0.02730 0.008229 0.8616 3.884 9.285 3493 1252 517.0 2248 10403
0.02730 0.008229 0.8616 3.884 9.399 3547 129.0 539.2 2380 11286
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Table 2. The first four standard moments of Dy, and corresponding a, b, p,q.

n Hn On Tnl Tn2 a b p q
5 0.35826 0.109496 0.7583 3.495 1.1571 0.14674 2.867 12.82
10 0.25916 0.079832 0.8180  3.697 1.0186 0.10590 2.980 16.83
20 0.18636 0.057362 0.8389 3.784 0.8215 0.07555 3.093 19.84
30 0.15331 0.047046 0.8457 3.818 0.7153 0.06190 3.165 21.60
50 0.11967 0.036602 0.8559 3.862 0.5974 0.04830 3.229 23.80
70 0.10150 0.031013 0.8562 3.863 0.5053 0.04106 3.224 23.73
100 0.08519 0.025916 0.8561 3.869 0.4327 0.03445 3.267 24.59
150 0.06985 0.021213 0.8599 3.887 0.3659 0.02823 3.298 25.70
200 0.06063 0.018404 0.8607 3.878 0.3051 0.02481 3.225 24.25
300 0.04960 0.015020 0.8594 3.864 0.2401 0.02053 3.171 23.02
500 0.03851 0.011636 0.8574 3.863 0.1878 0.01590 3.201 23.38
1000 0.02730 0.008229 0.8616 3.884 0.1385 0.01125 3.245 24.76

It can be seen from Table 1 that they do have the same first four moments and
similar moments of higher order. Unfortunately, the exact first four moments of D,
are not available to determine a,b,p, q, so we use Monte Carlo approach. For some
selected values of n, Table 2 lists the first four standard moments of D, obtained by a
one-million-size simulation together with the corresponding values of a, b, p, ¢ calculated
from (2.1).

Since D,, is distribution-free, its moments depend only on n, so do a,b,p,q in (2.1).
For simplicity, linear functions of n~! and n? (d is fixed) are used to approximate them.
Of course, better approximations may be made by using more complicated functions at
the price of the simplicity, the most important feature of this paper.

Directly fitting the data of a, b, p, ¢ in Table 2 does not work well and could destroy
their structure in (2.1). which enable the approximate distribution to have correct first
four moments. Instead we fit the moments first. A linear regression model y = G +
Bin~t + Ban? is used to fit (by least squares approach) the data of u,, on, Tni, Tn2
(against n) in Table 2 respectively. For different values of d, we have different models to
fit the data. We choose a d which roughly corresponds to the best fit by the following
approach. One can choose any initial value of d, and then fit the model to the data. If
the fit is satisfactory, stop. Otherwise, increase or decrease the value of d and fit the
model again. Then choose the d which corresponds to a better fit. Repeat this process
until a satisfactory fit is obtained. In this way, the best d can be roughly reached within
a few steps by our experience. The results are as follows:

fbn, = —0.00008631 — 0.1348/n + 0.8587/n%4%8,  #,, = 0.861 — 0.3748/n — 0.6908/n?,
&y = 0.0004787 — 0.09059/7 + 0.296 /n%-5%5, fno = 3.884 — 1.815/n — 0.6549/n2.

Then, using them as the mean, standard deviation, skewness and kurtosis of Dy, we
can get a new set of data for a,b,p,q (against n) via (2.1). The new data is well fitted
by

4=0.003326 — 6.012/n + 5.52/n053, P=23.258 — 3.727/n + 4.607/n'-
(23) {;
b=—0.0004245 — 0.003397/n + 0.3204/n%48 §=25 — 161.2/n + 162.2/n'3,
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which thus well keeps the original structure of (2.1).

With a,b,p and ¢ approximated by (2.3), the distribution of Kolmogorov-Smirnov
statistic D,, can be simply approximated by a completely known beta distribution in
(2.2).

We now discuss the accuracy of the approximation. For n = 10,50, 100,200 and
500, Table 3 lists three sets of percentage points of D, for comparison. The first line
in multiple entries is obtained from (2.2) with a,b,p and g approximated by (2.3); the
second line is based on a Monte Carlo simulation of size 100,000; the third line lists the
most common-used approximate values given by Miller (1956), which are only available
for upper tail (asymptotic values are used if » > 100). See also Conover (1980) and
Gibbons (1992).

It can be seen from Table 3 that (a) compared with the simulation results, our
approximate values are very accurate in the whole region (lower, central and upper
parts) of the distribution, and the higher the percentage level, the more accurate the
approximation; (b) at the upper tail they are consistent with Miller’s approximate results
for n < 100 but are better than asymptotic values, which are always a little bit larger
than real ones, especially when n < 200.

The exact sampling distribution of D,, is complicated. Kolmogorov (1933) and
Massey (1950) established recursive formulas for calculating the null probability P(D, <

Table 3. Percentage points for Dx.

n 0.01 0.05 0.10 0.20 0.50 0.80 0.90 0.95 0.99
10 0.1300 0.1512 0.1667 0.1897 0.2479 0.3239 0.3698 0.4103 0.4910
0.1273 0.1518 0.1673 0.1896 0.2468 0.3222 0.3691 0.4099 0.4885
0.3226 0.3687 0.4093 0.4889

50 0.0606 0.0703 0.0773 0.0877 0.1139 0.1482 0.1691 0.1878 0.2256
0.0596 0.0706 0.0778 0.0881 0.1140 0.1482 0.1693 0.1883 0.2265
0.1484 0.1696 0.1884 0.2260

100 0.0433 0.0503 0.0553 0.0627 0.0813 0.1057 0.1206 0.1339 0.1608
00426 0.0504 0.0556 0.0630 0.0812 0.1055 0.1207 0.1341 0.1608
0.1056 0.1207 0.1340 0.1608

200 0.0310 0.0359 0.0394 0.0447 0.0579 0.0752 0.0858 0.0952 0.1144
0.0305 0.0361 0.0396 0.0447 0.0577 0.0750 0.0856 0.0950 0.1145
0.0759 0.0865 0.0960 0.1151

500 0.0197 0.0229 0.0251 0.0284 0.0368 0.0478 0.0545 0.0605 0.0726
0.0194 0.0229 0.0252 0.0285 0.0366 0.0477 0.0543 0.0603 0.0723
0.0480 0.0547 0.0607 0.0728

Table 4. Exact values and the beta approximations for P(Dyn < k/n) when n = 40.

k 3 4 5 6 7 8 9 10 11 12
exact | 0.0345 0.2182 0.4808 0.7016 0.8471 0.9295 0.9708 0.9891 0.9964 0.9989
appr. | 0.0344 0.2224 0.4812 0.7021 0.8488 0.9311 0.9716 0.9894 0.9964 0.9989
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k/n) for integer values of k. Note that the recursive formulas only apply to integer k.
Birnbaum (1952) tabulated these values for n = 1,2,...,100 and k¥ = 1,2,...,15. We
can use Birnbaum’s tables to check the accuracy of our approximation. Table 4 are such
exact values for n=40 compared with the values obtained by the beta approximation
given by (2.2). It can be seen that the values corresponding to the same k are almost
equal, especially for large k. The situation is similar for other sample sizes.

We conclude from above that (2.2) globally gives very simple and accurate approxi-
mations to the distribution and density functions of Dy, especially at the upper tail (the
most important part). Hence, we can easily use a beta distribution to find the practical
p-value of the Kolmogorov-Smirnov test, which is simpler and more accurate than exist-
ing methods in the literature. For example, the current approximation method used in
S-Plus is based on interpolation on limited values of exact distribution for small sample
(n < 50), or the limiting distribution for n > 50, which has been shown in Table 3 that
it may not give a good approximation to the true value if n < 200.

3. Approximation for one-sided test

If we want to test one-sided hypothesis, say
Hy: F(z) < Fy(z), forall =z
against the alternative
H;: F(z) > Fo(z), for some
the corresponding Kolmogorov-Smirnov statistic is

D= sup [Fu(2) - Foa)]
—00<LEO0
The exact distribution of D} has been found by Birnbaum and Tingey (1951), but the
computation is not easy. Miller (1956) tabulated its critical values for n = 1,2,...,100
and a = 0.10,0.05, 0.025,0.05, 0.005.

As in Section 2, for n = 10, 100 and 1000 Table 5 lists the first ten standard moments
of D} and aB, 4+b (the values of a, b, p, g are given in Table 6). We can see that their high
order moments are not so close as the two-sided test. Therefore, the beta approximation
here could be less accurate than before.

Table 6 gives the first four standard moments of D obtained by a one-million-size
simulation together with the corresponding a,b, p, and ¢. Similarly, the data in Table 6
are fitted by

Table 5. The first ten standard moments of DY and aBp ¢ +b.

4 5 (] 7 8

n I 4 B3/o®  pafo* fs/o® fe/o® prfoT  fs/o® fs/o® [fio/at?
10 0.1830 0.1020 0.5953 3.116 5.362 19.10 52.60 183.0 624.4 2324
0.1830 0.1020 0.5953 3.116 5.220 18.52 48.96 166.3 540.7 1927

100 0.06105 0.03267 0.6278 3.235 5.955 21.62 64.07 2352 868.9 3491
0.06105 0.03267 0.6278 3.235 5.770 20.75 58.38 206.3 713.7 2691

1000 0.01963 0.01036 0.6321 3.249 6.025 21.93 65.58 242.8 908 3701
0.01963 0.01036 0.6321 3.249 5.840 21.03 59.59 211.5 737 2796
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Table 6. The first four standard moments of D} and corresponding a, b, p, g.

n Hn On Tnl Tn2 a b p q
5 0.25093 0.14236 0.5521 2.983 1.0897 —0.046026 2.893 7.723
10 0.18298 0.10196 0.5953 3.116 0.8774 —0.032409 3.122 9.595
20 0.13245 0.07273 0.6140 3.173 0.6594 —0.021709 3.208 10.516
30 0.10924 0.05951 0.6213 3.202 0.5580 —0.017693 3.288 11.164
50 0.08547 0.04621 0.6284 3.232 0.4493 —0.013792 3.373 11.896
70 0.07254 0.03905 0.6267 3.220 0.3733 —0.010934 3.324 11.541
100 0.06105 0.03267 0.6278 3.235 0.3204 —0.009412 3.409 12.094
© 150 0.05009 0.02671 0.6282 3.238 0.2630 -0.007585 3.421 12.180
200 0.04350 0.02317 0.6328 3.245 0.2283 —0.006293 3.394 12.168
300 0.03564 0.01891 0.6329 3.247 0.1870 —0.005049 3.406 12.244
500 0.02771 0.01464 0.6286 3.236 0.1437 —0.003852 3.406 12.102
1000 0.01963 0.01036 0.6321 3.249 0.1031 —0.002733 3.436 12.407
Table 7. Some critical values for D .

n 0.10 0.05 0.025 0.01 0.005

10 0.3238 0.3706 0.4114 0.4582 0.4893

0.3226 0.3687 0.4093 0.4566 0.4889

50 0.1486 0.1701 0.1891 0.2111 0.2260

0.1484 0.1696 0.1884 0.2107 0.2260

100  0.1059 0.1212 0.1347 0.1504 0.1611

0.1056 0.1207 0.1340 0.1499 0.1608

fi, = —0.0001739 — 0.1251/n + 0.6134/n%-496
&y = 0.0002374 — 0.04877/n + 0.3451 /n%51,

and

4=0.002816 — 3.063/n + 3.99/n%53,
(3-1) P 0.57 &_. - 1.7
b=—0.0002485 + 0.02671/n — 0.1283/n%57, §=12.34 — 37.79/n + 45.63/nl-".

Then the distribution of D;}} can be approximated by that of beta like (2.2) with
" a,b,p and ¢ approximated by (3.1). The approximation is poor at the lower tail (a less
important part) but is still as accurate as before in other parts of the distribution. For

example, for n=10, 50, 100 Table 7 compares the approximate critical values of D}

A

$=3.426 — 4.28/n + 5.061/n'-7,

Tni =

583

0.6322 — 0.331/n — 0.351/n2,
fn2 = 3.248 — 1.375/n + 0.2648 /n?

(the upper numbers in double entries) with the exact ones (the lower numbers) given by

Miller (1956).
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