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Abstract. Random processes, from which a single sample path data are available
on a fine time scale, abound in many areas including finance and genetics. An effective
way to model such data is to consider a suitable continuous-time-scale analog, X; say,
for the underlying process. We consider three diffusion models for the process X; and
address model selection under improper priors. Specifically, fractional and intrinsic
Bayes factors (FBF and IBF) for model selection are considered. Here, we focus on the
asymptotic stability of the IBF’s and FBF’s for comparing these models. Specifically,
we propose to employ certain novel transformations of the data in order to ensure the
asymptotic stability of the IBF’s. While we use different transformations for pairwise
comparisons of the models, we also show that a single common transformation can be
used when simultaneously comparing all three models. We then demonstrate that,
when FBF’s are used to compare these models, we may have to employ different,
model-specific training fractions in order to achieve asymptotic stability of the FBF’s.

Key words and phrases: Fractional Bayes factor, Girsanov formula, intrinsic Bayes
factor, Jeffreys prior, local asymptotic normality, mean-reversion, Wiener process.

1. Introduction

In many fields, including finance and genetics, a useful family of stochastic models
for an observable time series, X; say, stipulates that the process X; evolves according to

(1.1) dXy = {0f(t, X¢) + g(t, X:)}dt + 0dBy,

where the functions f and ¢ together model the drift of X;, ¢ is the constant diffusion of
the process and B; is the standard Brownian motion. See Polson and Roberts (1994) for
the scope of this stochastic equation. Three special cases of (1.1) considered by Polson
and Roberts (1994) are:

(1.2) Moy : dXi = 0dBy,
(13) M] : dXt = @dt + O'dBt,
(14) M2 N dXt = {0 - Ol(Xt d Ot)}dt-i— O'dBt,

where « and € are real valued parameters with o > 0. The first two are Brownian
motions respectively without and with drift, and the third is mean reversion with drift.
Here, we will assume that « is known, and 6 is unknown.
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Suppose now that the diffusion process X, is fully observed over the interval 0 < ¢ <
T, where T' > 0 is a pre-fixed time point. Under our continuous sampling scheme, it is
well known (see Polson and Roberts (1994)) that o can be estimated perfectly, with no
error. Hence, we shall hereinafter assume that ¢ is known, leaving 6 as the only unknown
parameter. Note that our data, denoted hereinafter as X7 = {X; : 0 < t < T}, idealizes
discrete data that is often available on a fine time scale.

Polson and Roberts (1994) have derived conventional Bayes factors (CBF) for test-
ing (pairs of) the foregoing models, under normal priors for 4. In this paper, we put
Jeffreys-type non-informative prior on the drift parameter # and derive tests for the
afore-mentioned models using Intrinsic Bayes Factors (IBF), see Berger and Pericchi
(1996), and Fractional Bayes Factors (FBF), see O’Hagan (1995). These partial Bayes
factors (PBF) are two popular ways to circumvent the vexing dependence of the CBF on
the arbitrary constants in the (improper) prior. For instance, let ¢; denote the arbitrary
constant in the improper prior for model A;, i = 0, 1,2 (see Section 2). Then, for testing
a model M; versus another model M;, a PBF can generically be written as

m; X T
where m;(X7T) and m;(XT), respectively, are the marginals under models M; and M;,
based on the full sample data X7, and CFy; is a correction factor that is chosen (see
Section 3) to cancel the indeterminate, ¢;/c;, that is present in the first term of the PBF.
The PBF methods have been successfully applied in many situations. See, for instance,
Lingham and Sivaganesan (1997) and Conigliani and O’Hagan (1998).

While these partial Bayes factors are not actual Bayes factors with respect to any
priors, it would be desirable, as recommended in Berger and Pericchi (1996), to seek
partial Bayes factors which correspond (asymptotically) to the use of plausible default
(proper) priors. Berger and Pericchi have espoused the above as a main guiding prin-
ciple in performing the selection of models using partial Bayes factors. De Santis and
Spezzaferri (1997) have also discussed the asymptotic properties of the IBF and FBF.
For a related discussion on Berger and Pericchi’s principle, see O’Hagan (1997). In this
paper, we seek IBF and FBF for comparing the above models that adhere to the above
recommendation, and hence will pay particular attention to showing that, as the period,
T, of observing the process X; extends indefinitely, the ‘correction’ terms, CF};, converge
to positive constants. Specifically, we show that data-transformations may have to pre-
cede IBF computations and that the transformations depend on the subset of the above
models that are being tested. Also, we show that the choice of a training fraction for the
FBF may need to be model specific, but otherwise does not depend on the alternative
models that are entertained in the subset, in order to achieve the desired asymptotic
stability.

The paper is organized as follows. In Section 2, we derive the non-informative priors
under the models. In Section 3, we give a brief outline of the IBF and FBF methods and
derive the marginals under these models. We implement the IBF approach in Section 4,
including the related asymptotics for pairwise testing of My, My, and M,, and then
comment on simultaneously testing these three models. In Section 5, we consider the
testing issues that are covered in Section 4 using the FBF methodology. Our concluding
remarks are given in Section 6. We relegate the proofs of our results to the Appendix.
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2. Non-informative priors

Towards deriving default priors for @ in (1.1), we note that the likelihood function
L(6) of XT with respect to the measure induced by dX; = o6dB; is given, using Girsanov’s
formula (see Pksendal (1985) and Polson and Roberts (1994)), by

T T 2
21) L) = exp [ /0 0f<t,xt>;g(t,xt> dXt_% /0 {ef(t,xt):gu,xt) } dt].

We shall now implement a proposal due to Polson and Roberts (1993) and derive
priors for . Their method is a type of Jeffreys prior for continuous-time models and
can be implemented easily in situations where the family of measures, {Pxr | 8§, M}, of
XT under a model M, is locally asymptotically normal (LAN). Thus, we begin with the
following result.

THEOREM 2.1. (i) Consider a model M for X;, which solves (1.1). Then, the
Fisher information based on the data X7 is

T
(2:2) 01 M) = o [ B X

(it) For any model M;, i = 1,2, introduced in (1.3) and (1.4), and any —oo < v <
00, define the Likelihood Ratio Process (LRP) under model M;, by
LRP(M;) = LRP(8,v,T | M;)

APxrio4 (orz"/2(6)),M:

2.3 =lo xT.
(2.3) g P (X")
Then, for ¢; ~ N(0,1),

(2.4) | LRP(M;) = v — %zﬂ.

Note that the property (2.4) is exact V T > 0 and is therefore stronger than the
LAN condition that requires (2.4) to hold only as T' — oco. In view of (2.4), we can apply
the proposal of Polson and Roberts (1993) and show that a non-informative prior of 4,
under model M;, is

(2.5) 7} (8) x ¢,

where ¢; are given by

(2.6) e1 = Ip(0 | My) =T/o?,
o213
(2.7) Cy = IT(G I Mg) = (T +aT? + —3-—> /0’2.

Remark. (i) It can be shown that the priors in (2.5) are indeed probability ezact
matching priors. Thus, these priors can also be justified from the view point of their

frequentist validity.
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(ii) The different orders of information in (2.6) and (2.7), in terms of T, reflect the
different probability structures of the X; process under M; and My; for instance the
process X; has much more variability, under M; than under My, for large ¢ as reflected
by their variances (see (4.13)).

3. Bayes factors

3.1 Intrinsic and fractional Bayes factors

The intrinsic Bayes factor (IBF). 'The IBF for testing a model M; versus another
model M; is given by

m; XT

where m;(XT) and m;(XT), respectively, are the marginals under models M; and M;,
based on the full sample data XT, and CFIj; is a correction factor based on a set of
minimum training samples (MTS). For example, CFI}; is the arithmetic average of the
ratios mj /m}, where m; and m} are the marginals under M; and M;, respectively, based
on a MTS. Typically, a MTS is a sub-sample of size equal to the number of unknown
parameters in a model. For more details, see Berger and Pericchi (1996).

The fractional Bayes factor (FBF). For the models M; and M;, let L;(f) and
L;(0), respectively, represent their likelihoods. Also, let

m®) = / 2T 0y, (6)do

(3.1) = / LM 6)de

where b;(T) is a fractional power to be chosen, possibly depending on the model M;. Let
mgbj ) be similarly defined, for model M;. Then, the fractional Bayes factor for testing
M; v.s. M; is (see O’'Hagan (1995))

(3.2) FBF;; = %CFFﬂ
where CFFj; is (a correction factor for FBF) given by
mibi)
(3.3) CFFy; = %7.
m; "
2

Note that, both IBF and FBF are products of the term m;/m; and a correction
factor term, CFI and CFF respectively. In the context of IBF, Berger and Pericchi (1996)
advocated a principle that requires the IBF to provide asymptotically an actual Bayesian
analysis with default (proper) priors. DeSantis and Spezzaferri (1997) have discussed
similar properties of the FBF. Thus, the correction factors must necessarily converge
almost surely to positive constants as the sample-size (information) grows indefinitely
large. In this paper, we follow that recommendation and seek IBF/FBFs that conform
to the above principle.

Remark. When introducing the FBF, O’'Hagan (1995) used the same fractional
power, b, for both models that are tested by the FBF. Here, we allow the possibility that
the fractional power may be different for the models that we entertain; for motivation
for such a choice, see Section 5.
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3.2 The marginals under models My, M7 and My

First, suppose that the process X; follows the model My in (1.2). Then, the likeli-
hood of X7, see (2.1), is given by Lo = 1; recall that the likelihood is in fact calculated
with respect to the measure ¢dB; itself. Hence, the marginal mo(X T) under model My,
is 1.

To obtain the marginal, m;(X”) under model M, in (1.3), note first that the likeli-
hood L;(#) is obtained by putting f(t, X;) =1 and ¢(¢, X;) = 0 in (2.1). The marginal
my (XT), with the improper prior m; () = ¢y, is then given by

my(XT) = / c1L1(0)do

(3.4) - cl\/? exp { (XTU";I;X"V}.

Now, suppose that the process X; evolves according to the model M, given by (1.4). Then
the likelihood Lo(f) is obtained by putting f(¢,X;) = (1 + ot) and g(t, X;) = —aX; in
(2.1). Hence, the marginal my(X7T),under model My with the improper prior 72(8) = ca,
is given by

/2 1 B2
(3.5) ma(XT) = co %exp {_2_1 +C}

where

T2
o?A =T (1 +aT+a2?)

T T
(3.6) 0®B = Xr — Xo+a / tdX; + o / (1 + at) X, dt
0 0

2 Qo 2 2 o? T 2
0

Remark. When applying these formulas for the marginal beliefs to an actual dis-
crete observation set, {Xy,} say, that is recorded on a fine-time scale, one may use the
following approximations of stochastic integrals:

T
(3.7) / (L + at)dX; = Si, (1 + atio1)(Xe, — Xeo_y),
0
T
(3.8) / XZdt ~ By, X7 (i —tic1).
0

4. Intrinsic Bayes factors for testing My, M;, My

In this section, we derive the arithmetic IBF for pairwise testing of the three models
and then comment on the simultaneous testing of the models.
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IBF for testing M; v.s. M
Using the prior in (2.5), the marginals of a single observation at time t, i.e., (t, z:),

under the models M;, ¢ = 0,1 are given, respectively, by

Tt — T 2
(4.1) m O (z;) = \/2_71r£&_§exp [—( 2ta20) } ,
(4.2) mM(z;) = Etl

Thus, the Bayes factor for testing My v.s. M7, which is based on the data at time ¢, i.e.,

(t,z), is given by,
)2
exp [— (@ = 20)” ] .

(4.3) Boi(z4) o o2 252

Minimum training samples

To define a suitable minimum training sample, note that the observed (full) data
is in the form of a continuous path § = {(t,z;) : 0 < t < T}. Let S C [0,T] be a
non-empty and measurable set, and

(4.4) z(S) = {(t,z) : t € S}.

Thus we can regard z(S) as a subsample of S. Moreover, it is easy to show that the
marginals based on z(.5), m;(z(S)), satisfy the property

(4.5) 0 <mi(z(S)) <o for i=0,1,

for all non-empty measurable subsets S of [0, T]. Hence, z(S) is a training sample (TS),
for any non-empty measurable subset S of [0,T]. Consequently, the set of all minimum

training samples (MTS) is given by
(46) M s {z(S) : S C [0,T] & there is no Sy C S so that x(Sp) is a TS}.

It is now immediately clear from (4.6) and (4.5) that for an 2(S) to be a minimum
training sample, S has to be a singleton set. Thus, the set of MTS’s is given by the
(uncountably) infinite set M = {(t,z:) : 0<t <T}.

Correction factors

We recall that the Bayes factor corresponding to an MTS (¢, x;) is given by Boi(z¢),
as in (4.3). A correction factor, CFpy, is therefore a suitable summary of By (z;)’s over
the set of MTS’s M, or equivalently, over t. To this end, we describe below three possible
approaches, depending on the MTS’s used, to calculating the correction factors. The
first two use continuous and discrete versions of x;, while the third uses a transformed

(i-e., differenced ) version of x;.
Use all MTS’s (t,z).

In this case, we may define the correction factor as an integral of Boi(z;) over t,
with respect to a suitable measure v. Thus,

T
(@) CFIY = /0 Bot (zo)(db),
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where, for example, one may choose v(dt) = dt/T.
Use a finite number of MTS’s.

Let n=n(T) >0,and 0 =ty < t; < ta < --- < tp, < T be such that t, — oo as
T — oo. Also, let Y, = Xy, . Then, Boi(yx) = Boi(z+,) is defined through (4.3), where

k=1,...,n. Here, we define the correction factor by
1 n
(48) CFI = =3~ Bou(ys)-
k=1

Use a finite number of MTS’s based on the transformed data.
Following the above notation, the first differences of the raw data are given by

(4.9) Zy=Y, and Zy=Yp-Yi1, k>2.

Then, each z; is an MTS. However, the Bayes factors based on these zx’s have a common
form except for z; and hence we drop the latter from further consideration. The Bayes
factor based on zi, namely Bo1(2x) is the same as in (4.3), with 2z in place of z; — zg,
and Ay = t; — tg—1, in place of t. Now, we define the correction factor based on z;’s by

1 n
(4.10) CFI = =3 Boy(=).

n

k=2

We propose that the choice of which of the foregoing correction factors may be used in
testing My v.s. M; be based on the principle that, as ¢, and T - oo, the correction
factors converge to positive numbers almost surely (a.s, hereinafter) under both models.
It can be argued that, for CF I(g}) to converge in expectation to a positive number, one

needs to choose a v(dt) that depends on 6 or the models themselves. Also, it can be

shown that, as A; — a positive common A, V0, C’FIg) does not converge to a positive
(2)

number a.s. Moreover, the corresponding IBF, denoted I BFlg
correction factor is not consistent. Specifically, we have

, computed using this

THEOREM 4.1. Under My, I BFl(g) does not converge to 0 in probability as n goes
to oo.

PRrOOF. In the Appendix. 1

Hence, we shall employ the correction factor CFI((,:;). In view of the sufficiency of
the single observation at time T', namely xp, we define the IBF for testing M; v.s. My
as

0
(4.11) [BF = 1)

where m(®(z1)’s are given by (4.1) and (4.2).

Remark. Using arguments similar to the proof of Theorem 4.1, it can be shown
that the IBF in (4.11) is in fact consistent. Also, in this IBF, one can substitute other
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summaries like the median of By (2x)’s for the correction factor. But we do not pursue
these other options here.

We now turn to testing the model M5 in (1.4) against one or both of models M;
and M,. We first observe that the solution to (1.4), X, is

¢
(4.12) X; = Xoe ™ * + 0t + ae“"t/ e**dBs;.
0

We will assume that Xy has a known normal distribution (possibly degenerate at 0) that
does not depend on 6. Thus, for instance, if Xo ~ N(0, 1), then X is a Gaussian process
with E(X;) = 6t, V(X;) = e™2% + ¢2(1 — e72%%) /20, and for s < ¢,

(413) COV(Xt, Xs) — e—a(t-{—s) + Uze—a(t—s)(l _ e—2a5)/2a'

IBF for Testing My v.s. My

With the improper prior 72(6) o ¢; under M», as given by (2.5), we have that any
single z; is a minimum training sample (MTS). The marginal under M3 of an MTS z,,
say Mg, is given by Mq = cp/t. Similarly, the marginal under M; of an MTS x, say
is given by m; = ¢;/t. Thus, the Bayes factor for testing Ms v.s. M, which is based on
the data at time t, i.e., (¢, z:), is given by Ba(x;) = c2/c1. The correction factor of the
arithmetic IBF is

CFIy =2
1
and the IBF for testing My v.s. M, is
(4.14) IBFp =1,
m

where m,, mo are respectively given by (3.4) and (3.5). Thus, in testing My v.s. M,
the CBF (ignoring constants ¢;’s) is “well-calibrated”, as might have been anticipated.

IBF for testing My v.s. M,

In this case, we find that use of z;’s or even the differences 2z in (4.9) as the training
samples does not necessarily lead to a correction factor with desirable asymptotics. For
instance, choosing z;’s as the training samples, we see that the correction factor is given

by

(4.15) FI) = ZBo2(zk)’
where 2

1 /A 25
10 Btor) = 2 sy o |-

Under model My, 2’s are independent and CFI(,;) will converge to a positive constant.
But, in view of (4.13), the z’s are still correlated under M.

It is difficult to determine whether CF I(g;) converges to a positive constant a.s. as
n goes to 0o, and we suspect it does not. To achieve asymptotic stability of correction
factors, we now propose a more general transformation than differencing of Y;. To
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this end, in order to simplify presentation, we assume that Ay = A for all £ and hence
tr = kA. (Final conclusions are still valid in the more general case provided Ay converges
to a positive number as k goes to 00.) An exploration of the structure of Y’s under
model M, reveals that we should consider the Wy’s given by

(4.17) Up =2 — 6—aAzk..1,k: >2 and Wg=Usy1, k> 1.

Note that, when o = 0, the above transformation reduces to (4.9), the one meant for M,
which is natural as M5 reduces to M; for « = 0. Moreover, as « is a known parameter
in our setup, the data given by the transformation in (4.17) can be used in our model
selection procedures. We now state the probabilistic structure of the transformed data,
Wi, k > 1, under all three models, the proof of which is given in the Appendix.

THEOREM 4.2. (i) Under My with o > 0, Wy ’s are i.i.d. random variables having
normal distribution with mean 6u(c) and variance o?v(a) where

pa) =AQ—-e*?) and v(a)=(1-e2*8)/a

(ii) Under My, Wy ’s are i.i.d. with N(0u(c),0?A(1 + e~2*2)) distribution.
(iii) Under My, Wy ’s are i.i.d. with N(0,02A(1 + e~2*2)) distribution.

Now, using wy, as the training samples, the correction factor for testing M, v.s. My
may be defined by

1 n
(418) CFI()Z = "f—l._ Z Boz(’wk),
k=1
where, in view of Theorem 4.2, one can show that

1, [Age) [ wi ] ,

(4.19) Boz(wg) = oV Zro? T2A0%(1 + e 204

where g(a) = (1 — 2¢7*A(1 + e~2*4)71). Again using Theorem 4.2, it is now easy to
verify that CFIy; does tend to a positive number as n goes to oo. The IBF for testing
My v.s. Mo is then given by

1
(4.20) IBFpy =

IBFy ’
where IBFy = ;—mn—ozCFIog, mo = 1 and my is given by (3.5).

Remarks. (i) In view of (4.17), it is clear that

k-2
(4.21) 2 = e'(k'l)"Azl + Uk + Z e_jaAUk_j
j=1

and it is easy to show from this that z;’s are correlated. v
(ii) Definitions such as (4.20) have been used in other contexts by Berger and

Pericchi (1996).
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Stmultaneous testing of My, My and M,.

Our interest has so far been in testing the models pairwise. Here, the transformation
(4.17), although it would work, would not be very meaningful if we are only testing M,
v.s. My because, while these two models are free of «, the transformation involves «.
Thus, in order to obtain asymptotic stability of the correction factors when using IBF
approach, we have proposed the use of different transformations to suit the pairwise
testing. Specifically, we have used the transformation (4.9) when testing M; v.s. My,
and (4.17) when testing My v.s. M, and did not transform the raw data for testing
M; v.s. M. However, if we are interested in jointly testing all three models, it would
be meaningful to have a single transformation that will simultaneously stabilize the
correction factors of all three IBF’s for testing My v.s. My, My v.s. My and My v.s. My,
as these are needed to jointly evaluate all three models. Fortunately, the transformation
(4.17) does provide a unified tool to accomplish this task because, in view of Theorem
4.2, the transformation produces independent data no matter which model is the correct
one. Here, we omit further details as they are similar to our earlier discussion of the
pairwise testing problem.

5. Fractional Bayes factors for testing My, M; and My
We begin this section with testing My v.s. M.
LEMMA 5.1. For0<b<1, we have

mg’) =1

® _ 2mo? b _ 9
my” = C1|| == exp [—-'2,_,102 (zT xo)}

CFE® =1/m{¥.
Using the above expressions, and with m; = mgl), i =20,1, we obtain FBFl(g), the FBF
for testing My v.s. My as
(5.1) FBFY = %CFFO({’),
0

LEMMA 5.2. Letb=1/T. Then, as T — oo, under models My and M
1 6?
CFF® % — —_ex (——)
o c1V2mo? P 202

Proor. From (A.3) in the Appendix, as T — oo, under models My and M, we
obtain (X7 — Xo)2/T?02—%%6%/52. The result follows readily from this convergence.

Turning to testing My v.s. My, My, we note that a commonly recommended choice
for the fractional power b is m/n, where m and n respectively are the size of a MTS and
the size of the full sample. In the context of our continuous sampling from a continuous
time process (with one unknown parameter) fully over the interval 0 < ¢ < T', a similar
choice for b would be b = 1/T. The choice of b can affect the asymptotic behavior of the
correction factor CFF, and hence is crucial when desirable asymptotic behavior for CFF
(as outlined earlier) is sought.
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Indeed, we saw in Lemma, 5.2 that the choice of a common training fraction, namely
b = 1/T, was satisfactory for testing M; v.s. My. Such a choice of b, however, is not
satisfactory, as we show below, for testing M; v.s. My and My v.s. Ms. In particular,
we find it necessary to use different choices of b’s in the numerator and denominator of
(3.3), in order to ensure that CF Fa; and CFFyq converge a.s. to positive constants. More
specifically, we shall see that the choice of b needs to be, in some sense, related to the size
of the ‘information’ in the sample under each model, and that, when this information
differs in order of magnitude between the two models being compared, different b’s would
be required for the two models, to ensure satisfactory convergence of CFFy; and CFFy.
To this end, note that the Fisher informations for models M; and My, respectively given
by (2.6) and (2.7), are of the orders T and T + oT? + a®T3/3. It is noteworthy here
that fractions other than b = 1/n have indeed been recommended in the literature; for
instance, Berger and Pericchi (1997) proposed training fractions other than 1/n in the
context of the Neyman-Scott problem.

In the following, we derive the asymptotic behavior of the various marginals, and
hence show (Theorem 5.2) that, when the common training fraction b(T) = 1/T is used
for both numerator (models My and M;) and denominator (model M) in (3.3), CFFy
and CFFyy do not converge to positive constants, and that for the choices of b, = 1/T
for model My and by = 1/v(T), where v(T) = T + oT? + o*T3/3 for model Ma, the
correction factors do converge a.s. to positive constants.

For use in the following, we use the notation 7, for mgb), i=1,2, and C'FF2(; ) for the
corresponding correction factor when the same b = 1/T is used (in 3.3) for both models.
Likewise, when b; = 1/T and by = 1/v(T) are used for models M; and My respectively
in (3.3), we use the notation m; for mgb), and C’FFZ(f), for the corresponding correction
factor. Here, m}, which corresponds to M; or o = 0, is calculated with the fraction
1/T (and hence m; = mj). Also, m3, which corresponds to M> with a known o > 0,
is calculated with the fraction 1/v(T) = 1/(T + oT? + o?T3/3). For convenience, we
also let m; and mf, ¢ = 0,2 (with M = m§ = 1), C’FF2((1,), and CF FZ(S) have similar
definitions in testing M v.s. M.

THEOREM 5.1. Under models My, and My,
(5.2) 1 %53 croV omed 1277

THEOREM 5.2. (i) Under Ms, y—0, in probability, and hence, C’FF2(11) = T [y
and C’FFQ(I) = g /Mo converge, in probability, to 0 as T' goes to co.

(ii) Under models My and Ms, mi—®*%co0+/2m, and hence C'FFQ(IZ) = T’Z—%—»“'s'%
e~0°/20%

(iii) Under models My and M, CFF2(§) = —"m%—»“'s'czx/Q_w.

Proofs of the theorems are given in the Appendix.

Motivated by the foregoing asymptotic considerations, we suggest that we replace
the fraction b in the definition of the FBF by a vector b = (b1, bs) to facilitate further
discussion of the FBF. Specifically, in our context, we distinguish and recognize the
following FBF’s for testing M; v.s. My:

(5.3) FBF, = -ZJCFFQ(}),
2
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where b= (T, T) uses a common training fraction, and

(5.4) FBF, = "LcFF®,
ma

where b = (T, (T + oT? + @)) consists of different training fractions that are pro-

portional to the information numbers for the models being tested. Using CF Fz(é) and

C’FF2(§), one can define similar FBF’s for testing My v.s. Ma.

Remarks. Although we do not provide the details here, it can be shown that both
FBF, and FBF; are consistent for testing My v.s. M3, in the sense that both tend
to oo (respectively, 0), in probability, under M; (respectively, Mz). Thus, these facts
combined with Theorem 5.2 suggest that we should prefer using FBF, to FBF; if we
were to require asymptotic stability of the correction term. A similar recommendation
can be made in testing My v.s. My. Regarding the simultaneous testing of the three
models My to M>, the correction factors in (3.3), where by = 1/T", by = 1/T, and by =
1/(T+aT?+ o’T° ), will suffice, as they all converge to positive constants asymptotically.

3
We omit the details, as they are similar to the earlier discussion in this section.

6. Conclusions

In this paper, we have used the IBF and FBF approaches to test, under Jeffreys-type
probability matching improper priors, the hypotheses that an observable continuous-time
process is a Brownian motion with no drift, Brownian motion with drift and a mean re-
version process. In doing so, we have adhered to the Berger-Pericchi’s principle that
for a Bayes factor to be reasonable it should correspond (at least asymptotically) to
some (reasonable default) priors. We have used this principle as a guide in evaluating,
and seeking suitable “adjustments” for, the IBF and FBF in order that their correc-
tion factors are asymptotically stable. Except when testing the mean-reversion model
against the Brownian motion with drift, we have found that an “automatic” use of the
IBF methodology does not lead to an asymptotically stable correction factor. In other
pairwise and joint tests of the models, we need to first “ungroup” the data using a single
transformation that will simultaneously stabilize, under all the relevant models, all the
correction factors involved in the (arithmetic) IBF’s needed for the testing. We have
provided a novel solution to this non-trivial task. Next, whenever the mean-reversion is
included in the model selection, the fraction of the data used in the correction term of
the FBF needs careful attention. In particular, we have shown that, when different train-
ing fractions that depend on model-specific Fisher information are used, the correction
factor of the FBF is asymptotically stable. It should be noted that these model specific
training fractions remain the same no matter what the alternative models considered for
comparison are. To sum up, when selecting a model for our correlated diffusion process,
careful consideration must typically be given to data transformations and to choosing
possibly different training fractions to enable the correction factors in the IBF and FBF
to stabilize asymptotically.
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Appendix

We now provide proofs of our results in Sections 2 to 5. In the following, the
operators P;, E;, F; respectfully refer to the probability, expectation and the cumulative
distribution function under model M;.

PRrROOF OF THEOREM 2.1. It is straightforward to show that part (i) holds. Turn-
ing to part (ii), we note that LRP(M;) = vip; — 3v%;, where

1 T
(A1) = /0 f(8)dB,
and
T
(A2) &= x|, SO

where f1(t) =1 and fo(t) =1+ at. It follows from part (i) and (6.2) that & = 1. Also,
since

1 T
Ez("pz ) 0'2IT(9) L fz dt 17
we obtain ¥; ~ N(0,1). 0

Proor oF THEOREM 4.1. For simplicity, we assume that t; = k, Y, = X, for
k=0,1,...,n=T, and that Y), are observed for k£ = 1,...,n. Using the sufficiency of

Y., IBFI(S) is given, as in (4.11), by

m) (z,)

(2) def
(o) CFI;y & IBF,,

IBFQ =

where CFI{Y = 15°7_ By (Y3). Note that

T n

1 n
IBF, = —pz exp{(Ya - Yo)?/2n0?} I; Vkexp{— (Y — Y)?/2ko?}

1 n
> =5 kz VEexp{—(Yy — Yo)%/2ko?}
=]

Vd_e_f i
= B,.

It is easy to see that Eo(B,) converges to a positive constant ¢ as n goes to co. Thus,
for (any) small € > 0, we have for large n,

coe< / BodFo(By) < € + / BndFy(By),

Bn >€

where Fy(B,) denotes the cdf of B,. Since B, is positive and bounded above, say, by
K > 0, we have from the above,

c—e< e+ KPy(By, > ¢).
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Now, since IBF,, > B, we have, for large n,

(c——2e)'

Po(IBF, > ¢€) > Po(Bn > €) > 5K

Hence, Py(IBF, > ¢) does not converge to 0 as n goes to 0o, proving the desired result. O

Proor OF THEOREM 4.2. We prove part (i). Proof of parts (ii) and (iii) are
straightforward and hence will be omitted. Using the representation (4.12) for Y, = Xga,
we can show that

kA (k—1)A

e**dB, — g™ / e**dB,.

Vi d;f eakAUk — HA(l _ e—aA)eakA + 0_/
(k—2)A

(k~1)A

Now, it is clear that Vary; are independent and normally distributed for £ = 1,2,....
Moreover, using routine calculation, we can show that

Ey(Vi) = 0A(1 — e ®®)e®®®  and  Varg(Vy) = 0228 (1 — ¢2*4) /a.

Thus Uy, = e~**AVj, are identically distributed with N (6u(a), 0?v(a)) distribution, and
Usk41 are iid. for k=1,2, ..., proving part (i). O

PrOOF OF THEOREM 5.1. Putting f(¢,X:) = 1 and ¢(¢,X;) = 0 in (2.1), and
using (3.1) with ¢ = 1 and b;(T) = 1/T, we get

(X1 — X0)?

log 1 = log(c10v2r) + 55772

Now, under M;, X7 — Xo = 68T + Br, which gives
(A.3) (X1 — X0)2/02T? 5 62 /02
This proves (5.2) under M;. Proof under My is similar, using (4.12). 00

PrOOF OF THEOREM 5.2. We only prove the parts (i) and (ii) since the proof of
part (iii) follows immediately.

For convenience, we take 02 = 1 and Xy = 0 in the following. First we note that
m® (XT) can be written as

O (T = oy | 27 o d LBE
(A4) my (X7) =c 1, &P {2 A +Cy
where, with A, B,C given by (3.6), Ay = A-d(T),B; = B-b(T) and C; = C - b(T).
(In the following, except for A and A;, which are non-random functions of T, we use
small-case letters to denote non-random functions of T, and capital letters to denote

random functions of T'.)
We assume that the process X; follows the model M, and let

t
(A.5) Y, = e / e**dB,.
0
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Then, using (4.12) and (3.6), we can write, after some simplification, b(T)~! - B, =
p(T) + aVi, where

T T T
V1=/ tdY; + Ytdt+a/ 1Y, dt + Yr,
0 0 0

and . o
B(T) - Cr = o(T) - 5 (0TYr +Y7F) - = / (268, + Y2)dt,
0 .

where p(T) = (T + aT? +a2%i) and ¢(T) = —2(6°T?-T)— ‘—"%0—3T3. Using integration
by parts, e.g., see Pksendal (1985), we can re-write V1 as

T
(A.6) Vi =TYr+Yr+a / tYdt.
0

Now, from (A.4),

2log m(b) (xT)
_ B}

= +2C) —log A; + 2logcp

1

A7) = s(T) +20pmp(r) A 1 EVED)

T
— 200Tb(T)Y7 — 22%6b(T) / tY;dt
Ay Ay 0

T
—b(T) (aYgg + az/ det) —log A; + 2log(ceV/2m),
0

where

2
S(T) = B(T) ( ng) + 2‘;%)

Using (A.6), we can simplify (A.7), and write

a2 V12 b2 (T)

(A8) 2logm{’(XT) = s(T) + 2a06(T)Yr + —
1

T
—b(T) (aYﬁ + a2/ Ytzdt) —log A1 + 2log(cev'2m).
0
Now, to prove part (i) of the theorem, we put b(T') = 1/T in the above. Then, we

have s(T) = 62 + a, Ay = A/T, and

o?

V2
T24, + 2a9? —log A; + 2log(cev'2m)

_1 (aYr_,% + az/ det) .
T 0
Thus,

(A.9) 2log M (XT) < Vo — log A; + 2log(caV27),

2log ma(XT) = 0> + o+ -
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where 2y v
_(n2? a”vy T
(A.10) Vo= (0 +a)+T2A1 +2a6T.

We note, from (A.5), that Yr has normal distribution with mean 0 and variance o2(1 —
exp{—2aT}/2a)/(2a), and hence the third term in the above, Y7 /T, converges to 0, a.s.
w.r.t. Py(XT), as T goes to 0o. Now, to see the limit of the second term on the right of
(A.10), we note that A, is of the order T2, and consider

T

(A.11) %@2- = a% + % + %/0 tY,dt.

As before, we can deduce that the first two terms on the right of (A.11) converges to 0
a.s. as T goes to 00. It can also be shown, using (A.5), that the third term on the right
of (A.11) has normal distribution with mean 0 and variance of the order 1/T", and hence
converges to 0 in probability as T" goes to co. Thus, the second term on the right of
(A.10) converges to 0, in probability, as T" goes to 0o, and hence V3 converges to (a+62),
in probability, as T' goes to co. We can now write, from (A.9)

ﬁzg(XT) < eaqf _2}_% exp{Va/2},

and conclude that (X T) converges to 0 , in probability, as T' goes to co, proving (i).
To prove (ii), under Ma, we put b(T) = 1/v(T) = 1/A in (A.9). Then, A; =1, and
we can verify that s(T') converges to 0 as T goes to oo. Thus, we have
C“2‘/'12
A? ‘
Y-

2 o2 T
—a-L — --/ Y2dt + 2log(caV2r).
A A

2logm3(XT) = s(T) + 2040};% +

We now re-write the above as
2 ,T
(A.12) 2logm3(XT) = s(T) + V3 — %—1—/ Y2dt + 2log(caV2m),
0

where V3 can be shown, as before, to converge to 0 a.s., as T goes to co. Moreover, we
can show, using (A.5), that the third term in (A.12) has an expectation which is of the
order 1/T2, and hence converges to 0 a.s. as T" goes to co. Hence, from (A.12), we have
that m3(X7T) converges to c3v/27 a.s. as T goes to co. The proof of (i) under M, is
similar and hence omitted. O
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