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Abstract. In many clinical studies, there are two dependent event times with one
of the events being terminal, such as death, and the other being nonfatal, such as
myocardial infarction or cancer relapse. Morbidity can be dependently censored by
mortality, but not vice versa. Asymptotic theory is developed for simultaneous esti-
mation of the marginal distribution functions in this semi-competing risks setting. We
specify the joint distribution of the event times in the upper wedge, where the nonfa-
tal event happens before the terminal event, with the popular gamma frailty model.
The estimators are based on an adaptation of the self-consistency principle. To study
their properties, we employ a modification of the functional delta-method applied to
Z-estimators. This approach to weak convergence leads naturally to asymptotic va-
lidity of both the nonparametric and multiplier bootstraps, facilitating inference in
spite of the complexity of the limiting distribution.

Key words and phrases: Bootstrap, dependent censoring, empirical processes, func-
tional delta-method, gamma frailty model, U-statistics, weak convergence, Z-
estimators.

1. Introduction

In many clinical studies, there are two dependent event times with one of the events
(say Y') being terminal, such as death, and the other being a nonfatal event (say X) such
as myocardial infarction or cancer relapse. Often, these studies also have an indepen-
dent right-censoring time (say U) caused by random loss to follow-up. Because X can
be dependently censored by Y but not vice versa, these data pose a semi-competing risks
problem. In a recent multi-center clinical trial of allogenic marrow transplants in pa-
tients with acute leukemia, the primary endpoint was time to death while an important
secondary endpoint was time to relapse (Copelan et al. (1991); Klein and Moeschberger
(1997)). An important scientific question is how to estimate the distribution of the
relapse times in the presence of the dependent censoring caused by death.

Jiang, Fine, Kosorok and Chappell (2001) (hereafter JFKC) propose a pseudo self-
consistency method of estimation under the popular gamma frailty model (Clayton
(1978)). However, the details of the asymptotic theory were not provided. The assumed
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model has the form P(X > z,Y > y) = Cp,(So(z), Ro(y)), where Sy and Ry satisfy the
definition of survival functions, and where, for § > 0 and u,v € [0,1],

(1.1) Co(u,v) = [(u ™ + 10 — 1) v 0]1/(-0),

Here we define C1(u,v) = limg_.; Co(u,v) = uv and Coo(u, v) = limg—, o, Co(u,v) = uAv,
where a V b is the maximum and a A b the minimum of ¢ and b. The model is only
on the upper wedge where z < y. This is weaker than hypothesizing a parametric
model for z > y, as in traditional competing risks analyses. The pseudo self-consistency
methodology proposed in JFKC is insensitive to P(X > z,Y > y) on the lower wedge.

This robustness is important because the model on the lower wedge is nonidentifiable
just as in the case of competing risks data (Tsiatis (1975)). In fact, the parameter
Sp is the marginal distribution of X only if Sp(z) = P(X > z,Y > 0). A class of
distributions with this property follows. Let P(X > z,Y > y) = D{So(z), Ro(y)} for
z >y, where D(s,r) =P(A > s, B > r), A, B are uniform(0, 1) variates with unspecified
joint distribution, and D{So(u), Ro(u)} = Cp, {So(u), Ro(u)}, for all u > 0. Then P(X >
z,Y > y) has the same Sy and Ry on both wedges. The copula D is nonparametric and
X,Y may be dependent on the lower wedge. Observe that Ro(y) =P(X > 0,Y > y) is
the marginal distribution of Y, regardless of the model for z > y.

Following Day et al. (1997), 6 in the model on the upper wedge is interpretable as the
predictive (Oakes (1989)) hazard ratio. For z <y, A(Y | {X})/A(y | (z, 00]) = 8, where
Ay | A) = lim0d{P(Y <y+e|Y >y, X € A)}/de and A C (0,00). When 8 = 1,
X and Y are independent on the upper wedge. Consider the following interpretation of
the predictive hazard ratio on the upper wedge in the context of the leukemia example.
Take two patients at time ¢: one that has just relapsed and one that has not yet relapsed.
There is a §-fold increase in the probability of death for the relapsed patient relative to
the non-relapsed patient at all times s > t. This knowledge has clinical implications for
disease management. Further details on the interpretation of this model are given in
JFKC.

The basic idea of pseudo self-consistency is to first construct self-consistency equa-
tions (Efron (1967)) for Sp and Ry assuming that the association parameter, 6y € [1, 00),
is known. Next, a consistent estimate of 6y, én, is substituted for g in these equations
and the equations are then solved for the marginal distribution functions. A U-statistic
estimating function can be used to estimate 0, separately from the marginals (Jiang
et al. (1999)). An obvious alternative approach would be to maximize a nonparametric
likelihood for the data to estimate 6, Sp and Ro. The key challenge for establishing con-
sistency would be to demonstrate that the Kullback-Leibler distance uniquely identifies
the true parameters (see, for example, Murphy (1994)). Because pseudo self-consistency
circumvents estimation of 8y via joint maximum likelihood, establishing identifiability of
the marginal distributions is simplified. Of course, showing that the equations have a
unique solution in the limit is still a formidable task. An added benefit of pseudo self-
consistency is that computation of the estimates is relatively straightforward and con-
verges reliably. Furthermore, simulation studies in JFKC demonstrate that the pseudo
self-consistency estimates may be more efficient than maximum likelihood estimates for
small and moderate sample sizes.

The fact that the pseudo self- con31stency equations contain an estimated param-
eter precludes the use of existing theory for self- -consistency equations (see Tsai and
Crowley (1985); and Vardi and Zhang (1992)) and previous asymptotic results for the
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gamma frailty model (see Murphy (1994); Murphy (1995); and Parner (1998)). New
techniques are required. We employ a modification of the functional delta-method ap-
plied to Z-estimators (van der Vaart and Wellner (1996), hereafter abbreviated VW).
This modification involves using the Hoeffding decomposition to reduce U-statistics to
sums of independent terms and using the identifiability of the score operators to facil-
itate verification of the Hadamard-differentiability of the map which assigns zeroes to
the estimating equations. Modern empirical process theory then gives weak convergence.
The approach leads naturally to the asymptotic validity of both the nonparametric and
the multiplier bootstraps, facilitating inference in spite of the complexity of the limiting
distribution.

In Section 2, we formalize the semi-competing risks data and precisely specify the
gamma, frailty model. We also present the pseudo self-consistency equations and prove
existence of solutions. Uniform consistency of the estimators of the marginal distribution
functions is demonstrated in Section 3. Weak convergence of the estimators to tight
Gaussian elements is given in Section 4, while validity of both the nonparametric and
multiplier bootstraps is established in Section 5.

2. The statistical model and pseudo self-consistency estimators

In this section, we present the data model and assumptions, describe estimation of
the association parameter 6y, and present the pseudo self-consistency estimators.

2.1 The model
Model 1. The data {Z;,i = 1,...,n} consist of n ii.d. realizations of Z7 =

(X', Y, n,6), where X' = XAY AU, Y =YAU,n={X"=X},6={Y' =Y},
and {B} is the indicator of B. X and Y have bivariate decrement function P(X >
z,Y > y) = Cpy(So(z), Ro(y)) in the upper wedge (z < y), where 1 < 8y < oo, Cy is
defined in (1.1), and Sp and Ry are continuous survivor functions. U is independent of
X and Y with continuous survival function L. Let Py denote the probability measure
for Z.

ASSUMPTION 1. tp < oo is a positive time such that L(to) > 0, So(to) > 0, and
Ro(tp) > 0. Accordingly, let €g, €; > 0 be chosen so that €; < [log2/log(1/ep)] A (1/2)
and L(to)So(to)Ro(to) > 2¢g.

Remark 1. An observation generated by Model 1 exists on the probability space
(Q,B, P,), where Q = R? x {0,1}? and where B is the Borel o-algebra on Q. Data
generated according to this model exist on the product probability space (2°°,B%,Py),
where Q% is the space of all infinite sequences 7, Z»,... with Borel o-algebra B>
generated by the product topology on []io, §2, and where P, is the product measure
based on Py. Let P, denote the corresponding empirical probability measure for a
sample of size n.

2.2 FEstimating 6y
We will use the family of estimators described in Jiang et al. (1999). These estima-

tors generalize the concordance estimator of Oakes (1986) to the semi-competing risks
setting. For any two independent pairs of failure times (X;,Y;) and (X;,Y;),1<4,j < m,
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define
A — 1 if (X;-X;)(Yi-Y;) >0,
Y0 i (X - X)) -Y;) <0.

Let Xij = Xi/\XJ’, f/,,;j = }/7;/\)/3‘, [j«gj = Ui/\ij X{J = X{/\X‘;, 1‘;;9 = Y;’/\)/jl, and
D;; = {X’z’j < ﬁj < (:fij}. Note that A;; is observable if and only if D;; = 1.

Remark 2. By arguments given in Oakes (1986), we have, for 1 <1 < j < n, that
A;; is unconditionally independent of (X i ZJ) and EA;; = 0o/(1 + 6p).

Remark 3. By arguments given in Jiang et al. (1999), we have, for 1 <i < j < mn,
that D;; can always be determined from the censored data of Model 1.

The estimator of §y proposed by Jiang et al. (1999) is a zero of the U-statistic
estimating function

(21) n(9 =n" Z Wn(XzJ’ z])DZJ [Az] - 0/(6 + 1)]

1<i<jLn

where W,, is a weight function depending on the data which satisfies Assumption 2
below. For a set F, let £°(F) be the set of all uniformly bounded real functions on F.
We assume this space has the uniform topology, unless otherwise stated.

ASSUMPTION 2. W, in (2.1) is non-negative and has the form W, (u,v) = v {P,(-)}
(u,v), where (-) ranges over a Py-Glivenko-Cantelli class X and v : £2°(X) + £°([0, 00) x
[0,00)) is continuous, with Wy (u, v) = v{Fo(-)}(u,v) uniformly bounded.

Consider W/ (u,v) = [n"1 " {X! > G Au,Y{ > bAv}|~1, where & is the 1 — o
quantile of X7,..., X, and b is the 1 — & quantile of Y{,...,Y,. One can show that this
weight is a contmuous mapping of P, (-), where (-) ranges over the Pp-Glivenko-Cantelli
class ¥ = ({X' > z,Y' >y} : 2,y > 0).

Remark 4. Although Assumption 2 requires specifying a fixed class of functions,
its generality permits the use of adaptive weights like W .

The proof of consistency for the following is given in Jiang et al. (1999):

LemMA 1. Under Model 1 and Assumptions 1 and 2, let 6,, be the unique solution
of Gn(60) = 0 (allowing b, = o0 if necessary), if such a solution exists; if no such solution
exists (i-e., X1<icicn Dij = 0), take 6, =1—e1/2. Then b, is almost surely consistent
fOT’ G. o

2.3 Pseudo self-consistency
JFKC demonstrate that the self-consistency equations for Sy and RO based on max-

imum likelihood with 8y assumed known are

(2:2) Py} (Z;5,R, ) =0 (j=1,2),
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where t ranges over a subset of the nonnegative reals, S and R are survival functions,

¥{ (Z;S,R,t) = S(t)

, , Co (S(),R(Y") . . C8(S(t), R(Y"))
- [{X >+ A=< (“"”cfwwf),R(Y')) 5030<S(Y'>,R(Y'>)>]

and

VS (Z; S, R,t) = R(t)

, , O (SO),R() . CI(S(X'),R(®)
”{{Y > +A-9 "< (“‘ " G ST, RY) "c;’o(sm,R(Y')))]'

When (2.2) is solved, the solutions S and R are maximum likelihood estimators with
respect to model 1 by Theorem 3 of Robertson and Uppuluri (1984). Denote

8 (7.
WO(Z:5,R, (5,8)) = (‘/’1}2’ SR, S)) .
'@bZ (Zy Sa R7 t)

For pseudo self-consistency, we substitute a consistent estimator 6, for Oy in %
and solve P, (Z; S, R, (s,t)) = 0, for s,t ranging over a subset (specified below) of the
positive reals.

For0<e<landt >0 let H i be the space of non-increasing real functions
f:00,t] — [e, 1] with f(0) = 1. Define T,, = 0 Vsup(t : P, {X' > ¢} > r,) and

. 2{0 O if b, >1,
(1/2)1/(1-6=) if 4, < 1.

Define A,, B, C Hg’ to be all piecewise constant functions with jumps only at {X] :
7 =1,X] <ThAto,i=1,...,n} for A, and at {Y/ : 6; =1,Y! < T, Atg,i =1,...,n}
for B,,.

The following lemma defines and establishes the existence of the pseudo self-
consistency estimators S, and R,:

LEMMA 2. Under Model 1, Assumption 1, and provided 0, — 6y almost surely,
we have with probability 1 that T >tg foralln large enough. Furthermore, there exist

solutions S, € HY N A, and Ry € HY 0 By, of Pap®(Z; S, R, (s AT, t AT,)) = 0
for all s,t € |0, to]

The next lemma is needed for the proof of Lemma 2:

LEMMA 3. Suppose for some t 2> 0, Se H} ﬂAn, Re HO N B,, and S,R €
HS, Let 3/(5) = 8(5) — Pupl" (78,8, 5), R(s) = R(s) = Pupd (78, R,9), S'(5) =
S(s) — Po%(Z; S, R, s) and R'(s) = R(s) Pop%(Z; S, R, ), for all s € [0,t]. Then
8" e H N A, R H: N B,, and S',R' € H.,, where 1 = Po{X' > t} and
To = P(){X’ > t}.

ProoF. For a cadlag (right-continuous with left-hand limits) function F, let
dsF(s) = F(s+ds) — F(s—), where F(s—) = limy;, F'(t). For any s € (0, 1],
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Co(3(s), R(Y))
Co(5(X7), R(Y))
dsCa(3(s), R(Y})
Co(5(X), R(Y}))

nds8'(s) = ids{X{ > s} + 2":(1 - n:)(1 - &) [ds{X{ < s}
i=1 i=1

+{X] < s}

CH(3(s), R(YY))
CA(S(X0), R(¥Y))
4,C3(3(s), R(Y}))
CH(S(xD), R(¥Y))

+zn:(1 - ﬂi)@: {dS{Xzf < s}

+H{Xi < s}

Thus § is in HyN A, when § € H) N A, and }%AE HY. Moreover, 5'(0) = 1 and
§'(t) > Po{X’' > t} = 7, by definition of y¢. Hence S’ € H- N Ay,. Similar arguments
establish the result for B and, after taking expectations, also for §' and R'. 00

PROOF OF LEMMA 2. The almost sure consistency of §,, combined with Assump-
tion 1 and the almost sure consistency of P,{X' > o} gives, with probability 1, that
Ty, > to for all n large enough. Assume S, R € Ha "% with S(t), R(t) > Po{X' > t} for
all t € [0, T, Ato]. Further restrict S to have mass only at the values {X] :m; =1, X} <
TnAte,i = 1,...,n}, and denote these masses Zy;, j = 1,...,my (m; can be zero). Sim-
ilarly restrict R to have mass only at the values {Y; : §; = 1,Y] < T, Atp,i =1,...,n},
and denote these masses Zaj, j = 1,...,my. Since P,{X' > t} > (1/2)/(1=92A1) for all
t € [0,Tn Ato), Cg_(S(x), R(y)) is positive for all z,y € [0,T, Atp). If either z = T,
or y = Ty, Cy (S(x), R(y)) might be zero. But, because S only jumps at uncensored
values of X and R only jumps at uncensored values of Y/, no divisions by zero occur
when computing P,%%(Z; 9, R, (s,t)) for all 5,¢ € [0,T;, At]. Thus Cy, (S(z), R(y)) is
well defined for all z,y € [0, T, A to]-

Let H gy = {Ukjy- - Ukmy : Ukj > 0, for j = 1,...,my, Y70 ugy < 1}, for k =
1,2, and define the map

(S) _ (S) (m’" (Z;s,R,(-)ATn>>

M = -P n j ’

R R ¥ (Z;5,R,() A Ty)

where (-) is used to denote the argument ¢ as it ranges over [0,%9]. The existence of
solutions S,(t) and R, (t), for all t € [0, T}, A to], will follow from Brouwer’s finite-
dimensional fixed-point theorem if the map M : H(;y x H gy + H(yy x Hgy is-both
continuous and into. Since M has domain H 1) x H (3, continuity follows from the form
of 1% and the fact that, for any § > 0 and v € [0, 1], Cg(u,v) is a continuous function of
u over [0,1]. The into part is a direct consequence of Lemma 3. The result obtains if we
assign, for t € [Tn A to, t()], Sn(t) = S’n(Tn A t()) and Rn(t) == Rn(Tn A to). O

Lemma 2 permits:

AsSUMPTION 3. Let S, and R, be solutions of the pseudo self-consistency equa-
tions stopped at T, A tg, as defined in Lemma 2.
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Remark 5. Lemma 2 yields existence of solutions of the pseudo self-consistency
equations but says nothing about uniqueness of those solutions. We later show that the
solutions are asymptotically unique.

Remark 6. The fact that S, jumps only at uncensored values of X’ and R,, jumps
only at uncensored values of Y’ greatly simplifies computation. This feature is shared
with the Kaplan-Meier estimator which jumps only at observed failure times.

3. Uniform consistency

In the sequel, we utilize the concepts of outer and inner probability and related
ideas of weak convergence, convergence in outer probability, and outer almost sure con-
vergence, as described in VW. The following theorem is the main result of this section:

THEOREM 1. Assume Model 1 and Assumptions 1 and 3 hold and that b,, is almost
surely consistent for 8o. Then S, and R,, are, uniformly on [0,to], outer almost surely
congsistent for Sy and Ry, respectively.

The following lemma and theorem, the proofs of which will be given at the end of
this section, are needed for the proof of Theorem 1:

LEMMA 4. Assume Model 1 and Assumption 1 hold. Let eg,e1 be as defined in
Assumption 1. Then

0
(3.1) sup sup sup sup |==v%%(Z;8,R,(s,t)) < oo;
0€l1~e1,00+1] 5,ReH?) Z€Q5,t€(0,t0] | OF

and the class of functions F = {4°(Z; S, R, (s,t)) : 0 € [1 — €1,60 + 1], 5,¢ € [0, 5], and
S,R € H} is Py-Glivenko-Cantelli and Py-Donsker.

THEOREM 2. Assume Model 1 and Assumption 1 hold. Then for S,R ¢ H ﬁg, the

following are equivalent:
(1) P0¢9°(Z S,R,t) =0 for all t € [0,%] and for j =1,2.
(i) S(t) = So(t) and R(t) = Ro(t) for all t € [0,t0].

PROOF OF THEOREM 1. By Lemma 2, for large enough n, S, and_ R, are elements
of Ht o with inner probablllty one. By the almost sure consistency of Bn, we have with

probablhty 1 that 8, € [1—e€1,60+1] for large enough n. Lemma 4 yields that as n — oo

sup sup |P, ¢9n(z S,R,t) — P0¢9°(z S,R,t)| — 0
S,ReH? t€0,t0]

outer almost surely, j = 1,2. Thus, by the Helly selection theorem, for every ¢ > 0
there exists a B € B* such that PO(B) > 1 — € and, for each w € B with cor-
responding sequence of solutions {.S’nw,R,w,n > 1}, there exists a subsequence {n}
with limgoo f3° [Snew(t) — SE)|dt = 0 and limy_,a J3 | R (t) — R()|dt = 0 for
some S,R € HY satisfying Poy®(Z; S, R, (s,t)) = 0, all s,t € [0,t0]. (The fact that
SSRe H 23 is a consequence of Lemma, 2.) Theorem 2 implies S = Sy and R = Ry. Since
Sp and Ry are continuous on [0,%g], Li-convergence implies uniform convergence. Since
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these conclusions hold for every Li-convergent subsequence, the uniform outer almost
sure convergence follows. O

PROOF OF LEMMA 4. Fix S,R € HX® and z,y € [0,t5]. For u € [~ej, 0], let
¢(u) = log[S~*(z) + R~*(y) — 1]. Clearly,

b% wt+1(8(2), R(y)) = Cur1(S(x), R(y))

gu_iz}
u? ’

u

where
) = 2oy —  108(5(2))S™(x) + log(R(y)) R (y)
) = gyl =~ 5=u(x) + Ru(y) - 1 '
Let e?(S (a1 g o? Y .
{l = 5rdt) = LT 08 CUIR ) _ o

We have ((0) = 0 and for all u € [—ey, 6],

[C(uw)] < log2+ 6y log(1/eo) + 4e1 log(1/eo),
: 2log(1/eg)e;?
IC(u)| < ——2—68;'-_—10'*,

2 —8o .
o) < ZOELL0D 4 g

These bounds also apply at u = 0 after taking limits. Thus

¢w)  C(w) _ <(0)+{(0)u + {(u)u?/2 — u((0) — {(u")u?
u? u u?
= ((u)/2 - ((u"),
where u’ and «” are between 0 and u. Now, for some ky < oo not depending on
S,Re HY or z,y € [0, to],

((w)  {(w)

< ko.
u? ="

sup
’ILE{—€1 )90]

Since Cy41(S(z), R(y)) < 1 and C},(S(z), R(y)) < (265 — 1)1/ for all u € [—e;, b,
all S,R € Hzg, and all z,y € [0, o], we have established (3.1).

Now, for S;,Sy, Ry, Ry € HY  let S)‘(t) = Sl(t) -+ }\(Sz(t) —- Sl(t)) and RA(t) =

€g?

Ry (t) + M(Ra(t) — Ry(t)). For a,b,c,d € [0,tp] and 6 € (0, 00),

9 [00(5,\(“), R,\(b))] _ Co(Sx(a), Ba(D))

O | Cy(Sa(c), Ra(d)) Cy(Sx(c), Rx(d))

x(Cy 1 (Sx(a), R(0))[S5 () (S2(a) — S1(a)) + Ry’ (b)(Ra(b) — Ra(b))]
—C3 7 (Sa(e), RA(D)[SK () (Sa(e) — S1(e)) + R5?(d)(Ra(d) — Ra(d))]).

(3.2)
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This implies that there exists a k; < oo such that
(3.3) [%9(Z; S2, Ra, t) — ¥?(Z; S1, Ry, 1)

<k (sup [S2(s) — Si(s)| + sup. |Ra(s) — Rl(s)l>
s€[0,] s€[0,1]

for j =1,2, all t € [0,0], and for all 6 € [1 ——61,00+1]

) By Theorem 2.7.5 of VW, we know for r > 1 that the log L.(Q)-bracketing number
for H, t“ at distance 7 is of order K,./7, for every probability measure @ and for some
0< K < 0o depending only on r. Thus, by (3.1) and (3.3), F is a Lipschitz function
of several bounded Donsker classes. Hence F is Donsker (Theorem 2.10.6, VW). Since
Donsker classes are also Glivenko-Cantelli, we are done. O

ProOOF OF THEOREM 2. The fact that (ii) implies (i) follows directly from the
definitions. The challenge is to show that (i) implies (ii). Let L =1L, Sp = 1 — Sy,
and Rg =1—-Ry. Fix S,R € Hﬁg and define §’ and R’ as in Lemma 3. Also let
A; =8 -5 and Ay = R — Ry. For A € [0,1], define Sy, = Sy + A(S — Sp) and
Ry = Ro + MR — Rp). Using formula (3.2) and rearranging terms, we obtain for all
te [07 t0]7

(3.4) S'(t) — So(t)
t 1 of
_ [/ ( Coo (Sa(t), RA(U)) S)Tgo (t)d)x) CoO(So(U),RO(U))dE(U)
0 ]

Co, (SA(U), RA(U))

L[ Cal T (Sx(t), RA(Y)) _ _y,
o | (o R, r(Y)) WM)

xCg2(So(Y), Ro(Y)) Ry ® (V) L(Y)dRo(Y) | As(t)

FU Y Coo(Sa(8), RA(U)) (001 .
+/0 ( T (Sa (D), B () O (A BA(U)) B (U) Aa(U)

oL (S, (U), Ra(U))(S5% (V)AL (U) + R;“D(U)AQ(U»W)
X Co, (So(U), Ro(U))dL(U)

Y[ Lo, BAY) | gy b
HO/O (o GO (5,(1), Baw)) 0 O EDBEX)AY)

~Cor  (SA(Y), Ra(Y))(Sy (V)AL (Y) + Ry (Y)A2(Y))]dA>

xCg (So(Y), Ro(Y)) Ry % (Y)L(Y)dRo(Y).

Let the terms in the first pair of square brackets on the right-hand-side of (3.4) be
denoted K (). Note, by the convexity of H'®, that S, Ry € HZ for all X € [0,1]. Thus
there exists ¢; < oo such that

(35) [S(t) - S < Kx(t)|Ax ()] + e /Ot(lAl(S)i +|A2(s)[)(dL(s) + dRo(s))
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forall t € [0 to]. There also exists c2 < oo such that K;(t) < cz fo (dL(s) + dRy(s)) for
all t € [0,20]. Assume S(t) = So(t) for all ¢ € [0,11], where t; < to. Then -

36)  Ki(t) = / C2o (So(t), Ro(U)) S ()dRo(U)
+ay [ OB o0, Bal¥)) S5 (5 (VLY YFa(Y)
The first term on the right-hand-side of (3.6) is [, Po(Y > U | X = t)dRo(U). Since
o [ C3o (S0(t), Ro(¥))S5 (125 = ()Rl

= 60 [ [50(e)' % + Ra(¥ )~ — 1]CHD/0=0.500 (1) R o (¥ )dRo(¥)

RO(U)I—-GO
= 6o(6p — 1)~! / [S57% (2) + w — 1]~/ (1=00) gy, 590 (1)
1

= 1— G2 (50(t), Ro(v)) S5 (¢)
=P0(Y<,UiX=t)7

‘the second term on the right-hand-side of (3.6) equals fo L)d,Po(Y <v | X =t).
Now (3.6) simplifies to K;(t1) = L(t1) + L(t1)Po (Y < 1 | X = t1). One can show that
under Model 1, Py (Y <t | X =t) < Ro(t) for all t € [0,%] and thus K;(t;1) < L(to) +
L(to)Ro(to) = 1 — 71 for some 7; > 0.

Using similar methods, for all t € [0, to],

(3.7) R'(t) — Ro(t)

[ [ SR, B0 o,
- Uo (o Coo(SA(0), Br (D)) “”“) Cao (So(U), Ro(U))dL(V)

1 C20071(S5(X), Ra(t))
+90/0/0 (0 CRSNX) RAD)) (t)d)\)

xCg2(So(X), Ro(U)) Sy % (X)dSo(X)dL(U) | Aql(t)

t 1 Coo (SA(U), Ra(%)) | 81 e
+./0 (0 Cio (SA(U), RA(U))[Coo (SA(U), Ra())Sy (V)AL (U)

~CRY(Sy(U), RA(U)) (S5 (V) A1 (U) + Ry (U)As (U ))w)
xCay (So(U), Ro(U))dL(U)
fo
+00/ / (01 Cog(SA(X R)\(t))[ 003—-1(5;\( )R,\(t)) HO(X)AI(X)

C(SA(X), Ra(D))
~Cgo H(SA(X), Ra(U)) (S5 % (X) A (X) + RZ"“(U)Az(U))]dA)

X Cae (So(X), Ro(U)) S5 % (X)dSo(X)dL(U).
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Let the terms in the first pair of square brackets on the right-hand-side of (3.7) be
denoted K»(t). We can find c3 < oo such that

(3.8) |R'(t) — R(t)| < Ka(t)|B2(t)| + 3 /0 (181(s)] + 122(s)]) (dL(s) + dSp(s))

for all t € [0,%0]. There also exists ¢4 < oo such that Ky(t) < cq f(f (dL(s) + dSo(s)) for
all £ € [0,%9]. Assume R(t) = Ro(t) for all ¢ € [0,t2], where t5 < tp. Then

(3.9) K(tz) = / (SO(U) Ro(t))Ry eo(t)dLo(U)
+0p /t2/ C290 1(.5'0 X) Ro(t))Ro 90(t)SO GO(X)dSo(Y)dL(U)

After several change-of-variable steps similar to those used to evaluate Ki(t1), (3.9)

becomes Ko (tz) = L(tz) < L(tg) = 1 — 12 for some 72 > 0.
By the continuity of L, Sp, and Ry, we can construct a finite partition of [0, to],
80, - - -, 8k, where 0 = 59 < 81 < --+ < s, = {g, such that

(c1+ 2+ c3 + ca) / (dE(s) + dSo(s) + dBo(s)) < (11 A T2)/2,

for j =1,...,k. This gives that
sup |S'(t) — So(t)| + sup |[R'(t) — Ro(t)]

t€f0,s1] t€[0,s1]

1 A
<22 { sup |S(t) — So(t)| + sup |R()~ Ra(t)l|,

tE[O,S1] t€[0,51]
which means S(t) = Sp(t) and R(t) = Ro(t) for all t € [0, 1] if S and R satisfy (i). If
S(t) = So(t) and R(t) = Ro(t) for all ¢t € [0,s;] and j < k, and if S and R satisfy (i),
then the restrictions on K3 and K» imply

sup  [S'(t) — So(t)| + sup |R'(t) — Ro(t)|
t€[s;,85+1) te(s;,8541]
<(1-m/2) sup [S(t) - So(t)|+ (1 —72/2) sup |R(t) — Ro(t)]-
t€[s;,8541] t€ls;,s541]

Hence S(t) = So(t) and R(t) = Ro(t) for all t € [0,5541]. So, by induction, (i) im-
plies (ii). 00

4. Weak convergence

Let 4, = (én,.g'n,ﬁin) and v = (6o, S0, Ro). In this section, we establish weak
convergence of v/n(%, — 7o) in the uniform topology on £ = R® x D[0, o] x D0, to],
where R® = R U {~00,00} and D0, o] is the space of cadlag functions on [0, o).

THEOREM 3. Assume Model 1 obtains and Assumptions 1, 2, and 3 hold with b,
as defined in Lemma 1. Then /n{4n — Y0) converges weakly in the uniform topology on
L to a tight, mean zero Gaussian element Y.
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Asymptotic theory for M-estimators or Z-estimators (Chapters 3.2 and 3.3, VW)
could possibly be used to prove this result. However, the functional delta method applied
to Z-estimators (Section 3.9.4.7, VW) leads most naturally to weak convergence and
consistency of the bootstrap in Section 5. A key ingredient of our proof is a modification
of Lemma 3.9.34 of VW, Lemma 5 below, which takes advantage of the identifiability of
the estimation procedure as reflected in Theorem 2. To state the lemma, we need several
definitions. Let v = (6, S, R),

— 0n —

— 60 ~ 0
U(y) = (po,l/)G(Z; SR, (., -))) ’

where (-,-) AT, denotes s and ¢ ranging over [0, tg A T,]. Denote ' = [0, 0o] x H® x HE
and I'o = [1 —€1,00+1] x H® x HX. Let £*(T, £) be the Banach space of all uniformly
bounded functions z : I' — £ with Z(T', £) being the subset consisting of all maps with
at least one zero. Define ¢ : Z(I',L) + T to be a map that assigns a zero ¢(z) to
each z € Z(T',£). Let £°(T,L) and Z(To, L) be similarly defined, and let ¢ be the
restriction of ¢ to Z(Tg, £). Without loss of generality, assume that ¢¥, = 4, and
¢(0) =7 = (01,51,R1), where §; =1 — 61/2, and Sl(t) == Rl(t) =1forallte [O,to].
We have the following key lemma:

and

LEMMA 5. Under Model 1 and Assumption 1, the map ¢ : Z(To, L) C £2°(Ty, L) —
Ty is Hadamard-differentiable at U tangentially to the set of z € £>°(To, L) that are
continuous at yo. The derivative is given by ¢4 (z) = —W-1(2(0)), where, for b =
(hl, hso, h3) € L with hy € R, he € D{O,to] and hs € D[O, t()],

-1 0 0 hl _hl
(41) ¥ lh= fo(—m) \I:(-u) \Il('m) hy | = (10) X h1+ ‘I’(u)hz + ‘I/(lz)hs ;
\I’(—20) \Ilél) \If(—22) hs \I’(_ZO) X hy + ‘P(Ql)hz -+ \I’(22)h3

where for 1 < 4,k < 2, \If(" x - D0, to] — DJ[0,to] are linear operators and \i’(_j(l)) €
D[O7 tO]) '

— - . . k
(4.2) (‘I’(H) (112)> Z (I — ¥ ¥ ) :
Yoy Yoz ) S\ —¥n -
where I is the identity operator on DI0,to]; and for j = 1,2,

(4.3) \Il(;O) \I’(Jl)\Iflo + ‘I’(JZ)‘I’QO

For 1 < j,k < 2, ¥;0 € D[0,to] are functions and ¥jy : D[0,to] — D0, o] are linear
operators defined as follows: v

Ca, (So(t), Ro(U))
Co,(So(U), Ro(U))
X (Coy(So(t), Ro(U)) — Ca, (So(U), Ro(U)))

(4.4)  yp(t) = —Py [{U <t,X>UY >U}
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(4.5)

where

(4.6)

090 (’U,, ’U) = { (00 - 1)2 (00 - 1)(’[.1,1_90 +Ul —bo _ ].) ’
log ulog v, if 0p=1.

MICHAEL R. KOSOROK ET AL.
CE (So(t), Ro(Y))
Ca2(So(Y), Ro(Y))

Cio (So(t), Ro(Y)) :
y (log [ Lt Rom)] + B0lCh, (Solt), RolY))

4mmmmm®}

Cay (So(U), Ro(2))

Co,(So(U), Ro(U))

X (000 (SO(U)’ RO(t)) - C."00 (SO(U)’ RO(U)))

Cg®(So(X), Ro(?))

Coo (So(X), Ro(V))
Coo (SO (X)v RO (t))

%mbwm%wﬁ

wmmwmmw—%%mmﬂwﬂ,

+{Y <t,X>Y,Y <U}

oo (t) = —Py [{U <t,X >UY >U}

+{U<t,X<UY >U}

log(u!=% 4 1=% _ 1) =% logu +v!"% logv

For h € D[0,15] and all t € [0,1,],

@7 (n)) =) - | [ 50, Ba@)S3 ™ (D)

+6o /Ot Calo =Y (So(t), Ro(U)) S ® () Ry (Y)L(Y)dRo(Y)] h(t)

[ o500, Bo0) 8 (S5(0), Ro@)S5 WAV )AED)

+bo /Ot Coq (So(t), Ro(Y'))Cae ™ (So(Y), Ra(Y))85 % (Y) Ry ™ (Y)h(Y)dRo(Y),

(4.8) @mmo=—LCM&mem)

%[0 (So(t), Ro(V)) — CR0 = (So(U), Ro(U))| Ry ® (V)A(U)AL(V)

.%Akmw&mwn

x[Coe ™" (So(t), Ro(¥)) — Cg2 ™ (So(Y), Ro(Y))Rg ™ (Y)R(Y) L(Y)dRo (Y),

@%(%@@=—AcM&wmmm

X [CE ™ (So(U), Ro(t)) — C2~Y(So(U), Ro(U))1Sg % (U)R(U)dL(U)

if 6p>1,



GAMMA FRAILTY WITH DEPENDENT CENSORING 489

t U
o0 [ [ ta(s0(x), Ra(t) |
x[Coe 7 (So(X), Ro(t)) — CR2 ™ (So(X), Ro(U))1S5 2% (X )h(X)dSo(X )dL(U),

(410) (Faah)() = h() - | [ OB (5000, Ro(0) B (D)
+0o [ t / " G (86(X), Ro(t) Ry (8)55 % (X)dSo(X)AL(0) | ht)
0 JO
+f " Can (56(0), Ro(8))CL™(S0(0), Ro(U)) B5® (W)R(U)AL(D)

+6, /t/Ung(SO(X)’Ro(t))cgf_l(SO(X),Ro(U))
o Jo

x Ry % (U) Sy % (X)dSo(X)MU)AL(U).

Proor. Using the derivatives from the proof of Lemma, 4, one can show that there
exists an M < oo such that

< M“’Y - 70“27

2
“5/(33—#‘1'(70 + (7 = 70) + A(y — %))

for all v € g, where || - || is the uniform norm. Thus, ¥ is Fréchet-differentiable at .
Combining the proof of Lemma 4 with (3.4) and (3.7) gives that this derivative is the
linear operator ¥.,, : £ — L, where

-1 0 0
Voo = | o ‘3_[’11 Yo |
Woq Way Woy

and where the components are defined in (4.4), (4.5), and (4.7)—(4.10).

Let ) )
I-— -
p= (I~ tn —tu
=y I— Ty
and D; = {h € D[0,%] x D[0,%o] : ||| < 1}. The arguments used to prove Lemma 4
imply that B is a bounded linear operator on D0, ¢y} x D|0, 9] and that there exists an

€ > 0 and a positive integer r < oo such that for all h € Dy, ||B"h|| < (1 - €)||h||. Thus,
for all h € Dy,

00 r—1 [ -1
> BfR| =|>" B> B™h| < TZBj x e Y|R||.
k=0 j=0 k=0 j=0

This implies that

.. -1
Uiy ¥ -1
, . ={(I—-B
(‘1121 ‘1’22) ( )
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exists, is a bounded continuous linear operator on D0, to] x D[0, o], and has the form
given in (4.2). After a few additional calculations, we have that ¥, is continuously

invertible on the linear span of I'g, with inverse \I',m given in (4.1).

Let 2; — 2z uniformly on Iy, as t | 0, where z : I'y — £ is continuous at v and
where {¥ + tz;,t > 0} € Z(T'y,£). By definition, the element v; = ¢(¥ + tz;) satisfies
U(v:) + tze(v) = 0. Hence ¥(y;) = O(t); and, by Theorem 2, 4; — 7p. The remaining
steps are identical to the last steps of the proof of Lemma 3.9.34 of VW. O

Before proving Theorem 3, we show that the estimators 6, satisfying Lemma, 1 are
asymptotically equivalent to i.i.d. sums. This is achieved by establishing equivalence to
a second order U-statistic so that a Hoeffding representation applies. The difficulty is
that the kernel is estimated from the data rather than fixed. This is resolved in Lemma 6
below, the proof of which will be given at the end of this section.

Remark 7. The weight functions permitted by Assumption 2 are more general than
those in Oakes (1986). New techniques for obtaining the asymptotic structure of é,, are
needed.

LEMMA 6. Assume Model 1 obtains and Assumptions 1 and 2 hold. Then

n
VAln —00) = I 'n"Y2 ) " A; + Qn,

i=1
where Qy, goes to zero in probability as n — oo,

Io = (1+ 6o) *EIWo(Xly, Vi) Dol 2,
(4'11) A= E[WO( ij? 'LJ)D’L]{ 00/(1 + 00)] l Zz]) any j #1,

and {A;,i > 1} is a sequence of i.i.d. real random variables. Furthermore, Ay has mean
zero, depends only on Zy, and satisfies | A1} < sup,, ,>0 Wo(u,v) < 0o almost surely.

PrOOF OF THEOREM 3. Note that v = ¢¥ and 4, = ¢V, even in the case that

G, () = 0 has no unique solution and 6, = 1 — €;/2 as in Lemma 1. By Lemma 2, we

have with probability 1 that T}, > tg for all n large enough. By Lemma 1 and Theorem 1,
we have with probability 1 that ¥,, € Z(T'y, £) for all n large enough. Therefore,

VN (9P, — ¢¥) — v/ (¢¥, — ¢¥) {¥,, € Z(To,£)} — 0
in outer probability. In addition,

V(¢¥, — ¢U){T,, € Z(To, L)} = V(¢ {¥,, € Z(To, L)} — $E){T,, € Z(To, £)}
- \/ﬁ(é[wn{an € Z(PO"C)}] - QS\II){‘II'n € Z(FO"C)}

By Lemmas 4 and 6, v/n (¥, {¥, € Z(T'y, L)} — ¥) converges HID-weakly in the uni-
form topology on £°(T, L) to a tight—and hence separable—Gaussian process Zy. Com-
bining this with Lemma 5 and the functional delta method (Theorem 3.9.4, VW) then
yields that \/n(¢[¥,{¥, € Z(To, £)}] — ¢¥){¥, € Z (Lo, [,)} converges HJD-weakly to
Yo = ¢4 (Zo(10)), where Yy is tight by the continuity of ¢/.



GAMMA FRAILTY WITH DEPENDENT CENSORING 491
_ Prooror LemMma 6. Let Hu(z,y) = Wi(z,y)—Wo(z,y). Define G, = o{Fn, Xijs
Yij, Di;,1 < i < j < n}, where F,, is the exchangeable o-field based on the data
{Z;,i = 1,...,n} (exchangeable with respect to permuting the subscripts), and where
o{B} is the smallest o-field making all of B measurable. Denote o;; = A;; — 0o/ (1+6p).
Now,

2
(4.12) n’3/2 Z Hn()?ij,f’ij)Dija,-j
1<i<ij<n
=n"® Y HXX,Yiy) Dol
1<i<j<n
+2n73 Z (Hn(Xij, Vi) Ho(Xik, Yik) Dij Dincvij ik
1<i<j<k<n
+Ho (X5, Yij) Ho( Xk, Vi) Dij Djrcrijon
+Hu(Xiks Yie) Hn(Xjk, Yie) Dik Djktin k)
+ Y. Hu(Xiy,Yig)Ha(Xki, Vi) Dij Dricvsjan,
(i.9,k,0)EN, (4)
where N,,(4) represents all quadruples (¢, 7,k,l) suchthat 1 <i<j<n, 1<k <l<n,
1#k,j#k,i#1,and j # l. The first and second sums on the right-hand-side of (4.12)
go to zero almost surely since, as n — 00,

(4.13) sup [Hn(z,y)| — 0
z,y20

almost surely by Assumption 2. For the third term on the right-hand-side of (4.12),

(A1) E(n™ > Hu(Xij, Yij) Ho(Xrt, Yir) DijDricijon | Gn
(i,3:k,1) €N (4)

= [nE(aizasq | Fr)) x |04 Z H, (X5, Vi) Ho( Xk, Vi) DijDrt |
(3,5,k,1)ENR(4)

by the permutation invariance of H,, the fact that {f(ij, f’ij, D;;,1<i<j<n}arein
Gn, the fact that {a;;,1 < i< j <n}and {X'ij,l?;-j,D,-j, 1< i< j < n} are independent
by Remark 2, and the fact that E(ajsasq | Fr) is constant over all (¢,7,k,l) € N,(4).
Now, again by exchangeability,

nE(a12a34 ‘ ]'—n)

_ n[(Z1§i<g’gn i5)? — Zlgi<j§n O‘?j - 221§i<j<k5n(aijaik + @ijok + k)]
n(n—1)(n - 2)(n — 3)/4 ’

which is Op(1) by the boundedness of a;;. Thus (4.14) goes to zero in probability, as
1 — 00, by (4.13). Hence (4.12) also converges to zero in probability.
For some ¢’ between #,, and 6,

0= \/ﬁGn (én)
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=n7% N Wa(Xy, Yig)Dij (Aij — 60/ (1 + 60))

1<i<j<n
—(1+6)n72 " Wo(Xij, Yis)Dijv/n(0n — 60)
1<i<j<n
=n"32 3" Wo(Xij, Yij)Dij [Bij — 00/ (1 + 00)] = Tov/ni(Br — 00) + 0,(1),
1<i<j<n

by fhe convergence of (4.12) to zero, Remark 2, and Assumption 2. The result now follows
by the Hoeffding representation for U-statistics (Theorem 5.3.2, Serfling (1980)). O

Remark 8. Usmg the U-statistic equivalent for n/2(8,, — 6,) leads naturally to the
variance estimator 62 = J,, /12, where

n = — Z W (X]7 z])D’lJ(1+9n)—2

1<i<j<n
fn =2n"3 Z QijQik + Qij@jk + Qiijk, and
1<i<j<k<n
br .
Q'U—W( i3 zJ)Dz]( ”_1—(—9”)’ for 1<i<ji<n.

This can be used to construct confidence intervals for 8y without the bootstrap.
5. Consistency of the bootstrap

The complexity of the limiting distribution of S, and R, precludes inference by
analytical means, and bootstrapping the joint distribution of (0n, S, Rn) is needed. The
nonparametric bootstrap (Efron (1979)) is commonly used and often possesses second
or higher order accuracy (Chapter 2, Hall (1992)). In our setting, a computational issue
is the presence of ties in the X and Y values in the bootstrap samples. An alternative
bootstrap which avoids this difficulty is the multiplier bootstrap, also known as the wild
bootstrap (Praestegaard and Wellner (1993)). We study both bootstraps but present
the multiplier bootstrap first.

Let Z, = {Z;,1 <i < n} denote the data of model 1, n > 1. For the multiplier
bootstrap, we use random multiplier weights {£;,7 > 1} which are independent of Z,,
for all n > 1, and which satisfy:

AssumPTION 4. {§;,i > 1} is a sequence of i.i.d. nonnegative random variables
with E&; = var&; =1 and [;° /P(J&1] > z)dz < oo.

Let é,‘; be the solution of
an(e) = n_2 Z Ezé.JWn( ijr z])DU [AU 9/(0 + 1)] =

1<i<j<n

(allowmg 9° = oo if needed), if such a solution exists; if no such solution exists, take
0° =1 - €1/2. Now define, for any f: Q+— R,

P2 f(Z) = {Z& > O} I:Z&] > &1 (Z).
i=1 i=1 =1
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That is, P2 is the multiplier-weighted empirical measure. Also define T2 = 0Vsup(t : Py,
{X' >t} >r2), where :

o _ {0 O if g >1,
"l @2 i 49 <1

The multiplier bootstrap of S, and R,, S’,‘; and fz;;, is a solution to P24®~(Z; S, R, (s A
T2, t AT2)) =0, for all s,t € [0,10]. Define 4 = (6‘ ,82 R2).
For the nonparametric bootstrap, let Z% = {Z?,1 < i < n} be arandom resample of
Z with replacement. Let the number of times observatlon Z; appears in Z} be denoted
e, 8=1,...,n. Note that {£,;,1 < i < n} are the multinomial bootstrap weights and
are 1ndependent of Z,, for all n > 1. In general, let superscript e denote variables based
on the bootstrap sample. Define é,‘z to be the solution of

Ga0)=n"2 > WX}, Y )DyAy —0/(0+1)] =0

tj T ij
1<i<isn

(allowing é‘ = oo if necessary), if such a solution exists; if no such solution exists, take
g2 =1 — ¢ /2. Define, for any f: Q— R, Paf(Z) = n~ 130 &5, f(Z;). That is, Pp,
is the bootstrap-weighted empirical measure. Let Ty = 0V sup(t : Po{X’ > t} > rn)
where .

r'={0 _if o > 1,

R YA A T S

The nonparametric bootstrap of S, and R, S’,‘L and IA%‘ is a solution to ]P’;zpe;(Z ;S R,
(sATS,tAT?)) =0, for all s, € [0,%0]. Let 42 = (82, S5, R2).

Consistency results for these bootstraps are presented next. For a uniform metric
space D, let BLy(D) be the space of real valued functions on D with uniform Lipshitz
norm bounded by 1. As in Theorem 1.12.2 of VW, a stochastic process H,, converges
HJD-weakly in the uniform topology on D to a Borel measurable and separable H if and
only if

sup |E*f(H,)—Ef(H)| — 0,
fEBL{(D) :
as n — oo, where superscript * denotes outer expectation. We adopt this approach for
establishing consistency because it avoids measurability issues.

5.1 Consistency of the multiplier bootstrap
The multiplier bootstrap 4y is a solution of

. 6 -0
&o(y) = " T2 > 0} = 0.
n(’Y) (PZQPO(Z,S’R,(,)/\T;/\to)) { " }

THEOREM 4. Assume the conditions of Theorem 3 with 4, Zo, and Yy defined
accordingly. Let the random sequence {&;,% > 1} satisfy Assumption 4 and be independent
of Z, for all n > 1. Then there exists a solution 45 of ¥2(y) = 0, V/n(35 — An) s
asymptotically measurable, and

sup  [E¢f(vr(¥; — %)) — Ef(Yo)| — 0
feBL1(L)
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in outer probability as n — oo, where E¢ is the expectation with respect to the multipliers
conditional on Z,,. Hence, the multiplier bootstrap is consistent.

Before giving the proof of this theorem, we need two lemmas, the proofs of which
will be given later. The first lemma establishes key properties of 0 , while the second
lemma gives existence of 45.

LEMMA 7. Assume the conditions of Theorem 4 obtain. Then
'Po(wEQ :P{nlin;Bn:Bolw}:l) =1

and

Vs, — 8a) = I 'n V2 (6 - DA+ Q7

i=1

where E[(Q2)? | Z,] converges to zero in probability as n — oo.

LEMMA 8. Assume the conditions of Theorem 4 obtain. Then
(6.1) Polw € Q% : P{T? > to for all n large enough|w} =1) = 1.

Furthermore, there exists a solution 45 of U2 () = 0, where 5’,‘;, R;’l € H f," are piecwise
constant with possible jumps occurring only at {X!: 9:& > 0,X] < T7 Ato,i =1,...,n}
for 82 and at {Y] : 6;£; > 0,Y] < T3 Nto,i=1,...,n} for Ry,

Proor oF THEOREM 4. Existence of a solution 47, follows from Lemma 8. Take
¢ and ¢ as in Section 5. Without loss of generality assume ¢¥; = 4,. Using arguments
from the proof of Lemma 8, we can show that if Bs is the set of all w € 2° such that

V($E;, — ¢¥,) — (¢l — pU){ 7, ¥, € Z(To, £)} = 0

for all n large enough, then Py(Bs). = 1, where subscript * denotes the maximal mea-
surable minorant. In addition,

V(¥ — ¢¥n){T7, U € Z(T'o, £)}
= Vn($[E{ T3, € Z(To, £)}] — P[¥n{¥n € Z(To, L)IN{T7, ¥n € Z(To, £)}-

By Lemmas 4, 6, and 7 above and by Theorem 2.9.6 of VW, we have for
H? = /n(9o{¥2 € Z(To, L)} — Un{¥, € Z(To,L)})
that HY is asymptotically measurable and as n — oo

sup  [Beh(HZ) — ER(Zo) — 0
heBL;(£2(Io,L))

in outer probability. Lemma 5 above and Theorem 3.9.11 of VW yield the desired
result. O

PRrROOF OF LEMMA 7. The conditional almost sure consistency of é; follows from
Assumption 2 and standard probability arguments. Now, for some 6’ between 67, and
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9'"/’
0= G(%)
=n"32 3" WXL, V) Dil0i — 0, /(1 + 0,)16:5
1<i<j<n
—Vallr 61— 0) P BT WX, VD,

1<i<j<n

which can be expressed

(5.2) v/n(65 — 6n)
=I5 1p-8/2 Z Wo (X! i zJ) Dij[As; — 00/(1 4+ 60)](&:&5 — 1) + Qn(ny-

1<i<j<n
If we let
EJ = H, ( 59 z])DZJ[ iy n/(l + 071)] - WO( i 'L])D'LJ[ n/(l + 071) - 00/(1 + 00)]:

where H, = W,, — Wy, then as n — oo

2
(n‘3/2 > Fz’jfifj) Zn

1<i<j<n

-3 (4 Z Ffj +2 Z Fij By + FijFyg + Fiijk)

1<i<j<n 1€i<i<k<n

goes to 0 almost surely by previous arguments. Thus E([Q° a )]2 | Z,) — 0 almost surely.
We next show that (5.2) can be approximated by the desired sum. To do this, let
B;; = Wo(X!,, Y7, )Dij [Aij — 0/(1+ 6p)]. Note that

ijr Lij

1<i<j<n i=1

2
E (n-3/2 > Bij(fisj-1)~n‘1/2ZAz-(£i—1)) Z,

1<i<j<n

=E (n_3/2 > Bi(& — 1) — A& — 1) — A& — 1)]) Zn| +0p(1)

= 0,(1) +n3 Z 8B —2(A; + Aj)By; + A7 + A7)
1<i<j<n
+2n7% > [Bi;jBix — Ai(Bij + Bi) + A? + Bi;Bjr — Aj(Bij + Bjy)
1<i<j<kLn
+A? + BikBjk - Ak(Bik + Bjk) + Alzcl

goes to 0 in probability, as n — oo, since E(B;; | Z;) = A; for i # j,1<i#j<n.0O

PROOF OF LEMMA 8. Let B; = {w € Q% : §°(w) is almost surely consistent for
0o}, and note that Py(B1) = 1 by Lemma 7. Let Bz be all w € Q™ such P2 {X' > t5}
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converges almost surely to Po{X’ > t9}, and note that Po(B2) = 1 by standard prob-
ability arguments. Thus (5.1) holds. When T2 > 0, 42 exists by Brouwer’s fixed point
theorem and arguments in Lemma 2 if, for ¢ € [to A T}, %o}, we set So(t) = 83(to ATY)
and R2(t) = R2(to A Ty). When T = 0, take 45 = ¢(0) as in Theorem 3 so that 43 is
always defined. O

5.2 Consistency of the nonparametric bootstrap

The nonparametric bootstrap 47 is a solution to
s — 0

e (y)= " T >0} =0.

) (W’ (Z:5, R, () ATS A to>> >0}

THEOREM 5. Assume the conditions of Theorem 3 with %,, Zy, and Yy defined
accordingly. Let Z2 = {Z?,1 < i < n} be a nonparametric bootstrap of Z,, with
bootstrap weights {€n;,1 < i < n}, n > 1. Then there exists a solution 45 of Un(vy) =0,
Vn(is — An) is asymptotically measurable, and

sup  [E¢e f(vn(Fy — Fn)) — Ef(Yo)| — 0
FEBL1(L)

in outer probability as n — oo, where E¢e is the expectation with respect to the nonpara-
metric bootstrap conditional on Z,. Hence, the nonparametric bootstrap is consistent.

Before giving the proof of this theorem, we need two lemmas, the proofs of which
will be given later. The first lemma establishes key properties of 8, while the second
lemma gives existence of 4;.

LEMMA 9. Assume the conditions of Theorem 5 obtain. Then
oo . . ne _ — —
Po(weﬂ .P{nl_lilgoﬁn—eglw}—l) =1

and

VRl — 6n) = I ™2 (6n - 1) A + Q5

i=1

where E[(Q2)? | Z,] converges to zero in probability as n — oo.

LEMMA 10. Assume the conditions of Theorem 5 obtain. Then
(5.3 Po(w € Q% : P{T; > to for all n large enough |w} =1) = 1.

Furthermore, there exists a solution 4, of ¥n(y) = 0, where 3;, R; € HY are piecewise
L ]

constant with possible jumps occurring only at {X] : i€, > 0, X < ToAtg,i=1,...,n}
for 82 and at {Y] : 6:;£%, > 0,Y! <T2 Ato,i =1,...,n} for RS.

PROOF OF THEOREM 5. Existence of 4% follows from Lemma 10. Take ¢ and ¢
as in Section 5. Without loss of generality ¢¥? = 4;. Using arguments from the proof
of Theorem 4, v/n(5% —4x) is asymptotically equivalent, outer almost surely conditional
on w € Q%, to

Va(S[¥r{ T} € Z(To, £)}] — ¢[¥n{¥s € Z(To, £)}){T7, ¥ € Z(To, £)}.
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By Lemmas 4, 6, and 9 above and by Theorem 3.6.1 of VW, we have for

H? = /n(Ue{¥% € Z(Ty,L)} — ¥, {¥, € Z([o,L)})
that H,, is asymptotically measurable and as n — oo

sup [Ees h(Hy) — Eh(Zg)| — 0
heBLq (£ (Tg,L))

in outer probability. Lemma, 5 above and Theorem 3.9.11 of VW yield the result. 01

Proor oF LEMMA 9. Note that

(54) G.( = Z ‘gnzé‘ngw.( ij z])DU[ i = 0/(1 + 9)]

1<i<j<n
which implies

9‘. Zl<z<]<n ni WO( 5 z])DlJAZJ

" Zl<z<g<n .z WO(Xz]’ zJ)DlJ(l - ZJ)
where Po(w € Q% : P{limn—.c0 @5,y = 0 | w} = 1) = 1 by arguments used in the proof of
Lemma 10. As in the proofs of Theorems 3.6.1 and 3.6.2 of VW, let N,, be Poisson with
mean n. Let {m(k) k > 1} be an infinite sequence of i.i. d multmomlal (1,1 /n ,1/mn)
vectors in R™, independent of N,,. Take M,, = Zk 1 m Y and M N, = ‘}_:k 1 mSl ) Let
(&1, .- -,€n) = My, and, without loss of generality, (31, ...,&0,) = My,. Note &1,...,&,
are i.i.d. Poisson with mean 1 and satisfy Assumption 4. Also Y., |& — &3] = | N —nl.
If the triangular array {hi;,j > i > 1} is uniformly bounded, with sup;;>; |hi;| < K,
then

:m(l)a

D hi(Enibn; — &) < K Y (Gleny — &l Enléni — &)

1<i<j<n 1<i<j<n
< Kn~%(N,|N, — n| + n|N,, — n|)

converges to 0 almost surely. Thus

é. Zl<z<]<n£z§]W0( ij? z])D'LjAZ] .2
" 21<1,<j<n£1£.7w0( ij? z])DlJ(l ij) “®

where Po(w € Q2% : P{limp.00 @55y = 0 | w} = 1) = 1. Consistency now follows from

standard probability arguments.
The fact that +/nG5(62) = 0, combined with (5.4), implies that

\/ﬁ(é; 'n) = I—l 82 Z WO( ijy zj) [ iy — 00/(1 + 90)] + Q:z(3)7

1<i<jsn

where Po(w € Q% : P{lim, o0 @n3 = 0| w} = 1) =1 by previous arguments. Let
{Bij,j > i > 1} be as defined in the proof of Lemma 7. Based on the multinomial
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structure of the bootstrap weights and on previous arguments, it is easy to show

2 .
E||n™? Z Bij(énibni — 1) — n~1/? ZAi(f:n' —-1) Zn
1<i<j<n i=1
=0p(1) + Op(n™") + 20731 + Op(n™")) Y [ByBix — Ai(Bij + Bix) + A?

1<i<j<k<n
+Bi;Bji, — A;j(Bij + Bjk) + AF + Bix Bjk — Aw(Bik + Bjr) + AR]

goes to 0 in probability, as n — oo. O

Proor oF LEMMA 10. As a consequence of the outer almost sure equivalence of
the nonparametric bootstrap and a multiplier bootstrap having mean 1 Poisson weights,
the arguments are essentially identical to the arguments used in the proof of Lemma 8.
The difference is that Lemma 9 is used in place of Lemma 7. O
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