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Abstract. This work establishes an asymptotic bound on the characteristic func-
tion of signed linear serial rank statistics. The result is obtained under rather general
conditions including the important case of van der Waerden scores. It generalizes the
result of Seoh (1983, Ph.D. Thesis, Department of Mathematics, Indiana University)
and constitutes an essential step to the elaboration of Berry-Esséen’s bounds and the
establishment of Edgeworth expansions. These statistics constitute a natural tool for
testing the hypothesis of white noise with a symmetrical (unspecified) distribution
in comparison to other alternative hypothesis of serial dependence. :
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1. Introduction

Let X, = (Xn1,...,Xnn) be a vector of independent random variables with prob-
ability density functions fri,..., fn, and distribution functions Fq, ..., F,,, and let
Rf = (RY,...,RY) and Z,, = (Zu1,...,Znn) be respectively the vector of signed
ranks and order statistics associated to absolute values |Xp1l, ..., | Xnn|-

Linear signed rank statistics take the from

n
(1.1) Tt =(m—1)"12 Z cnean(RY)sgn(Xne),

t=1
where a,, = (an(1),...,a,(n)) and (ca1,--.,Cnn), » € IN, respectively denote a score
vector of real numbers and a vector of regression constants and sgn(z) =1 if z > 0 and
sgn(z) = —1 elsewhere. These statistics are usually used to test the symmetry hypothesis
(see, e.g. Héjek, (1962), Héjek and Sidsk, (1967)) H™ : Fpy = Fpp = --- = Fy, = F,,
with Fy,(z) = 1 — F,(—z) against some class of alternative hypothesis. The asymptotic
normality of T;, ; was established under H. 1(") and under suitable alternatives by several
authors, namely by Héjek and Sidék (1967), Héjek (1968) and Huskové (1970). Under
the symmetry hypothesis H. 1(") and for bounded score generating function, Puri and Wu
(1986) have obtained the rate of convergence to the normality of the order O(n~1/2+9),
6 > 0. An L? bound for these statistics was obtained by Wu (1987). By adapting the
van Zwet (1980) method, Puri and Seoh (1984a) have obtained, under the symmetry
hypothesis H. 1("), Berry-Esséen bounds of order O(n~1/2) for the statistic Ty, +, where
the scores (an(1),...,an(n)) are derived from a score generating function not necessarily
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bounded. The Edgeworth expansions have been established by Puri and Seoh (1984b).
The case of the unsigned linear rank statistics of the type

n
Tn = (’I’L - 1)_1/2 z cntan(Rnt))
t=1

where R,; is the rank of X,; among (X,; : 1 < i < n) were investigated by many
authors. For the review, the reader is referred to von Bahr (1976), Huskovd (1977, 1979)
and Does (1982, 1983).

Asymptotic behaviour of the characteristic function and Berry-Esséen bounds for
linear serial unsigned rank statistics have been established by Hallin and Rifi (1996,
1997). Under the symmetry hypothesis an) and the hypothesis H(®) where the vari-
ables Xp1,...,Xnn are independent (not necessarily having the same distribution), we
establish the asymptotic behaviour of the characteristic function of serial linear signed
rank statistics of the form

n

(1'2) Tr(tl,c—z— = (TL - k)_l/z Z an(Rgt)bn(R;zl-t—k)sgn(Xnt)Sgn(Xnt—k),

t=k+1
where b, = (b,(1),...,bn(n)) is a score vector of real numbers, k is an integer (1 <k <
n—1).

The asymptotic normality of T,(Lkl was established under the hypothesis Hl(") by
Hallin et al. (1987) and Hallin and Puri (1992).

2. Technical conditions and principal results

The first three conditions below are the same as those considered in Seoh (1983).

AssUMPTION (A;). There exist strictly positive real numbers a, 4, b, B such that
the scores a,, and b,, satisfy,

> lan(@) = an, Y _al(@) < An,
i=1 i=1

> [bn(@)] > bn, Zb,i(i) < Bn.

i=1

ASSUMPTION (Ag). There exists 6 > 0 such that, for some ¢ > n~3/2logn,
Y(an(1),---,an(n); () > né(, where Y(an(1),-..,an(n);¢) = MzeR/3j1<j<n
and |z — a, ()| < ¢} with A the Lebesgue measure. '

The same holds true for (b, (1), ..., bn(n)), i.e., for some ¢ > n=3/2logn, v(ba(1),.. .,
ba(n); C) > néC.

AssuMPTION (Az). There exist a sequence of probability density functions ( fr)
and a strictly positive sequence (e,) decreasing to zero, such that

- (fnj(m) - fn(x))zd

T < neEy.
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ASSUMPTION (A4). If we put

— (.fn(x) - fn(_x))2d
on / fola)

H

the sequence p,, decreases to zero.

Remark 2.1. The Assumption (A4) is stronger than Assumption (As) of Theorem
I1.2.1 in Seoh (1983) since he supposes only that

ligsu /Ifn(:c) — fa(—2)|dz < co.

+o00

Remark 2.2. If (f,) satisfies Assumptions (A3) and (A4) and if §,(z) is defined
by
A o) + fal—2
o) = )t o)

then g, is symmetrical. Furthermore, we can prove the existence of a sequence (ay,) of
positive numbers converging to zero, such that

zn: (fnj(2) — 9n(x))*

- dzr < na,.
gn("l") "

j=1
Denote u = E(T,Ekl) and (U,(Lk))2 = o? (T,(Lki) the mean and the variance of T,E?_)F, de-

fined in (1.2), T;r = (T,(lk_?_ - p%k)) / o the standardized statistic and ¥y its characteristic
function.

Remark 2.3. Esséen’s smoothing lemma (cf. Feller (1971), p. 538) reduces the proofs
of Berry-Esséen bounds and Edgeworth expansion to the study of integrals containing
the characteristic function 9}, (u) of T;} for large values of |u|.. To bound these integrals,
we will use respectively Theorem 2.2 and Theorem 2.1. For more details about this
‘method we refer to van Zwet (1980).

In the sequel, we will use the following notations

952 9a? :
=15 = 1gar %= mineb),
1 = 55 min | o0 T BT M)
(2.1) 03 % mm(3b+8’62)’ b4 28’ 8 Gmm(Z’(54

The characteristic function of T; ,(L’?_ — ufP is given by cpflkl_ (w)=FE exp(iu(T,(Lch)r - ,u,(f))),

u € IR.

THEOREM 2.1. Under the independence hypothesis H™ | if the Assumptions (A1),
(A2), (A3) and (A4) are satisfied, then there exist strictly positive numbers ¢, C, and &
depending only on a, A, b, B and the sequences (p,) and (en) such that, for n > k and

logn < |u| < en®/2, }(pgci(uﬂ < Cn—rlogn,
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Note that in this theorem, constants ¢, C and & are not depending on n, but only
upon the whole sequences (pn,n € IN) and (e,,n € IN).

THEOREM 2.2. Suppose that only Assumption (A;) is satisfied. Then, under the
hypothesis H; (n) , there ezist strictly positive constants ¢, C, and k such that, forn > k
and logn < |u| < en'/?, lcp(k) (u)| < Cn—slogn,

For convenlence of notation, for fixed n, we put a(i) = a,(7), b(2) = b,(%), X; = Xns,
s;i =sgn(Xp;), R = R}, Rt = R} and Z = Z,,. [x] denotes the integer part of z, [z]*

the smallest integer number greater or equal to z, and |J| the cardinal of J.
3. Preliminary results and proofs

First, we consider the case of signed linear serial and simple rank statistics T( _)l_ of
order 1 (say T7). Then, the results will be generalized in the case of any order k > 1.
The characteristic function ¢} (u) of the centered statistics corresponding to T;F is given
by @i (u) = Fexp(iu(T;} — ET;)). The proof of the theorems will be split to several
steps.

LEMMA 3.1. (Bernstein’s inequality) Given r independent random wvariables
Y1,-..,Yr with Bernoulli distributions having the respective parameters m,...,7,, de-
notemw =3 _ 7, Br =3 mi(l—m) andy =3"_, yi. Then, there exists a constant
¢ > 0 such that, for any real o < 7,

—(m - a)?
Ply>a)>1-2e e b
yzo)2 Xp{2Br+(7r——a)c

PrROOF. See Hallin and Rifi (1996).

The two following lemmas are the key to the proof of the main theorems.

LEMMA 3.2. (van Zwet (1980)) Under the Assumption (As) and for any event
A in the o-algebra generated by the random wariables Xa,...,X,, we have P(4) <
2(e™ Po(A))Y/2, where P and P, are respectively the probabzlzty measures calculated

under the independence hypotheses H™ (defined above) and Hé , a special case when
X1,...,X, are independent and identically distributed.

Consider real numbers dy,...,dn, and p1,...,pm with0<p; <lforj=1,...,m
For ( > 0 and 0 < € < 1/2, let v(dy,...,dm;P1,---,Pm;(,€) denote the Lebesgue
measure A of the (-neighorbood of the set of those d; for Wthh the corresponding p;
satisfy € < p; <1 — ¢; thus

’Y(dla mapl; 7p’rn1€7€)ZA{"I".E}]I‘T‘dJI<C76SpJSl_f}

LEMMA 3.3. (van Zwet (1980)) Suppose that positive number d, D, § and € ezist
such that

Zp](l _pj)d? > dm) Zd4 < Dm 7(d17 m;pl; ,Pm§Cl,6) 2 5lm€.’
j=1 7=1
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for some ¢’ > m=3/2 logm. Then, for every positive by, there exist positive numbers ba,
B and B depending only on d, D, § , € and b; and such that

11 = 2p;(1 — p;)(1 = cos(m™1/2td;)))/2 < Bm~Flog™
j=1
for by logm < [t| < bym3/2,

The statistic (n — 1)1/2T;} can be decomposed as follows

(3.1) (n—D)V21¢ =T + T,
where '
nl . .
Tr;,l_l = Za(Ri)b(R_ﬁ_ﬂszwzt—l,
t=1
ny—1
Th =Y a(Rf )b(BE)s2152 + a(RE)B(RE_,)snsn_1I(nodd),
t=1

where n; = [n/2] and I(A) is the indicator function of a set A. For 2 <t < mnp, we
define

_ fe(1Xe)) _
(3'2) Dy = ft(I.XtD x ft(_Ith), it = P2t—1,
and
(33) Dy = a(R3)b(RY,_1)s2: + a(RF,_1)b(RS, )52

LEMMA 3.4. Under the independence hypothesis H(™ | for allu € R and n > 5,

(3.4) ot (u)| < E {1"1[[1 —2¢:(1 — g;)(1 — cos((n — 1)—1/22th))]1/2} .

t=2
PROOF. According to the decomposition (3.1), we can write

n1
(n—1)'2T;f =" Dysay1 + a(RF)b(RT)s2s1 + a(RIB(RE_)snsn—_1I(nodd).

t=2

Let L = {s; | t an even number, 1 < ¢ < n}. Since conditionally giving Z and R*,
81,...,5n are independent with probabilities p, = P(s; = 1| Z,R") =1 — P(sy = —1|
Z,R"), we have

n1
B((n-D)'Y’TF | Z,R*, L) = 3" (2pa-1 — 1)Dy + (291 — L)a(R)b(R})ss
t=2

+(2pn — D)a(R})B(R)_{)sn_1I(nodd).
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* On the other hand,
|E exp(in(T;} — E(T;))))| < E|E(exp(iw(T,f — E(T;f | Z,R", L)) | Z,R*, L)

ni .
=F H |p2¢—1 exp(iu(n — 1)_1/22(1 — pai-1)Ds)
t=2

+ (1 — pot—1) exp(—iu(n — 1)_1/22p2t_1Dt)|

- Eﬁ{l ~2¢:(1 — g;)(1 — cos((n — 1)~/?2uD;)}/2.

t=2

LEMMA 3.5. Under the independence hypothesis H™, if the Assumptions (As)
and (A4) are fulfilled, then for all € € [0,1/4] and 11 € [0,1 — &5], there exist ¢1 and &,
strictly positive numbers, such that

(3.5) P(e < ¢t <1—¢€ for at least [nn]* indices t) > 1 — cre™™™.

Remark 3.1. It is sufficient to prove relation (3.5) for large values of n. In fact,
given a finite integer ng, for 2 < 7 < np, we can choose cgz) and n?) such that (3.5) holds.
Take, then

(i)

no
i .
cp = E c§) and K3 = min K; .
— 2<i<ng

This remark is available for all following results. Tn the sequel, we suppose n sufficiently
large.

PROOF. According to Assumptions (Asz) and (A4), we have

+o00 z) — fi(—z
B(ep-1) = [ I o

O P
= [ TR

+00
-3/ (o)~ sl

2 /_ .
+o00 R 1 +o0o R
< [ 1@ - ha@ldo+ 5 [ 1hale) - Ful-a)lde.
Now, from Markov’s inequality, '
1
— — < —1)).
P(12,— 1] > 1 - 2€) < T E(}2p. ~ 1)

Put f, = f. Then, applying both Cauchy-Schwarz and Holder inequalities, we get

3=

1 &
EZP(|2qt—1| >1—2) <

n
> P(j2p: — 1] > 1 —2¢)
t=2 t=1
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<1_2( /(ft f)2>

+oo R R
+2(T§5/_ |f(2) — f(—=)|dz
+oo R
<oa+ [ 1f@) - f(-a)ds

For 2 <t < ny, we define y, = 1 if ¢; € [¢,1 — €] and y; = 0 if not. Then, ya,...,¥Un,
are Bernoulli’s random variables with parameters mo,...,7,,, respectively, such that
= P(g; € [¢,1 — €]), and we have

P(e < g <1 — € for at least [nn]* indices £,2 < t < ny) (Z Yt 2 nn]*) .
Since €, | 0, for ng = 2( 3 n) there exists do such that for n > do, 2\/€, + <

70- Assumptlon (A4) assures the existence of an integer mg such that, for n > mo,
I fn(z fn(—a:)ldz < 65. There exists an integer ng, no = sup(dp, mo), such that, for
n > ng, ety T — [nN]* > nng. According to Lemma, 3.1, there exists a constant ¢ > 0,
such that

< . (S - l)?
i (gy =l ) > 1 2o { g I )

>1-2ex —m]%
- P 4\/ 5n0 + 265 + 0770

—nKy
>1- Cing€ "o,

since 9 9
(s — [rn]*) > o
23 m(l —me) + Qo me — [nm]*) T 4 feng + 265 + o’
where ¢1n, = 2 and ki1n, = 13/(4\/€ng + 265 + cno). The proof is complete.

LEMMA 3.6. Under Assumption (A1), there exist two subsets of {1,2,...,n}, I,
and I, satisfying card(I,) > [61n]* and card(I) > [bon]* and such that

Vtel,, |a(t)]>a/4 and Vtel, |b(t)|>b/4.

PROOF. Given |a|V), ..., |a|®™, the numbers |a(t)| ranked in decreasing order, we
put o; = [a|®. Then for t < [6in]*, oy > a/4. If not, there will exist tg < [61n]*
satisfying oy, < §. This implies that

to—1

n
Zat = Zat-l—Zat
t=1
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This is contradictory to (A;). Let now 7 be the permutation that permits to rank the
|a(t)|’s in decreasing order. We have I, = w~1{1,2,...,[61n]*}. The same reasoning
holds for the existence of the set I;,.

LEMMA 3.7. Under the independence hypothesis H™, Assumptions .(Al), (A2)
and (As), there exist strictly positive constants cy and ko depending only on a, A, b,
B and the sequence (e,), such that :

(3.6) P(y(Da,...,Dpn,,{) > (b3n) > 1 — coe™ "2,

PRrROOF. Note that Lemma 3.2 reduces the proof of (3.6) to the case of independence
and equidistribution hypothesis H ) putting r = [2 min(5225 +8 ,82)]*, for k < r, we have
v(Da,...,Dg,¢) = y(Da,...,Dg_ 1,() + 2( This is the case unless |Dy — Dt| < 2(¢ for
some ¢ < k —1, i.e. except that Dy, € USZ) D, — 2¢, Dy + 2¢[. Now, if [b(RF,_,)| > b/4,
the relation above restricts a(RJ;) to a set Ay, which is union of (k—2) intervals of length
smaller or equal to 16{/b. Consequently, the set of a(t) in Ay has a (-neighborhood of
Lebesgue measure at most equal to (k — 2)(~§ + 2¢). According to Assumption (A4z),
we have

#a) ¢ A40) 2 5o (- (- 2) (B +) )

> (k- 2)(1+8/b).
On the other hand,

Po(o(RS) ¢ A | BE, B, Ry 1)>
> Py (o) ¢ Au | (RS 2 5, RS LR, Ry

b
B (16 ) 2 5 | R;,R;,---,R;(k_n)

%’f—(k 2)(1+§>—2(k—1)+1 2061+ 1
= n—20k—1)+1 X Tm—2k-1) 11
(-2 D) o2

>5%2

As a(R3,) ¢ Ak, 2¢ is added at the k-th step. Then 247(D2’ , Dy, €) is stochastically
larger than a binomial random variable, say B(r, 2%2). Since ré-gi > nb3, 7 < n and
v(Da, ..., Dny;¢) > v(Da,...,Dy;C), the proof is completed by applying Lemma 3.1.

LEMMA 3.8. Under the independence hypothesis H™ Assumptions (A1), (Asz)
and (A4), there exist strictly positive numbers c3 and k3, depending only on a, A, b,
B and the sequences () and (pr) such that,

(3.7) (lDt| T for at least [64m]* indices t) >1—cge ™",
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PROOF. Let r = [né/4]*, and suppose that X, ..., X, are independent and iden-
tically distributed random variables having common probablhty density function fn
Without loss of generality, we can suppose that fn is symmetrical. If not, by virtue of
Assumption (A4), an = 36, + 2p, and §, may be used instead of €, and fn to apply
Lemma 3.2. For ¢t < r, put Wy, = a(R,)b(RS,_;) and Wa; = a(RS,_,)b(RS,_,). De-
note (ry,...,rd,_3) an observation of (R, ..., Ra;_3), wat—s = {rs,...,78,_3} and P,
the conditiona,l probability given RY,..., RS, 5. Observe that under Hl(") , the vectors
s=(s1,-..,8,), Z and R* are mutually independent (see, e.g., Hijek and Sidsk (1967)).
We get

(lDtl > Tg) P (lDtl > %;Wlt >0,Wy > 0)
<|Dt| > D Wi >0,y < 0)

P, (lDtl > a—b,Wu < 0,Wy < 0)

+Pc(| |__ 6 W1t<0,W2t20).

On the other hand, we have

ab
(thl > 6’ s Wig 2 0, Wy > 0)

ab
> P(sot =1,82e—2=1) x P, (IDt| > E;WM >0,Wae > 0|52t =1,82-2= 1)

l ab
(qu + Wae| > — , Wi > 0, Wo > 0)

22 = 16’
1 ab
= 2—2Pc (|W1tl + [Wa| > E’Wlt >0,Wy > 0) .

By the same way, we obtain

b 1
P, (lDtl > %,Wlt >0,Wy < 0) 2_2Pc [Wie| + [Wa| > > — Wlt >0,Wq < 0> )
1

)

ab
(Ith > — 6’ y Wi <0, Wy < 0)

b
W+ Waul > 22 Wi, < 0, W > o) .

b
5 e (IWuI + |[Wa| > 216 Wu <0,W2 <0
ab
P, ([DtIZ E,Wlt<07W2tZO) (
T,

Using the above inequalities, we have for ¢ <

ab 1 ab
(lDtI 2> E) 2 =5 55 (‘Wltl + [Wae| > 16>

1 ab
> 7 (]W1t| > 16) =P (RY, € I,,R},_, € I)
1 . .
92 PC(R;t = iq, Rg;_y = )
(tasip)€(La\wat—3) x (I\wee~3)

>
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1

2 Pn—2t+4)(n_2%+3) Tlia 7 4]

(asis)e(la\w2i—3) X (Ip\w2¢—3)

(bn—2t4+32—n _ 1 2 2 1) .
Z 22,2 2'23 52"‘;(7'—1) “n

1 /62 1 62
> —(2-2)>2.
—22(4 n>_25

Then, under H§n), the number of t < r for which |D;| > ab/16 is stochastically larger
than a binomial random variable B(r,52/25). Note that 284n < ré2/2°, and by using

Lemma, 3.1, the relation (3.7) is thus proved under H. 1("). By using Lemma 3.2, the proof
is complete.

PROOF OF THEOREM 2.1. (i) The case k = 1. Suppose that n is sufficiently large
and let € € [0,1/4]. Put § = 83/100, D = [(A + B)/6s5]* and d = €(1 — €)(ab)?27%,,
where 63, 64 and 85 are given by the relation (2.1). Let J = {2 <t < ny,|Dy| < DY4}
and m = |J| be the cardinal of J. It is easy to see that ny —1 —dsn <m <ny —1. We
have 85 < 1/4 and hence 35 < m < n/2. Let (o = n~3/21logn and define the set F by:

2
n {’Y(DZ:' - 'aDn17C0) > (5372(0}

N {|Dt| > ‘11—2 for at least [64n]" indices t}.

*
F = {e < g £ 1— ¢ for at least [(l — 265) n} indices t}

By Lemma 3.5 (with n = % — 285) and Lemmas 3.7 and 3.8, we obtain by Bonferroni’s
inequality

(3.8) P(F) > 1-— cqe™ ™",

where ¢4 = ¢1 +¢2+ ¢3 and k4 = min(k, kg, Kk3) are strictly positive numbers depending
only on a, A,b, B,é and the sequences (€,,) and (p,). Moreover, in F, the indices ¢ for
which e < ¢ < 1—€ and |D¢| > f—g is at least equal to (84 — 285)n since the number of
indices t not satisfying at least one of these assumptions is at most equal to

ny —1—[64n]* +n1 — 1 —[(1/2 — 265)n]* <nq — 1 — (64 — 265)n.
Thus at least (84 — 385)n of these indices are in J. For any sample in F', we obtain the
following inequalities
(ab)?

th(l —q)D2 > ¢(1—¢) (16)2 (64 — 365m) > €(1 — €)27%64n > dm.
ted

Similarly, in F' the number of indices ¢ satisfying ¢ ¢ J or ¢; ¢ [e,1 — €] is at most 365n.
Thus Lebesgue measure of the (g-neighborhood of the set {D;,t € J} for which the
corresponding ¢, satisfies € < ¢; <1 — ¢, fulfils

6
’Y(Dt;qtvt € J) C, 6) > (53 - 655)77’( 2 n§3§0 > 63mCO~
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By putting ¢ = m~3/2logm, for m > 2 we get s < G/¢ < 1. Since 4(...;¢) is
increasing in ¢,

(Dt g1, t € J,¢ 1 €) > ¥(Dsy qe t € J,Co,€) >mb ¢

And according to the definition of J, }°, ; D} < Dm. Consequently in F, the Dy, g;,
t € J satisfy the assumptions of Lemma 3.3, with constants d, D, § and €. Lemma 3.4
and the relation (3.8) complete this proof.

(if) For the serial statistic T( 4)_ with any order k, put n(k) [3r] and for 2 <t <
o

k
DE )= “(thk)b(R(u 1)k)32tk + a(R(+2t—1)k)b(Rz§t—2)k)3(2t—2)kv

*)
!
k k k k
Sﬁ,Jr = ZD§ )3(2t—1)k: Qq(zlr =(n— )1/2T( ) Sr(ti
t=2

Let S = {sam: 2<t < ngk)} and II be the set of all s; which appear in lekzr Given S,
I, Z and RT, Q,&’“{L is constant and consequently,

1 (w)| < E|Elexp{in(T), — E(T) | 2, RY,10,5))} | Z,RY, 5,11

n{" ® e ou ® 1/2
=Et_l—12{ —-2¢; (1 - )(1—003(———————(n_k)1/2Dt ))} ,

with qgk) = p(at—1)k- Thus we obtain an analogous result to Lemma 3.4. The rest of the

proof is similar to the former, since we consider the ranks (Rt";, t=2,..., ngk) ) instead
of (Ry,...,Ry,) for the proof of Lemmas 3.7 and 3.8.

Proor OF THEOREM 2.2. For the sake of simplicity, we restrict ourselves to the
case k = 1, the general case follows along the same lines as explained in part (ii) of

the proof of Theorem 2.1. Under Hf"), the Assumptions (As) and (A4) are satisfied.
Consequently, Lemmas 3.1, 3.2, 3.4, 3.5, 3.6 and 3.8 remain valid. For sufficiently large
n, put & = 64/2, D = ((A+ B)/8)*, d = (ab)*2796,, J1 = {2 <t<m, |Dt| < DY4}
with D, defined in (3.3) and m; = |J1]. It is easy to see that 55 <m; < 2. Let the set
F; defined by

b
R = {]th > % for at least [64n]* indices t} .
Then, according to Lemma 3.8, there exist positive numbers ¢4 and ﬁ4, such that
(3.9) P(F)) > 1 —cqe™Fsm,

On the other hand, in the space F, the number of indices ¢ not belonging to J; is at
most equal to dgn. Consequently

Z D? > (ab)?27%4n = nd.
teJy
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From the definition of J;, we have Zteh D} <mD< n%. Now, since X4,...,X, are
independent and identically distributed random variables having a symmetrical proba-
bility density, the ¢; defined in (3.2) are constants with ¢, = 1/2. Accordlng to Lemma
3.4, if Ju| < en'/?, with ¢ = (d/D)/2, we have

n1 1/2
2th —1/2
|(Pn(’LI,)| <E tl:IZ{l‘I‘COSm} 2
2th 1/2 -1/2
<E tgl {1+cos—————————(n_l)1/2} 2
l
<E — D} + D}
< E|exp Z 9 = ( tEZJ:l
< e—uzd/12
since for all real z, we have (1+522)1/2 < exp{—— + 96} According to Lemma 3.4 and

the relation (3.9), there exist positive numbers C and & such that, for logn < |u| < en'/?,

| (u)] < Cn=*'98", This completes the proof of Theorem 2.2.
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