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Abstract. We prove consistency of a class of generalised bootstrap techniques for
the distribution of the least squares parameter estimator in linear regression, when the
number of parameters tend to infinity with data size and the regressors are random.
We show that best results are obtainable with resampling techniques that have not
been considered earlier in the literature. )
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1. Introduction

Consider the linear model
(1.1) Yimn =T B+ €imy, i=1,...,n

where y;.,, are n observations, ;.,, are the observed values of random design vectors in IRP,
Br is a p dimensional unknown but constant parameter vector and e;.,, are unobservable
noise terms. The dimension of the parameter, p is allowed to tend to infinity with
data size. In many applications, models are used where the dimension p is not small
compared to n. Then an asymptotic approach where p is fixed is misleading since
the high dimensionality of the model is lost asymptotically. Asymptotics where p may
increase with n has been considered in Huber (1981), Haberman (1977a, 1977b), Shorack
(1982), Bickel and Freedman (1983), Portnoy (1984, 1985, 1988), Mammen (1989) and
Sauermann (1989) in different contexts. Mammen (1989) has appropriately named this
kind of asymptotic study dimension asymptotics.

Let 3 be the least squares estimator of 3. For a vector ¢ = (c1 ---¢,)T, consider
the problem of estimating the distribution of n!/ 2cT(/é — fB) as n — oo. Mammen
(1993) has shown that paired bootstrap and wild bootstrap methods provide consistent
estimators. In this paper we extend the paired bootstrap based consistency result of
Mammen (1993) to the case of resampling with random weights, which is often termed
generalised bootstrap in the literature.

Bootstrap with random weights was probably considered for the first time in Rubin
(1981). Several other authors have considered special cases of random weights bootstrap,
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for example see Zheng and Tu (1988), Lo (1991). A detailed review of generalised
bootstrap may be found in Barbe and Bertail (1995). In the context of regression,
however, the above references considered only generalised residual based bootstrap, and
not the paired bootstrap. Generalisations of paired bootstrap and delete-d jackknives
are available in Chatterjee and Bose (2000a) and Chatterjee (1998). In this paper we
concentrate on generalisation of the paired bootstrap.

Our choice of generalised paired bootstrap over residual based resampling tech-
niques was guided by an important robustness consideration. Mammen (1996) showed
that in high dimensional regression models, if the estimator is obtained under wrong
assumptions, the empirical process of residuals tends to be biased towards the wrong
assumption. This is true even if the linear fit from the ‘wrong’ estimator is consistent,
see (A5) in Mammen (1996). Loosely speaking, this reflects the phenomenon that the
residuals reflect the assumptions and not the nature of the data. Since the residuals are
sensitive to the assumptions, bootstrap based on residuals is also expected to exhibit
such sensitivity.

Our conditions on weights are similar to those used in resampling theory based
on empirical processes. However, there are significant differences between the general
empirical process based approach that is widely used and our approach to resampling
in the present paper. Suppose, for some statistic, P, P,, Pp, are the actual law, the
sample (empirical) law and the bootstrap law, respectively. The major thrust of empirical
process literature is usually to prove both

nt?(P, — P) = Gp
n'/?(Pg, — P,) = Gp

either almost surely or in probability, where Gp is a P-Brownian bridge. This implies
usual bootstrap consistency, that is, Fgn(t) — Fn(t) — 0 uniformly over ¢, where F
denotes the distribution function. For bootstrapping with random weights, usual as-
sumptions on the weights are that they are either independent or exchangeable, with
some restrictions on their lower order moments. Let W,., be the weights used for re-
sampling. Then, along with other conditions, Praestgaard and Wellner (1993) assume
that

"
(1.2) Y (Wi —1)2 B % > 0.
i=1
See also Mason and Newton (1992) , where an equivalent of (1.2) is given in Wyy;. The
assumption (1.2) is only slightly weaker than o2 = Var(W;.,) — ¢ > 0.

A major consideration in dimension asymptotics is to obtain the highest possible
rate of growth of p with respect to n. The paired bootstrap typically requires p*/n3 — 0
(Mammen (1993)). Let {w;.,} be the sequence of non-negative, exchangeable weights
used for resampling, and let 02 = Var(w;.,). Our major result in this paper is to
show that by letting 02 — 0, we can have best dimension asymptotic results. That is,
distributional consistency results hold for generalised bootstrap even under the stringent
condition p/n — 0 when o2 tends to zero at an appropriate rate. The rate p/n — 0 is the
best achievable when bootstrapping from residuals, as proved by Bickel and Freedman
(1983). We also study consistency of resampling with random weights whose variance
satisfies a positive lower bound, for example the delete-d jackknives with d/n — ¢ € (0,1)
and the paired bootstrap. For these techniques, we show consistency when p?/n — 0.
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The consistency of m out of n bootstrap is also established, when m — oo and m/n — 0.
Depending on the dimension p, a criterion for the choice of m is also suggested. Our
model set-up, discussed in details in Section 3, is same as that of Mammen (1993).

It has been established in Mammen (1993) that the paired bootstrap is consistent
even when parameter dimension is increasing, regressors are random and errors display
heteroscedasticity. Similar robustness results have been established in Chatterjee and
Bose (2000a) for generalised paired bootstrap in the context of variance estimation.
However, resampling schemes based on data pairs are not expected to be second order
accurate for distribution approximation. They do not capture the first term in the
Edgeworth expansion of the distribution of the least squares estimator. See Wu (1990),
Mammen (1993) and Hall and Mammen (1994) for some discussion on this. However,
after a bias correction, higher order accuracy results are obtainable for some schemes for
which the variance of weights remains bounded away from zero (Chatterjee and Bose
(20000)). Tt is not known whether higher order accuracy is obtainable for asymptotically
degenerate weights for which in this paper we get the best dimension asymptotic results.

Using asymptotically degenerate weights essentially means that the bootstrap em-
pirical distribution function “cannot be too far” from the original empirical distribution
function, in case the parameter dimension is large. This heuristic interpretation of our
result may be useful in resampling for infinite dimensional parameters also, such as in
nonparametric or semiparametric inference.

2. The resampling technique

We will henceforth drop the suffix n from the above notations, thus y; = ¥i.n,
T; = Ty, B = Bp and e; = e;., from now on. We will also have occasion to use the
usual matrix notation for the above, thus y = (y1,%2,...,9n)%, X = (@1,%2,...,Zn)7T
and e = (e1,€2,...,en)".

In this section we discuss the resampling scheme proposed by Chatterjee and Bose
(2000a) and Chatterjee (1998) which we use here. In regression problems, the paired
bootstrap proceeds by taking an SRSW R sample of size n from the data pairs {(:, i),
i=1,...,n}. This is same as transforming the data to {,/w;(z;,¥;),i =1,...,n} where
(w1, ..., w,) come from Multinomial (n,1/n,...,1/n). Instead of multinomial weights,
the generalised bootstrap is carried out by using any non-negative exchangeable random
weights satisfying the conditions that we mention now. Let V(w;) = o%. We adopt the

notation ) ] .
we— 1\ [wp—1 I (we,—1
igk ( On ) ( On > On

Also let W be the set on which at least mo of the weights are greater than some
fixed constant ky > 0. The value of mg is > 1/3.

(2.1) E(w;) =1
(2.2) 0 < 02 = o(np~%/?)
(2.3) PgW]=1-0(pn™1)
(24) c11 =0(n™1)

k

(2.5) Vi1, ia,..., i satisfying 3 ij =3,  Ciipoip = O(n )
j=1
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k
(2.6) Viy,ia, ..., ig satisfying > i; =4, Cisip.iy = O(min (n"542,1)).
=1

The bootstrap estimator is defined as
” -1 o~
Bp = (Z wizimf) > wiziyidw + B(1 — Iw).

Condition (2.3) ensures that Bp is the first term on the right hand side of the above
relation a large number of times. Thus Bg is realised by ordinary least squares on the
randomly weighted data {,/w;(z;,¥;),i = 1,...,n}, with a correction for the cases when
a substantial number of weights are zero.

Several known resampling techniques are special cases of the present set-up. Among
them are the paired bootstrap, the delete-d jackknife, the m out of n bootstrap where
m — oo and m/n — 0; and several choices of weights used in Bayesian bootstrap
schemes. Another choice is i.i.d. weights whose support satisfies a positive lower bound,
and whose mean and variance match with the above restrictions; the other conditions
being trivially satisfied. Such weights have the advantage of being convenient for practical
use, being easily programmable and requiring less computer time and memory.

3. Main result

We assume
(3.1) For every n, (z;,¥:)1 < i <mn are i.id.
(32) sup By, < oo,
n
(3.3) sup E||Z1..]|? < 0.
n

We also assume
(3.4) ( minimises b in E(y; — xb)2.

A careful study of the results of this paper and Mammen (1993) reveals that in (3.1)
the independence of (z;,y;) across ¢ is usually used, and the assumption about identical
nature of their distribution may be dropped in favour of some simple moment conditions.
However, we retain the i.i.d. assumption for simplicity.

We assume that Ex;z] is nonsingular, so that 3 is uniquely defined. With the ad-
ditional assumption E(y; —z7 8)? > 0, Mammen (1993) has discussed that the following
are always fulfilled after a standardisation:

(3.5) Ezzl =1, i=1,...,n
(3.6) k 0 < inf Be? <supEe? <oco, i=1,...,n.
n

As Mammen (1993) points out, the model conditions imply Exz;e; = 0,Vi, but
they do not imply the traditional homoscedastic assumption that given X the e; are
conditionally i.i.d. with mean zero. Also, the parameter § actually defines the linear
model ‘nearest’ to the data, which is often a useful thing to consider even when linear
models do not hold exactly.
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We denote L(- | T1,---,Zn,¥Y1,---,Yn) by LB. The sup-norm distance between
distributions is denoted by doo. The notations used in this paper follow Mammen (1993)
as far as feasible, while in the context of generalised bootstrap sometimes notations of
Section 2 are also used.

THEOREM 3.1. Choose ¢ € IRP with ||c|| = 1. Consider a linear model (1.1) satis-
fying (3.1)—(3.6). For a fized 6, set K to be the smallest integer greater than or equal to
2/6 and assume that

(3.7) P /n—0
(3.8) sup sup E|dTz;|* (1 +e?) < oo
n ldll=1
(3.9) E|(c"z;)e:)* > 0
(3.10) E|(cTz;)e;|?t T <00 for some > 0.

Consider resampling with weights which satisfy coa — 1 in addition to conditions given
in Section 2. Then

(3.11) doo (LB (%0, T (B — B)),  L(m2cT(B - B))) — 0 in probability

holds if either of the following holds:

(3.12) §>1 and o2>k>0Vn
(3.13) 1>6>1/3 and o02=0(n"1)Vn
(3.14) 1>6>0 and oipPn2 0.

Remark 1. (a) Condition (3.14) ensures that § = 0 (i.e. p/n — 0) is enough if

o2 = O(n—3/2)
2 .

(b) For the m out of n bootstrap with replacement, with m — oo and m/n — 0, we
have o2 ~ n/m, consistency is achieved if either p?/n — 0 or if § < 1 and p°/m? — 0.
Note that this restricts the choice of m to require that nm—2(1+8)/5 _, 0. This is a
criterion for choice of m.

Remark 2. Theorem 3.1 implies that the paired bootstrap is consistent if p?/n —
0, which is weaker than the rate p*/n® — 0 obtained by Mammen (1993). This is
because in our general framework for resampling, we do not use the special properties of
the paired bootstrap. Mammen (1993) has also shown that if Ele; | z;] = 0 and p/n — 0,
then the paired bootstrap is consistent. For our results, we do not need any condition on
conditional expectation of errors. Note that the resampling consistency result (3.11) as
well as its corresponding result of Mammen (1993) are convergence in probability results.
This is due to the fact that a triangular array of random variables are involved.

Remark 3. We have replaced the Lindeberg condition of Mammen (1993) with a
Lyapunov-type condition in (3.10). This is for convenience in the bootstrap distribu-
tional asymptotics. Conditions (3.7) and (3.8) are such that weakening of one leads to
strengthening of the other. Mammen (1993) had conjectured, following Yin et al. (1988),
that for the design where elements of ; are i.i.d., finite fourth moments of the elements
of z; would suffice.
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Remark 4. Two important points about the results, that have been pointed out
by Mammen (1993). The first is that if E(e; | ;) # 0, then the bias of n/2¢T(8 — B)
is of the order p/n'/?, which may tend to co if § < 1. Thus in this case for the mean
zero normal approximation to work requires § > 1. The other is that the conditional law
L(n'/2cT (B —B) | 1, ..., %y) is also consistently estimated by generalised bootstrap. This
is because, as will be seen later, both the conditional and unconditional laws converge
to the same limit N (0, E(cTx;)%e?). :

Remark 5. An important example of asymptotically degenerate weights is the
delete-d jackknife with d/n — 0. Wu (1990) has shown that these jackknives are gener-
ally inconsistent. Note that for these schemes the fourth central moment of the weights
is O(n) and hence ruled out by our assumptions.

4. Proofs

In order to prove the theorem, we need some results which we state now. Note that
for resampling with generalised bootstrap weights, we have ] = /w;z;, ¥ = Jwiy;,
e; = y/w;e;. The matrix W is the diagonal matrix with i-th diagonal entry w;, and
W; =0, Y(w; —1). Define A=I—-n"1Y" z;xF and A* =T -n"1 37 zizl*. Also
let Aamax(A) be the maximum of the absolute values of the eigenvalues of A. We use the
notation 27& to denote sum over indices that are different from one another. Now

LEMMA 4.1. Under the conditions of Theorem 3.1

(4.1) EBlamax(A*) = Op(max{p®*°n=2, sip*n~2}).

LEMMA 4.2. Under the assumptions of Theorem 3.1, on the set where both Aamax
(A) <1 and Aamax(A*) < 1, we have

n
(4.2) n?0, 1T (Bg — B) = n~Y/? Z WicTzie; + rnp + 0p(1)

i=1
where Pgl|rn,g| > €] =P 0 for any ¢ > 0.

The proof of the above results are given later. Conditions (3.7), (3.8), (3.12)—(3.14)
are required for the proof of the above two lemma.

ProOF OF THEOREM 3.1. One part of the proof involves the arguments to show
that £(n/2¢T (8 — B)) — N(0, E(cTz,)2€?), and this is identical with Mammen (1993),
so we will not repeat it here. Note that P[Aamax(4) > 1] = o(1) and Pg[Aamax(A*) >
1] = op(1). This is shown later. Thus by using Lemma 4.2 it is sufficient to show that

LB(n'?¢, 1T (Bp — B)) — N(0, E(cTz,)2e2) in probability. Now
Pg[n'/2cT (Bg — B) < ]
= Pp[n/2cT (Bp — B) < z,Iw = 1] + Pg[n'/2T (85 — B) < z,Iw = 0]
< Pg[n'/?cT(Bg — B) < z,Iyy = 1] + PglIw = 0]
= PB[nl/ch(ﬁg — ,@) <z, =1]+0p(1).
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For the rest of this paper it is implicitly assumed that calculations are carried out on
the set W, although we drop the indicator of this set to simplify notations. Note that

Pg [n1/2CT(BB - :é) < .’L‘] = PB[nl/ch(,BB - ,é) <z, )\amax(A*) < 1]
+Ppg [nl/ZCT(BB — ﬂA) <z, )‘amax(A*) > 1]
= Pp[n'/?c" (Bs — B) < 7, Aamax(A*) < 1] + 0p(1)

since

Pg[n'/2c" (B — B) < 7, Mamax(4*) > 1] < Pp[Aamax(4*) > 1]
S EB[/\amax(A*Q)]
= op(1) by Lemma 4.1.

But on the set Aymax(A*) < 1, from Lemma 4.2, (4.2) holds. To complete the proof of
the theorem we need to establish that

(4.3) Lp (n“l/z > WicTzz:z-ei> — N(0, E(cTz,)%?)

i=1

in probability. For this part of the proof, let & = cTz;e;. Note that for the bootstrap
distribution, which is conditional on the data, &;’s are constants. In order to prove the
above central limit theorem, we use Lemma 4.6 of Praestgaard and Wellner (1993). We
quote this lemma below:

THEOREM 4.1. (Praestgaard and Wellner (1993)) Let {m} be a sequence of nat-
ural numbers, let {am;} be a triangular array of constants, and let By,;, j = 1,...,m,
m € {m} be a triangular array of row-ezchangeable random variables such that

m
m™! E (amj — Gm)*> — 72 >0, m! T
J:

aX (@mj — Gm)? — 0
= I}

m

m™ Y (Bmj — Bm)? 5 &% >0, lim limsup E(Bpm; — Bw)?Ip... 5. (k1 = 0.

A limsu {1Brm; Bl >K}
i=1

Then ™
1 _
(4.4) =Y (am;jBmj — @mBm) = N(0,¢*7?).
vm =

In our set-up, conditional on the data, m = n, am; = & and B,,; = W;. The
first two conditions are satisfied in probability from (3.9) and (3.10), with 72 = E¢2.
Also, since & and W; are mean zero random variables, the mean adjustments in (4.4)
may be ignored. Note that variance of W; is identically one, so the third condition of
the theorem is satisfied. From Lemma 4.7 and Lemma 3.1 of Praestgaard and Wellner
(1993), the last condition of the above theorem is satisfied because of (2.1) and (2.6).
This completes the proof of the theorem. [

PRrROOF OF LEMMA 4.1. Let

n n n
Ap=A*—A=n"! E zxl —nt E zirl* = —opn! E Wiz, .
i=1 =1 =1
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If Amax(-) and Amin(+) respectively denote the maximum and minimum eigenvalue, then
it can be easily seen

)\max(A*) S )‘max(A) + )\max(AB)a Amin(A*) Z )\min(A) + Amin(AB)-

Hence we have Aamax(4*) < 8Aamax(4?) + Aamax(A%)]. From Lemma 1 of Mammen
(1993),

(4.5) Mamax(4%) = Op(®*on72).

Thus we only have to establish the rates for Ag. With some simple algebra involving
the moments of the weights and (3.8), it can be shown that Eg tr(A%) = Op(cin~2p%).
Thus we have

(4.6) EBlamax(A%) = Op(azp3n_2).

Putting together the results of (4.5) and (4.6) the lemma is established. O

In order to prove Lemma 4.2 we need two more results which we now state and
prove. For any 4, define A; = Y., @;x] —nl. Observe that A = n~'A;+n"lz;zl | and
A; and z; are independent. We employ this fact repeatedly in proofs that come later, so
it is useful to discuss the rate for Aamax(A;)-

LEMMA 4.3. Under the conditions of Theorem 3.1

AN\ 2K
sup E)max (#) = O(pK+K6/2n—-K)‘

PROOF OF LEMMA 4.3. Note that for any i, n='4; = A — n~lz;z]. We have

A\ 2K

Lemma 1 of Mammen (1993) establishes that EAamax(A%2) = O(pK+KS/2n—K),
Further n~lz;z7 is a rank 1 matrix, with its only non-zero eigenvalue being n™1||z;||2.

2
Now from Lemma 0 of Mammen (1993), we have E||z;||*¥p~2X is uniformly bounded

over 4, 50 that Eymax(n 12z} ) 2K is O(p?K n~2K) uniformly over i. This concludes the
proof. O

Now define 4% = 8 +n-1 5t AR zie; and BE = B +n~? Zf;_ll AR
*e%‘

A

z

LEMMA 4.4. Under the assumptions of Theorem 3.1, on the set where both Aymax
(A) < 1 and Aamax(A*) < 1, we have 20, 1T (B — BX) = r,p where Pg[|ras| >
€] =P 0 for any € > 0.

ProoF oF LEMMA 4.4. Note that
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—1

. n K—-1 n
(4‘7) nl/ZO_n—lcT(Bg _BK) - —1/2 —1 T A*h Zz:e: _ Z Ah Zziez’>
=1 i=1 h=1 i=1
-1 n
= n /2 n‘lcT [(A*" AP " wime;

=1

-

+Ah’ zn:(’wz - 1)31;6{] ..

i=1

The sum over h is a finite sum with K being a constant, so it suffices to consider the
individual terms in the summations and establish the following three results for every h:

" 2
(4.8) Ep [n‘l/zan“lcTAh Z(wi — 1)2:,'6,':] = op(1)

(4.9) Ep n‘l/Qan_lcT(A*h — Ah) Z(wz — Dz;e;| = op(1)

n
n—1/20_n——lcT(A*h _ Ah) zxiei
i=1 ’

(4.10) EB —_—OP(I).

PROOF OF (4.8).

2
n
Ep {n_l/zan"lcTAh Z(wz — l)a:,-ei}

i=1

n 2
v [Sowi ]
i=1
n #
=n"1) (TA )%l + n e Y (T A T )ei(cT A x;)e;
=1 K

(4.11) =n"t1—cn) Z(CTA":B%)%Z +n7 ey {Z(CTA’Z:L‘Z)&} .

=1 i=1

From Lemma 2 of Mammen (1993) we know that n=1[> 7, (cT A"z;)e;]? = Op(p), and
since ¢;1 = O(n™1), the second expression in (4.11) is Op(p/n) = op(1). For the other
quantity in (4.11), recall that

n
(4.12) A=n"1 Z(z,z? ~D)=n"14;+n izl
i=1
Thus we have

n~Y (T Atz)?el = n SZ[CT(A +zz] ) AP ) el

i=1
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n
(4.13) < 2n73 Z[(CTAiAh‘la:i)%? + (cTz;xl AP~1x;)2€2).

i=1
Consider the second term in the above expression. We have

n n
414) 07 [Tmal A2l < 0P Aaman (A7) D [ @] | el

i=1 i=1
Now by an easy use of (3.8) and Lemma 0 of Mammen (1993),

B[z |z} < [E(cTwi)*el] /2 [Ellz:|Pef]/? = O(p?).

By using this and Lemma 4.1, at (4.14) we have OP((%)Z(h—I)pzn“z) = op(1).

We are left with the first term in (4.13). We use the same technique as above, that is,
writing one of the A as in (4.12) and thus reducing the power of A. The above scheme
is used repeatedly for the rest of the calculations. For example, in the next step, for the
first term in (4.13), we have

n
n=3 E [T A; AP 1x;)2e2
=1

n A 2 A 2
§2n‘3z (CT—'EZAiAh—%i) e?+(cT#zia:zTAh_2zi> ezl .

i=1

Now since A; and x; are independent, and Aymax(n~'4;) = Op(p'/?+%/4n=1/2), the
second term is obtained to be op(1), using similar calculations as in (4.14), based on (3.8)
and Lemma 0. The term left in the above expression is n™ 377 ; (cT(4:)2 AP~2x;)2e2.
Repeating this process, ultimately we have to show n™1 3" | (cT(£4i)hz;)%e2 = op(1),
which follows easily using (3.8). This concludes the proof of (4.8).

For (4.9) and (4.10) we show the results for h = 1 and h > 2 separately. The result
for h = 1 follows from direct calculation, and for higher h we employ the technique of
reducing the power of A that we used in the above proof.

PROOF OF (4.9) FOR h=1. We have

n~12q, 71T (A*h — Ah) Z(wz —zie;| = n~1/2 ZWi[cTABa:i]e,;

i=1 =1

n n
= —n“l/zn_lan Z Z WzWJ [csz:vfzi]ei.

i=1 j=1

A direct calculation shows that we have Eg[n~"?n"10,, 31, Z;L:l W,W; [chjzfzi]ei]z

is Op(02p?n~1). This is op(1) under any one of the three alternative conditions of the
n.

theorem.

PROOF OF (4.10) FOR h =1. As earlier

n n
(4.15) n"12q, 71T (AP — AP inei =n"Y2n 15,717 (Ap) Zziei
i=1

i=1
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n n
= —n 2t ZW'chszf Z:viei .
j=1 i=1

Again a direct calculation shows that the term Eg[n~'/2n~! D Wictz;xl (37,
z;e;)|? is Op(p/n). Thus (4.9) and (4.10) are proved for h = 1, completing the proof of
the Lemma when (3.12) holds since § > 1 implies K < 2. We now concentrate on (4.9)
and (4.10) under (3.13) or (3.14) and h > 1.

PROOF OF (4.9) FOR h > 1. Since A* = A+ Ap, we have
n
(4.16) n2g, " 1cT AP Z(wz — Dz;e;
i=1

n n
= 1/2.T g p*(R-1) Z Wizie; +n~ 2T AgA* (1) Z Wizie;.

i=1 i=1

Repeating this process h times, we have

n
(4.17) n_l/zdn_lcTA*h Z(wz — l)a:iei

i=1
h—1 n n
= Z T A Ag A*h=i=1)p~1/2 Z Wixie; + T Ahp—1/2 Z Wiz;e;.
=0 i=1 i=1

The last term in (4.17) cancels out with the identical term left from (4.9). For the rest
of the terms in (4.17), for any j = 0,...,h — 1 we have

n
Eg|n~1/2cT A7 Ag A*(h=i=1) ZW,—z,—e,-

i=1

172
A*(h”l)n”lﬂ Z W;x;e;

i=1

< [Ep|lcT A7 Ag |2 [EB

< )‘amax (A]) [EB /\amax (A2B)] 1/2 EB )\amax (A*z(h_j_l) )

n
-1 2§ :

n / VV,;Ziei
i=1

2] 1/2

1/2

n 2V
-1 22 :

n / Wia:iei

i=1

S [EB)‘amax (AZB)] 1/2 EB

=Op (an5/4n_1/2) .

With the second set of conditions in Theorem 3.1, that is, p*/n® — 0 and 02 = O(n™1)
the above is op(1). With the third set of conditions also the same result holds.

PROOF OF (4.10) FOR h > 1. The calculations for this part is slightly more elab-
orate but in spirit similar to what was used for (4.9). Note that the expression in (4.10)
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can be expanded by using A* = A+ Ap, so every term in the expansion has A and Ap
~ in various combinations. The terms without any Ap factors cancel out. The terms that
involve two or more Ap matrices can be shown to be op(1) easily. This leaves all the
terms that have a single Ap matrix in them which are also op(1). Thus

n
(4.18) n~ V25,71l A%k Zwiei

=1
n n
=n"12g, 71T AA*—D) Z zie; +n V20, 1T Ag Ax(R—1D) Z z;e;.
‘ i=1 i=1

We first deal with the second term in (4.18). This is split into two terms, thus

n
(4.19) n_l/zo'n_lcTABA*(h—l) Zziei

=1
n n
=n"120, 7 T A AA PN "zie; + 020, T T AR AT PD Y " gie.
i=1 i=1

First take the second term in (4.19).

n
Ep|n 0, 1T AR A2 Y "gie;

i=1

07172
< [O'n_zEB)‘ama.x(A%)]l/2 EB/\amax(A*2(h—2))

n
n"1/2 E x;e;
i=1

— OP(O.n—lo,n2p2n—1)
= Op(l).

Proceeding in this way, the terms from (4.18) and (4.19) that have two or more Ap terms
in them can be shown to be small, so we are eventually left to show

. n 2
(4.20) Ep {n_lﬂan"lcTAaABA(h—a_l) Zziei] =op(1)

i=1

for a =0,...,h — 1. For convenience, set 7; = A% and 7o = n~1/2Ah—a-D ™% ge,.
Thus (4.20) reduces to showing o, 'n¥ Agne = op(1).

2
n
Enlon—tn Apmalt = n-Ep [z w]

i=1
n n 2
= 21— en) S ml? + 0 {z nfzizz’nz] .
=1 =1
Consider the second term.

o [n‘l anzixfnz} =cn [nf (n‘l >zl - I) 2 + ni‘rm}

i=1 i=1
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= cu1[nf Ana +ni mo)?

2¢11 (cTAhn_lﬂz:z:iei) + (cTAh_ln_l/zzziei)

=1 =1 -
= Op(p/n).

IA

The last step follows from Lemma. 2 of Mammen (1993) where it is shown that (cT APn~—1/2
S xie;)> = Op(p), for h = 1,...,K — 1, and by using ¢;; = O(n~1). We now
show n=2 3" | [nf @&l 2] = op(1). For this term, we have n~ 23" [T z;zln,)? =
n=2y " InFz]? &l na)%. We will show the following

(i) Elnf=z]*=0(1)

(i) Efrfz]? = 0(p)
and the proof will be complete. Consider (i) first. This is true if a = 0, so we look at
a > 1 case. Then

ElcTA%;)? = n2E[cT (zial + A) A% ;)
< 2n2E[cTzia] Az + 2n 2 E[cT A, A% )2

For the first term,

n_gE[cT.’Bi.'L‘?Aa_I:BiF — n—2[E(CT$i)4]1/2[E(zg’Aa—lzi)ﬂl/Z
= OP(p2n_2)/\amax(A2(a—1))
= Op(l).

The term E [CT%A“'lxiP is treated by breaking up A again if a — 1 > 1, and using the
independence of A; and ;. This proves (i). For (ii), write b= h — a — 1 and since the
relation easily holds for b = 0, we look at b > 1. Note that

2 2

n
o] A2y "gie; | < 2faT APnT2miei)? + 2 2T AP Y/2 > zje;
=t i

The first term easily seen to be Op(p?n~!) = op(p). We use the notation 7, =
n~1/2 3 j-iTi€; for the remaining part of the proof. Then the second term of the above
expression is E[z] Abn;)2. Using independence of z; and 7; this is seen to be O(p) if
b =0, so take b > 1. Then
4; 17
ElzT A% < on2E[zl A 'z, [al n;)? + 2E [wg‘Ab‘I#m] .

Using a Cauchy-Schwartz inequality and independence of z; and 7; the first term is seen
to be o(p) and the second term is treated by techniques similar to ones used earlier. O

PROOF OF LEMMA 4.2. Note that the bootstrap and the original estimators are
given by fp = (i, #iz") ™t Y0 2yl and B = (XL, #iw] )7 30 igi. Since
EpXamax(A*) = op(1), we canwrite (37, 2}z 7)1 = n (I-A*)"1 = n~ [T+ A%+ -]
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and hence g = f+n" ko AR grer and = f+n” 1Y 0 A" Y1 @ie; Thus

Y26, ~V(f3p — f) = —1/2ZA*h Z‘” —n‘1/2ZAhZzzez

h>0 i=1 h>0 =1

K-1 n
= n~1/2 Z WicT:v,-ei +n"1/? Z AP Zﬂez
—p~1/2 Z AhZz ei+n1/? Z A*hzx* :
h>K i=1
_1/2 Z Ah Zzzez

h>K i=1

From Lemma 4.4, it follows that

K-1 n K-1 n
n~1/2 E cTA*h E zje; —n~1/? E T AP E T;e; = TinB
h=1 i=1 h=1 i=1

where Pgllring] > €| = op(l) for every ¢ > 0. Note that in Lemma 3 of
Mammen (1993), it has already been shown n=1/23", _ . cTA*S™"  zie; = op(1). Now
let n™23,  cTA*R ST | xtel = Tonp, then we now show Pg|ranp| > €| = op(1)
to complete the proof. We use the technique of Lemma 3 of Mammen (1993), thus for
almost all data sequences

1/2 Z CTA*h Zz < )\a.max(A*K)

n—1/2 Zx

h>K 1- amax(A*
So
PB[]T2nB| > 6] < 6_2EB7'%77,B
n
(4.21) < € 2[Epamax(A™H)] [EB nY2 " gie; }
i=1
k23
(4.22) < € 2[Eplamax(A*Y))] {EB n2N "zl if §<2.
i=1

At (4.21) we can separate the cases where § > 2 and § < 2. Notice that when we
have Eplamax(A*) = Op(p'/?t8/*n=1/2)  then (4.21) is op(1), the calculations being
identical with that of Lemma 3 of Mammen (1993). If § > 2, then K = 1 and from
Lemma 4.1, we have Eplamax(A*) = Op(p'/?+9/4n=1/2). Hence we need to look at
8 < 2 case under the condition EgAamax(A**) = Op(oip®*n=2). For this case, we use
(4.22) and get Pg[lrans| > €] = Op(on*n2p?). The last relation is op(1) under any
one of the three sets of possible conditions on o2 and § given in the theorem. 00
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