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Abstract. Although various efficient and sophisticated Markov chain Monte Carlo
sampling methods have been developed during the last decade, the sample mean is
still a dominant in computing Bayesian posterior quantities. The sample mean is
simple, but may not be efficient. The weighted sample mean is a natural generaliza-
tion of the sample mean. In this paper, a new weighted sample mean is proposed by
partitioning the support of posterior distribution, so that the same weight is assigned
to observations that belong to the same subset in the partition. A novel application
of this new weighted sample mean in computing ratios of normalizing constants and
necessary theory are provided. Illustrative examples are given to demonstrate the
methodology.

Key words and phrases: Bayesian computation, importance sampling, Markov chain
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1. iIntroduction

In Bayesian inference, Monte Carlo (MC) methods are often used to compute pos-
terior expectation

(L1) E(h(8) | D) = /R _h(@)(9 | D)db,

where 6 is a d-dimensjonal vector of model parameters, h(f) is a real-valued function,
D denotes the data, and 7(6 | D) is the posterior distribution, because the analytical
evaluation of E(h(0) | D) is typically not available. The use of Monte Carlo methods
for computing high dimensional integrations has a long history. In the MC literature,
one of the excellent early references is Hammersley and Handscomb (1964), and many
early MC methods such as importance sampling and conditional Monte Carlo, which are
still useful now, can be found therein. Trotter and Tukey (1956) proposed a general MC
scheme based on the weighted average. More specifically, instead of sampling 6 alone,
they suggested generating a pair (6, w), where w is a real-valued weight, from some joint
distribution (6, w) so that for all reasonable real-valued functions h(6),

(1.2) /R  wh(0)x(0,w)dbdw = EH(o) | D).

The authorship of this article is based on alphabetical order.
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We note that by taking h(6) = 1, (1.2) reduces to
/ wm (0, w)dfdw = 1.
Rd+1
In (1.2), h(-) is said to be reasonable if
/ [wh(8)|7(0, w)dfdw < 0 and  E(|h(8)| | D) < oo.
Rd+1

Assuming that {(6;,w;),7 = 1,2,...,n} is a (dependent or independent) sample
from 7 (0, w), the weighted sample mean of E(h(8) | D) is given by

(1.3) Bulh) = = 3" wih(6).

The weighted sample mean is very general, and many important estimators, such
as the sample mean and importance sampling, are a special case, in which the weight
w; is fixed, and not random, conditionally on the 8;’s. By taking w; = 1, the weighted
sample mean (1.3) reduces to the usual sample mean of the h(6;)’s:

" 1<
(1.4) Eug(h) =~ > k().
i=1
Assume that the posterior density 7(8 | D) has the form n(6 | D) = —L—(—%(BD)—;LG), where

L(0 | D) is the likelihood function, 7 () is the prior, and ¢(D) is an unknown normalizing
constant. Also let g(6) be an importance sampling density, which is known up to a
normalizing constant. Suppose {6;,i = 1,2;...,n} is a sample from g(6). Write the
importance sampling weight as

L(0; | D) (6:)/9(6:) '
S L@ | D)n(6)/(0)

Then, the weighted sample mean (1.3) with w; given by (1.5) reduces to an importance
sampling estimator:

o h(8:)L(6; | D)(8;)/9(6:)
Y1 L0 | DY (6:)/g(6)

In (1.6), g(#) needs not to be completely known, since the unknown normalizing constant
in g(#) cancels out in the ratio. The weight given in (1.5) is mainly used to adjust
the importance sampling estimator so that it is a consistent estimator of E(h(6) | D)
with respect to w(6 | D). In general, it has no guarantee that the importance sampling
estimator is better than the sample mean given by (1.4) if a sample directly from 7(8 | D)
is available.

Asymptotic or small sample properties of the weighted sample mean depend on the
choice of the joint distribution 7(#,w) and the algorithm used to generate the weighted
sample. Under certain regularity conditions such as ergodicity, the weighted sample mean

(1.6) Er(h) =
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E, (h) is consistent. Ideally, the pair (8, w) should be sampled jointly from some distri-
bution 7(6,w). In general, it is difficult to construct #(¢,w). The dynamic weighting
method of Wong and Liang (1997) is an attempt in this regard. The dynamic weighting
method extends the basic Markov chain equilibrium concept of Metropolis et al. (1953)
to a more general weighted equilibrium of a Markov chain. The basic idea of dynamic
weighting is to augment the original sample space by a positive scalar w, called a weight
function, which can automatically adjust its own value to help the sampler move more
freely. However, many of the weighted transition rules proposed by Liu et al. (1998) lead
to a marginal weight distribution that is long-tailed. This long-tailed weight distribution
makes the resulting weighted sample mean E,, (h) converge very slowly.

Instead of sampling (6, w) jointly from certain distribution 7(¢,w), Casella and
Robert (1996) proposed a post-simulation improvement for two common Monte Carlo
methods, the acceptance-rejection and Metropolis algorithms. The improvement is based
on a Rao-Balckwellization method that integrates over the uniform random variables
involved in the algorithm. They showed how the Rao-Blackwellized versions of these
algorithms can be implemented and how the weights w;’s can be constructed. In the
same spirit, Casella and Robert (1998) proposed alternative methods for constructing
estimators from accept-reject samples by incorporating the variables rejected by the
algorithm. They showed that these estimators are superior asymptotically to the classical
accept-reject estimator, which ignores the rejected variables. The Rao-Balckwellization
method and the recycling method are intuitively appealing. The weighted sample mean
E,,(h) can be better than the sample mean E,,4(h) only if the additional information
can be used to construct the weight w;. The additional information can be obtained
either from the sampling scheme or from the variables involved in the algorithm. This
is very much alike a typical Bayesian analysis. When the informative prior is available,
the more accurate posterior estimates can be resulted in.

Unlike the aforementioned methods, we propose a new weighted sample mean by
partitioning the support of posterior distribution (6 | D) so that the same weight is
assigned to observations that belong to the same subset in the partition. Our approach
resembles the stratified sampling method (Thompson (1992)) in the sense that we use
the weighted method to partition the sample {6;,i = 1,2,...,n} into several subsets so
that within each subset, the h(6;)’s are more homogeneous. The technical detail is given
in Section 2. In Section 3, we present a novel application of this new weighted sample
mean in computing ratios of normalizing constants. Examples are given in Section 4,
and we conclude the article with a brief discussion.

2. The partition-weighted estimation

Assume that {6;,0s,...,60,} is an independent or dependent stationary sample from
(0 | D). Suppose a weighted sample mean is of the form -

2.1) Bu(h) = %Zwih(&-),

where w;’s are the fixed weights subject to

n

(2:2) IS w =1

n
=1
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Then, we are led to the following proposition.

PROPOSITION 2.1. Let & denote the covariance matriz of h(61), h(62),- .., h(0n).

Then, the value of w = (w1, wa, ..., w,)" that minimizes the variance of Ey(h) in (2.1)
is ' '
n¥~11
(2.3) Wopt = Tr3=17°
where 1 = (1,1,...,1), and the optimal weighted sample mean is given by
2 1
(2.4) Eope(h) = ;(h(el), h(62),...,h(0,))wopt
with variance 1
(25) V&I'(Eopt(h)) = m

The proof of this proposition simply follows from the Lagrange multiplier method,
and thus it is omitted for brevity. We notice that this result is also given in Peng (1998).

Remark 2.1. If © = 02I,, then w,,t = 1, and the optimal weighted sample mean
Eopt(h) reduces to E’avg(h) = %Zle h(8;) with variance "72 Thus, for an i.i.d. sample,

the sample mean of the h(6;)’s is the best estimator of E(h(6) | D).

Remark 2.2. Assume that {61,0,,...,0,} is a dependent sample from an AR(1)
process with marginal variance o2 and lag-one autocorrelation p. Consider A(f) = 6.
Then, the variance of the sample mean of the h(6;)’s is given by

Var(Buug () = & [ 122 - 20

n
Using (2.3) and (2.4), it can be shown that the optimal fixed weighted sample mean is
given by

61+ (1—p) > iy i+ On

Ferh) = = =)o
with variance 21 1 p)
. o“{l+p

Var(Eop:(h)) = = (n=2)p

Thus, limp— oo [Var(Eop:(h))/ Var(Equg(h))] = 1, which implies that the sample mean is
as efficient as the optimal weighted sample mean asymptotically.

Remarks 2.1 and 2.2 indicate that the weighted sample mean may not substantially
improve the simulation efficiency over the sample mean if the weight w; is fixed (not
random). Thus, in order to obtain a better weighted sample mean, the weight w; should
be random or depend on the #;’s in a particular functional form.

We now propose a new weighted sample mean by partitioning the support of the
posterior distribution, and show that this new weighted sample mean can always be
better than the sample mean for an i.i.d. sample. Our approach is somewhat related to
the stratified sampling method (see, for example, Thompson (1992)), in the sense that
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we use the stratified sampling idea to construct the weight. Let 61, 6s,...,0, denote n
i.id. random variables from 7 (6 | D) and let h be a real-valued function. Assume that

p=E[MO) | D]#0 and o= Var[h(d)|D]< oo,

where the expectation and variance are taken with respect to the posterior distribution
(0 | D). Let & C R? denote the support of w(f | D), and let A;, As,..., A be
a partition of  such that (i) UF_; Ay = Q, (i) 4 N Ay = 0 for I # I*, and (iii)
Ja, (@] D)dd >0 forl=1,2,...,k Also,let

(2.6) w=ER®)1{0c A}| D] and b = E[R*6)1{0 € A}|D].

Then, a partition-weighted sample mean of y = E[h() | D] is given by

. 1 n k
(2.7) Eo(h) = =)0 ah(0:)1{0; € Ai},
n =1 l=1
where a = (ay,a2,...,a;) is a vector of fixed weights subject to
k
(2.8) > ayu = p.
=1

The constraint given in (2.8) guarantees the unbiasedness of the partition-weighted sam-
ple mean E,(h). It follows from straightforward algebra that the variance of E,(h) is
given by

k
(2.9) Var(E,(h)) = 1 (Z ab; — ,u2> .
=1

n

We note that the partition-weighted sample mean F,(h) is strictly speaking not an
estimator, since the weights, a;’s, are unknown in general. We also note that although
the a;’s are fixed, the partition-weighted sample mean E,(h) indeed uses the random
weights. To see this, we let

k
(2.10) w; =Y al{f; € A}.
=1

Then, we can rewrite (2.7) as
. 1<
(2.11) Eo(h) =~ ;w,»h(ai).

Therefore, w; is random, and in fact, it is a function of 8;. This property also distinguishes
the partition-weighted sample mean from a usual stratified weighted estimator such as
the Horvitz-Thompson estimator (see, Thompson (1992), p. 49), in which a fixed weight
is assigned to each h(6;).

Since 8;’s are i.i.d. observations, the sample mean of the h(6;)’s has variance o2 /n.
The following theorem states that the partition-weighted sample mean given by (2.7) or
(2.11) can be always better than the sample mean.
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_ TueoREM 2.1. The value of a = (a1,as,...,ax)" that minimizes the variance of
Eq(h) in (2.9) is given by

(2.12) topry = L—Ft— for 1=1,2,...,k
Zg 1 iu] /b
Let aopt = (Gopt,1,Qopt,2: - - -» Gopt k) - Then, the optimal partition-weighted sample mean

E,, () has variance

1 p 2
213 V I aopt h ’
(2.13) ar(E,,, (h)) = (Zz T u)
and 52
(2.14) Var( aopt(h)) < Var(Eavg(h)) =

where py and by are defined as in (2.6).

PROOF. The derivation of the optimal aep: given in (2.12) directly follows from
the Lagrange multiplier method. We obtain (2.13) by plugging aop: in (2.9). Noting that
f=1 by = E[h%(6) | D], the Cauchy-Schwarz inequality yields

W (o ol
SE b (CE )2 S s /b

b h29 D

S@lmwz" @)1Dl

This shows that the variance of E,_,(h) is always less than or equal to a%/n.0

We note that the equality in (2.14) holds if and only if
(2.15) by =colw|, for 1=1,2,...,k,

and |p| = Zl °_, ||, where co = E(h*(0) | D)/|u| is a constant.
From (2.13), it can be observed that if A(6;) is close to constant for 0; € Ay,

u _ Un WOT(@| DY ([, (6| D)6

o = T, OO DY " Jy x@ Dy P

where 7(A; | D) denotes the posterior probability of A;. Then,

@ 2 w

S w3/ S 7(A| D)

since Zl . 7(A; | D) = 1. Thus, the resulting optimal variance is approximately 0. This
is a useful feature, which indicates that if the values of h(6;) for 0; € A; are similar, a
smaller variance of E,, ,.(h) can be obtained. In other words, if we partition the sample
{6;,i = 1,2,...,n} into several subsets so that within each subset, the h(6;)’s are roughly
constant, a better partition-weighted sample mean can be resulted in. This is in fact

- =pt - =0,
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closely related to stratified sampling, in which homogeneous units are grouped into the
‘same stratum. Moreover, this property can also be used as a guideline to construct
the partition {4;,l = 1,2,...,k}. Since h(8) is one-dimensional, we can choose a finite
partition of the real line R!, —0o = hg < hy < -++ < hg_1 < hi = 00, and then compute

(2.16) , Ay ={0: b1 < h(6) < hi},

for | =1,2,...,k. We note that if h(d) is continuous, h(6) is approximately constant
~ over A; as long as the partition {h;,l =0,1,...,k} is fine enough.

In (2.12), the optimal weights, aopt’s, depend on the unknown parameter 4. The
optimal partition-weighted sample mean EAaopt (h) appears to be not directly useful. How-
ever, if u; = pju, where p; is known or it can be estimated, anpt (h) can be attractive.
In fact, this will be the case when our interest is in estimating ratios of normalizing
constants. We will discuss this application in the next section in detail. Finally, we note
that when ¢4, 0,,..., 80, are not independent, a similar result can still be obtained. We
give a brief explanation as follows. Let

| Oiv = zn:i()ov(h(é)z)l{@ € Al}, h(OJ)l{HJ (S Av})

i=1 j=1

and put X = (07,4,1 < I,v < k). It is easy to see that
(2.17) Var(Bo(h)) = %G’Ea.

With constraint (2.8), it can be shown that the value of a = (a1,a2,...,ax) that mini-
mizes the variance of F,(h) in (2.17) is given by

uxld
(2.18) Gopt = i1
where d = (1, p2,..., k). Moreover, the optimal partition-weighted sample mean
E,,,.(h) has variance
2
: p
(219) V&T(anpt (h)) = m

3. Computing ratios of normalizing constants

Computation of normalizing constants for posterior densities from which we can
sample frequently arises in Bayesian inference. Typically, we are interested in ratios of
such normalizing constants. For example, suppose we wish to compare two models M,
and My. Let L(# | D, M;) and 7(6 | M;) denote the likelihood function and the prior
distribution under model M; for j = 1,2. Then, the Bayes factor for comparing model
M;j to model My is given by

_ Jga L0 | D, M1)7(0 | M1)df
T [pa L0 | D, M2)m(8 | M2)d6”

(3.1)

See Kass and Raftery (1995) for more details. From (3.1), it is easy to see that the Bayes
factor is simply aratio of the normalizing constants of two posterior densities. Estimating
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ratios of normalizing constants is extremely challenging and very important, particularly
in Bayesian computation. Such problems often arise in likelihood inference, especially
in the presence of missing data (Meng and Wong (1996)), in computing intrinsic Bayes
factors (Berger and Pericchi (1996)), in Bayesian comparison of econometric models con-
sidered by Geweke (1994), and in estimating marginal likelihood (Chib (1995)). Recently,
several Monte Carlo methods for estimating normalizing constants have been developed,
which include, for example, bridge sampling of Meng and Wong (1996), ratio importance
sampling of Chen and Shao (1997), Chib’s method for computing marginal likelihood
(Chib (1995)), and reverse logistic regression of Geyer (1994).

In this section, we aim to illustrate how the partition-weighted sample mean given
by (2.7) or (2.11) can be used for computing the ratio of normalizing constants. Let

7;(0 | D), j = 1,2, be two densities, each of which is known up to a normalizing
constant:

(0
(3.2) wj(ew):f]%, 9 €y,

J

where D denotes the data, 2; C R is the support of 7;, and the unnormalized density
g;(8) can be evaluated at any § € Q; for j = 1,2. Then, the ratio of two normalizing
constants is defined as

C1

(3.3) r=—

Co ’

Let 4 be a random variable from 75. When €; C Qs, we have the identity:

C1 0 (0) }

3.4 r=—=~F ,
34 = =r {23
here and in the sequel, E; denotes the expected value with respective to mz. Let
{021,022,...,02n} be an iid. sample from mp. Then, the ratio r can be estimated
by

1~ qi(fa;
(3.5) o Ly aillas)

Ly g2(62,:)

A direct calculation yields

2
~ 7'2 7['1(9‘D)—7T2(0‘D)
(3.6) Var (#) = nEQ( @D ) .
This method is simple and easy to implement. As pointed out by Chen and Shao (1997),
7 is efficient when m5(6 | D) has heavier tails than 7;(6 | D). However, when the two
densities m; and 7 have very little overlap (i.e., Eo(m1(6 | D)) is very small), this method
performs poorly.
To improve the simulation efficiency of #, we use the partition-weighted estimator
defined by (2.7) with the optimal weight aop:; given in (2.12). Let {A;,l =1,2,...,k}
denote a partition of 9. Using (2.6), we have

= ql—(ai)‘ =7 iy =TT
= Es [QQ(Q) 1{0 c Al}] = [ql 1(9 I D)d0 = 1(Al | D),
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where 71(A; | D) is the probability of set A; with respect to m;. Let p; = m1(4; | D) for

[ =1,2,...,k. The constraint given in (2.8) becomes
E
(3.7) Zalpl =1.
=1

By taking h(6) = ¢1(0)/¢2(0) in (2.7) and (2.12), the partition-weighted sample mean
with the optimal weight a,,: reduces to

b2,
(38) aopt) = ZZ Qopt,l [QIE 2, ;] 1{921. S Al}
z—l =1
where
(3.9) a 1
. opt,l —
Z_y 1p]/b
and )
_ 21(6)
(3.10) b= FE; [(q2(0)> 1{9 € Al}] .
The variance given by (2.13) can be simplified to
(3.11) Var(#(aopt)) = — ( = r2>
s opt .
’ YL

From (3.11), it can be observed that in the partition-weighted sample mean #(apt),
the observations with larger probabilities, p;’s, and smaller second moments are assigned
more weights. As a contrast, the same weight is assigned to each observation in the
estimator 7. In practice, p; and b; are unknown. However, they can be estimated by
using the standard Monte Carlo method. Suppose {0;;,i = 1,2,...,m} is a random
sample from ;. Then, p; can be estimated by

. 1
= ’;T—T,Z_; 1{91,,' € Ai}.

For b;, we can simply use the random sample {6 ;,i = 1,2,...,n} to obtain an estimated
value. That is,
q1 (02 z)}
3.12 — 1{62,; € A;}.
3.12) =33 [26] e a
Replacing p; and b; by p; and b; in (3.9), an estimate of Gopt,1 1S given by
D 1
(313) opt 1= =k o7
bl ZJ =1 p] /b
Plugging aopt,; into (3.8) yields
- 1 n k X 0o
(3.14) PBopt) = 2D D opty [Z;E 023] 1402 € A}
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Here we note that unlike #(aopt), #(Gopt) is an estimator. Thus, we shall refer to #(dop:)
as the partition-weighted estimator. It can be shown that #(d,p¢) is consistent as n — oo
and m — oo. Moreover, the next theorem shows that #(d.p:) achieves the same variance
as that of 7(a.p¢) given in (3.11) asymptotically.

THEOREM 3.1. Assume that {01,i = 1,2,...,m} and {02;,1 = 1,2,...,n} are
two independent random samples. If n = o(m), then

1
(3.15) lim nE(#(Gopt) — ) = 2
nes ’ SEani/h

PROOF. Write

N n
Al A Yz 02 z)
T(ao t)_ E i E C2a otl[ ]1{0%6141}—01171)
SRS lpg/ = b ( " Laa(62)
—— X R
CQ Z] lpg/b
and
1 ¢1(62,) > r
= E: 5\ E: C28opt,1 [ 265 ,z)} 1{03; € A} — aapu E: 13_ — 1)
k n
ol q1(0a2,
= E= z- (5 E: Calopt,l [ 1(92’1;] 1{0s; € A;} — Clpl>
u 01(02,1) £ P,
2, R
+ E o - 1{0;; € A1} — ¢ E 7‘
2 bz ( col pt,l [q2(62’i)] { 2, l} 1201) 2 3 Pl)

k
g% ( Zcz Gopt,l {qlg? 3] 1{0z,: € Ar} — clpl)
IR AYE R q1(02,5)
* Z <_l B 779 (; ;cwm’l {42(9;)] Hoas € i} - Clpl)

by

R koA
+12:pl—i)l& ( Z Caliopt,1 [mg; :;] {0, € A1} ~ C1Pz> + e ;%(Pl )
=1 2 =

4
::'—R1+R2+R3+R4.

It follows from the law of large numbers that
1 1
k27 ~ ey
€2 Zj:l Pj/ j €2 Zj:l Pj/ j
By the assumption that n = o(m), we have E(R3) + E(R2) + E(R%) = o(1/n) and

ER) 1 ( 1 _r2>
(X5 3/b)? ™ \ S /b
by (3.11). This proves (3.15) by the above inequalities. I
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The partition-weighted estimator #(dop) is always better than 7 asymptotically.
However, the trade-off here is that we have to pay a price to obtain an additional sample
from ;. Since it is relatively easy to compute p; and #(@opt), the partition-weighted es-
timator is potentially useful, if #(@,p:) leads to a substantial gain in simulation efficiency.
We will empirically study the performance of #(Gop¢) in the next section. We conclude
this section with the following remarks.

Remark 3.1. The partition-weighted version of the other Monte Carlo methods,
such as bridge sampling and ratio importance sampling, can also be developed. As an
illustration, we consider the ratio importance sampling (RIS) estimator of Torrie and
Valleau (1977) and Chen and Shao (1997). The RIS estimator is based on the following

identity:
a1 _ Ex{a(0)/=(6)}
3.16 === ,
(3.16) 2 Bu{0:00)/r(0)
where the expectation E, is taken with respect to m and #(6) is an arbitrary density with

the support = ©; U,. Given a random sample {61, 65,...,60,} from 7, an estimator
of r denoted by 7ryg is given by

L e @ (6:)/7(65)
(317) TRIS = TRIS("T) - Z?:l q2(01,)/7r(01) .

For any 7 with the support (2, 7rig is a consistent estimator of r. Let {4;,1 =1,2,...,k}
denote a partition of ; UQ,. Similar to (3.8), the partition-weighted version of the RIS
estimator can be written as

Sr L F ana(8:)/m(6:)]1{8; € A}

(3.18) les(ﬂ', a) = 5
Sy Yo azalaa(6:)/m(6:)]1{6; € A}
where {61,0s,...,0,} is a random sample from 7, a = (a1,a2), and a; = (a;,1,a52,. .-,
aji)’ is subject to
k
(3.19) Zaj,lpj,l = 1,
=1

where p;; = fAz m;(0 | D)do, for I =1,2,...,k, and j = 1,2. It is easy to see that (3.19)
is an extension to the constraint given by (3.7). The optimal weight is also available via
the minimization of the relative mean-square error defined by

E,(fris — )2

RE?(fris) = 2

The detail is omitted here for brevity.

Remark 3.2. Peng (1998) developed an efficient weighted Monte Carlo method for
computing the normalizing constants, which are essentially the posterior model prob-
abilities resulted from the stochastic search variable selection method of George and
McCulloch (1993). She obtained the fixed weight and data dependent weight estimators
of the normalizing constants. She also showed that the weighted estimators are better
than the ones proposed by George and McCulloch (1997). However, the support of the
posterior distribution considered in Peng (1998) is discrete and finite. The main idea of
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her method is to partition a Monte Carlo sample (not the support of posterior distribu-
tion) into several subsets, and then she assigned a fixed weight or a random weight to
each subset. The noticeable difference between her method and the one proposed in this
section is that she partitions the sample, and her partition requires that the subsets be
not mutually exclusive. Therefore, her results cannot be directly applied to the problem
considered here.

4. Examples

Ezample 1: A theoretical illustration

To get a better understanding of the partition-weighted sample mean developed in
Section 3, we conduct a theoretical case study based on two normal densities, in which
we know the exact values of the two normalizing constants. Let g;(6) = exp(—6?/2) and
@(8) = exp(—(8 — 6)2/2) with & a known positive constant. In this case, ¢; = ¢ = V21
and, therefore, » = 1. Since 0 is one-dimensional, we are able to compute the weights
exactly in this example.

For the optimal partition-weighted sample mean #(apt) given by (3.8), we consider
the following partitions:

(i) k=2, A; = (—00,0] and A; = (0, c0);

(i) k > 2, Ay = (—=00,0], 4 = ((I —2)/(k —2) x 1.66,(1 — 1)/(k — 2) x 1.56],
1=2,3,...,k—1, and A = (1.56,0). ‘

For (i), it can be shown that

n Var(#(aopt)) = exp(62)4@(6)(1 — ®(6)) — 1,

where ® is the standard normal (N(0,1)) cumulative distribution function (cdf). We
note that for # given by (3.5),

n Var(#) = exp(6%) — 1.

Table 1 shows the values of n Var((aspt)) and n Var(#) for several different choices of
6 and k. In addition to Var(#(acp:)), we also compute n Var(#(dop:)), where #(dopt) is
given in (3.14), using the usual multiple simulation technique, in order to get a sense
of how close to optimal the practical implementation can get. Specifically, we simulate
M samples of size n from N(6,1) and compute 7(dopt) for each simulated sample. Let
#;(@opt) denote the value of #(Gopt) from the j-th simulation for j = 1,2,..., M. Then,
an estimate of n Var(#(a.pt)) is given by

nVar(r(aopt) 3 Z(TJ (Gopt) — (aopt))?,

where #(Gopt) = 37 Z i1 75(@opt)- The results based on M = 5,000 and n = 10,000 are
reported in Table 1. Although we use the same sample to estimate by, the estlmated
values nVar(r(aopt)) are fairly close to the theoretical optimal values n Var(#(aop:)) for
most cases except for § = 3 and k = 2. We note that #(&op:) matches the true value
r =1 for all cases. We also tried other values of n. For example, when n = 1,000, for
k=2and 5, nVar(r(aopt)) = 0.458 and 0.127 for § = 1, and nVar(r(aopt)) = 4.435 and

0.441 for 6 = 2, respectively. However, when n = 1,000, nVar(r(aopt)) is much larger
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Table 1. Comparison of variances.

6§ nVar(®) k  nVar(faopt)) nVar(fF(op:))
1 1.718 2 0.451 0.447
5 0.116 0.118
10 0.105 0.108
20 0.103 0.107
2 53598 2 3.855 3.872
0.343 0.342
10 0.107 0.112
20 0.073 0.077
3 8102.084 2 42.694 66.603
5 1.250 1.418
10 0.242 0.297
20 0.069 0.113

than the theoretical optimal value n Var(#(aspt)), but much smaller than n Var(#) for
6§=3.

From Table 1, we can see that the partition-weighted sample mean 7#(Gop¢) dramat-
ically improves the simulation efficiency over the sample mean 7. For example, when
§ = 3, with k = 20, Var(?)/ Var(f(aep)) = 117,421.51, ie., #(aop) is about 117,421
times better than 7. Also, it is interesting to see that a finer partition yields a smaller
variance. When the two densities are not far apart from each other, the variances of the
partition-weighted sample means are quite robust for & > 5. However, when the two
densities do not have much overlap, which is the case when § = 3, a substantial gain in
simulation efficiency can be achieved by a finer partition.

Chen and Shao (1997) also used the same example to study the performance of
several Monte Carlo methods for estimating the ratio of normalizing constants. In par-
ticular,~they compared the importance sampling method, the bridge sampling method
of Meng and Wong (1996), the path sampling method of Gelman and Meng (1998), and
the ratio importance sampling method. We note that 7 given by (3.5) is indeed the im-
portance sampling estimator. Chen and Shao (1997) showed that the ratio importance
sampling estimator 7grjs given by (3.17) with the optimal 7 achieves the smallest asymp-
totic relative mean-square error, while the importance sampling estimator 7 leads to the
worst simulation efficiency. By minimizing lim,_,. nRE?(frig), the cdf corresponding
to the optimal density 7,p: for this example is given by

oo [(@(0)—9(6-8)/200(6/2) -1)  for 0<5/2
ont(?) = {12 (@(0) — (0 - §))/2(28(6/2) —1) for 6> 6/2.

With the optimal density 7,5, Chen and Shao (1997) obtained

lim nRE2(fris (ope)) = [2(28(6/2) — 1))

It is easy to compute that lim, nREz(fRIS(Wopt)) = 0.587, 1.864, and 3.002 for § =
1,2, 3, respectively. Thus, from Table 1, it can be observed that #(a,p:) is better than the
optimal ratio importance sampling estimator when k£ > 5. This theoretical illustration
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is quite interesting, which tells us that the weighted version of the worst estimator can
be much better than the best estimator in terms of their variances.

Example 2: AIDS study _

In this example, we consider a data set from the AIDS study ACTGO036. The
ACTG036 study was a placebo-controlled clinical trial comparing AZT to placebo in
patients with hereditary coagulation disorders. The results of this study have been
published by Merigan et al. (1991). The sample size in this study, excluding cases
with missing data, was 183. The response variable (y) for these data is binary with
a 1 indicating death, development of AIDS, or AIDS related complex (ARC), and a 0
indicates otherwise. Several covariates were measured for these data. The ones we use
here are CD4 count (z1), age (22), treatment (z3), and race (x4). A summary of the
ACTG036 data can be found in Chen et al. (1999). Chen et al. (1999) analyzed the
ACTGO036 data using a logistic regression model.

Here, we use the Bayes factor approach (see, for example, Kass and Raftery (1995))
to compare the logit model to the complementary log-log link model. This comparison
is of practical interest, since it is not clear whether a symmetric link model is adequate
to fit this data set. Let Fy(t) = exp(t)/(1 + exp(t)) and Fa(t) = 1 — exp(— exp(t)).
Also, let D = (y,X) denote the observed data, where y = (y1,¥2,..-,%183)" and X is
the design matrix with its i-th row z} = (1, %;1, Zi2, Z;3, Zia). The likelihood functions
corresponding to these two links can be written as ‘

183

Li(6| D) = [[ F}* (#i6)[L — F;(if)]' ™™,
i=1
for j = 1,2, where 6 = (6, 01,...,04)" denotes a 5 x 1 vector of regression coeflicients.

We take the same improper uniform prior for # under both models. Then, the Bayes
factor for comparing Fj to Fy can be calculated as follows:

(4.1) g dm @1 D) _ e
Jrs L2(6 | D)dO — c2

where c; is the normalizing constant of the posterior distribution under Fj for j = 1,2.

Clearly, the Bayes factor B is a ratio of two normalizing constants.

We use the Gibbs sampler to sample from the posterior distribution m3(8 | D)
L2(0 | D). The autocorrelations for all the parameters disappear after lag 5. We obtain
a sample of size n = 1000 by taking every 10-th Gibbs iteration. Then, using (3.5)
and (3.6), we obtain B = 1.161 and n{fa\r(B) = 1.331. In addition, we compute the
ratio h(6;) = L1(0; | D)/L2(6; | D) for each observation. The histogram of these 1000
ratios are displayed in Fig. 1. Figure 1 clearly indicates that the posterior distribution
of h(f) is very skewed to the right. This suggests that the sample mean B cannot be
reliable/accurate.

To obtain the partition-weighted estimate of B, we consider the following two par-
titions:

(i) k=5, Ay = {6:0 < h(f) < 0.75}, Ay = {6 : 0.75 < h(f) < 1.5}, A3 = {0 :
1.5 < h(0) < 2.5}, Ay ={0:2.5 < h(f) < 3.5}, and As = {0 :3.5 < h(0)}.

(i) k = 10, A, = {0 : 0 < h(6) < 0.75}, Ay = {6 : 0.75 < h(d) < 1.0}, A3 =
{0:1.0 < h() <1.25}, Ay = {0 : 1.25 < h(f) < 1.5}, A5 = {6 : 1.5 < () < 2.0},
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Fig. 1. The histogram of the ratio h(8;).
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Ag ={0:2.0 < h(h) < 2.5}, A7 = {0:2.5 < h(8) < 3.0}, As = {6 : 3.0 < k() < 3.5},
Ag =1{0:3.5 < h(8) < 4.0}, and Ao = {0 :4.0 < h(6)}.

Since one assumes that inference for both models 1 and 2 (logit and complementary
log-log links) has been conducted, the sample from 71(6 | D) o« L1(6 | D) is typically
already available. In this regard, we obtain another sample of size n = 1,000 from
71(6 | D) by taking every 10-th Gibbs iteration, and this sample is then used to estimate
the probability p; under each partition. Now, using the sample from m2(@ | D), which has
been already generated earlier, along with (3.12), (3.13), (3.14), and (3.11), we obtain
that B(d,p:) and n\//a\r(B(&opt)) are 1.101 and 0.047 for k = 5, and 1.098 and 0.027 for
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k = 10. For each observation, we also compute w;h(6;) (weight-times-ratio) for k = 10,
and the histogram of these 1000 values are displayed in Fig. 2. From Fig. 2, the weighted
observations are quite symmetric around the mean value.

As discussed in the early sections, both £ 3% | h(6;) and L 37 | [w;h(6;)] are unbi-
ased or asymptotically unbiased. However, the distribution of h(6;) is skewed, while the
distribution of w;h(0;) is roughly symmetric. The outliers from a skewed distribution
can greatly inflate the quality of the sample mean %Z?ﬂ h(6;). In fact, several big
outliers have been observed in the h(6;)’s. Moreover, the range of the histogram shown
in Fig. 1 is much bigger than the one in Fig. 2. These results partially explain the reason
why the weighted method works better.

Since both samples from m; and 7 are available, we can use bridge sampling (BS)
of Meng and Wong (1996) for estimating B. Let Bps denote the optimal BS estimate
of B. We obtain that Bgg = 1.152 and n‘\//ﬁ(égs) = 0.282. Thus, the BS estimator
is more efficient than the importance sampling estimator given by (3.5), and slightly
less efficient than the partition-weighted estimator. Finally, we note that based on the
estimated Bayes factor, the logit model is slightly better than the complementary log-log
link model.

5. Discussion

In this article, we proposed a partition-weighted sample mean along with an ap-
plication in computing ratios of normalizing constants. In Section 4, we empirically
demonstrated that the partition-weighted sample mean can dramatically improve simu-
lation efficiency. Our proposed weighted method is based on the partition of the support
of the posterior distribution. The choice of the partition is somehow arbitrary. Our
general recommendation is to form a partition so that the function values of h(#) are
as close as possible within each subset in the partition. As illustrated in Section 4, we
used two different approaches to construct the partition. The first approach works well
when 6 is a univariate scalar, and the second approach provides an illustration of how
to formulate a partition when @ is multidimensional. Our experience also suggests that
it be adequate to choose the size of partition (k) to be between 5 to 20.

The weighted method provides us a new approach to improve sirmulation efficiency
in computing posterior quantities of interest. Although we only gave an illustration of
how to compute ratios of normalizing constants, the partition-weighted sample mean
can be applied to many other Bayesian computations, such as marginal posterior density
estimation, and posterior model probability calculation for Bayesian variable selection.
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