Ann. Inst. Statist. Math.
Vol. 54, No. 2, 324-337 (2002)
(©2002 The Institute of Statistical Mathematics

BAYESIAN PREDICTION ANALYSIS FOR GROWTH CURVE MODEL
USING NONINFORMATIVE PRIORS *

GWOWEN SHIEH AND JACK C. LEE -

Department of Management Science and Institute of Statistics, National Chiao Tung University,
Hsinchu, Taiwan 30050, R.O.C.

(Received November 16, 1998; revised July 17, 2000)

Abstract. We apply a Bayesian approach to the problem of prediction in an unbal-
anced growth curve model using noninformative priors. Due to the complexity of the
model, no analytic forms of the predictive densities are available. We propose both
approximations and a prediction-oriented Metropolis-Hastings sampling algorithm
for two types of prediction, namely the prediction of future observations for a new
subject and the prediction of future values for a partially observed subject. They are
illustrated and compared through real data and simulation studies. Two of the ap-
proximations compare favorably with the approximation in Fearn (1975, Biometrika,
62, 89-100) and are very comparable to the more accurate Rao-Blackwellization from
Metropolis-Hastings sampling algorithm.
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1. Introduction

The growth curve model (hereafter referred to as the GC model) or generalized
MANOVA model proposed by Potthoff and Roy (1964) is

(1'1) E(Y;DXN) = prmexrArxN7

where 7 is unknown, X and A are the within-subject and between-subject design ma-
trices with ranks m < p and r < N, respectively. Furthermore the columns of ¥ are
independently normally distributed with a common unknown covariance matrix 3. The
GC model has strong connection with the classical MANOVA model and has been stud-
ied intensively in the literature by Rao (1965, 1966), Khatri (1966), Grizzle and Allen
(1969), Geisser (1970), Lee and Geisser (1972) and von Rosen (1991), among others.
Yet many studies typically have unbalanced designs or missing data that make these
standard multivariate procedures inapplicable. Hence it is of great interest and demand
to have generalizations of GC model which allows unbalanced data either by designs or
by chance, such as Kleinbaum (1973), Fearn (1975), Strenio et al. (1983), Reinsel (1985),
Jennrich and Schluchter (1986), Vonesh and Carter (1987) and Carter et al. (1992).

In this paper we conduct a Bayesian prediction analysis for unbalanced GC model
with random coefficient structure. Whereas Geisser (1970) and Lee and Geisser (1972)
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considered the Bayesian prediction analysis of completely balanced GC model under the
assumptions that covariance is either an arbitrary unknown positive definite matrix or of
the Rao’s simple structure. We propose both approximations and a method based on the
Metropolis-Hastings (MH) sampling algorithm (Chib and Greenberg (1995)). We like to
emphasize that the Bayesian formulation of the model considered here is closely related
to the Bayesian hierarchical linear model discussed in Fearn (1975) and Gelfand et al.
((1990), Section 6). By comparison, our model is more general and includes theirs as spe-
cial cases. For the Bayesian framework, we use noninformative priors but they assumed
proper prior for coefficient parameters with vague values for the hyperparameters.

Instead of relying on all full conditionals, we simplify the joint conditional and reduce
the conditional generations to two sets in the execution of Markov chain Monte Carlo
(MCMC) methods. The prediction of future observations and estimation of parameters
can still be conducted as other applications of MCMC methods, for example, Gelfand
et al. ((1990), Section 6), Gilks et al. (1993) and Yang and Chen (1995). The MCMC
methods are the state of the art and have been shown to make possible the use of flexible
Bayesian methods that would otherwise be computationally difficult. It seems pointless
to study approximations for Bayesian models when MCMC methods are applicable. In
the sense of “enjoy the omelet without messing the kitchen,” it is the motive to have
useful approximations as long as the trade-off between accuracy and time is acceptable
and especially when time is limited. _

In Section 2 we describe the GC model in a form of hierarchical Bayes linear model
to cover unbalanced cases. In Section 3 we discuss predictive densities and propose
both approximations and the MH sampling algorithm for prediction purpose. We then
present numerical results in Section 4 through real data and simulations to illustrate the
performance of the proposed approaches. Finally in Section 5 some concluding remarks
are made.

2. The model
Consider a random coefficient model
(2.1) yi = Xifi + €4,

where y; is a p; x 1 vector of observations, X; is the p; xm (m < p;) within-subject design
matrix, 3; is the m x 1 vector of random coefficients, and ¢; is the vector of errors for

subject i = 1,..., N. Furthermore, we assume f; and ¢;, ¢ = 1,..., N, are independent
and

(2:2) B; ~ Np(7a;,T),

(2.3) i ~ Np, (0,0°1,,),

where 7 is the m x r unknown parameter matrix of baseline covariates, a; is the r x 1
(r < N) between-subject design vector, and I" and o2 are the positive definite covariance
matrix and variance component, respectively. For the completely balanced case, X; = X,
one can write model (2.1)-(2.3) in the form of (1.1) with £ = XT'X’ + o2].

To complete a Bayesian formulation of model (2.1)—(2.3), one needs to specify priors
for (1,T',02). We consider a Jeffrey’s type of noninformative prior

(2.4) [T 07 %) ~ [P 2(gm2) 7
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As remarked earlier, both Fearn (1975) and Gelfand et al. ((1990), Section 6) assumed
the following prior for I'"1,

(2.5) [[~!] ~ Wishart,,(R™, p)

with degrees of freedom p > m and m X m precision matrix R. Note that both p and
R need to be specified. They completed the model by setting a diagonal matrix of large
enough components for diffuse purpose. From our experiences, there are no dramatic
differences in using different diffuse priors, however it is one extra step that needs some
insight and experimentation. It is interesting to note that they assumed the identical
noninformative prior for the inverse of variance component o~2 as in (2.4). It is obvious
that the prior |['~1|~(m+1)/2 reduces to (¢~2)~! when m = 1 but (2.5) doesn’t unless
for a special value of p and a special matrix R with very large diagonal elements.

A usual parameterization of I is ' = ¢I"™* by factoring out o2 from I". Accordingly
the prior [[*~1] ~ [T*~1|~(m+1)/2 and (2.4) is of the same form

(26) [, 072~ [P D2 g2,

From the model (2.1)—(2.3) and (2.6), the joint conditional density of (7,T*~!,~2) given
y= (yiayév <o 7y5\[), is

(2.7) p(r,I* 7,072 | y) oc [T mHD/2(g2)=1

N
'H{{Ei_lll/z exp” % (f; — Ta;) SN (B — 7a)}
=1
N

T2 2:) M/ exp™# (Digs) 0~2(2{2:)(Diys)}

i=1

where ¥; = X,I'X| + 01, G; = (X!X:) Y X!y;, Z; is p; X (p; — m) such that Z!X; =0
and D; = (Z]Z;)~'Z]. This follows from the pseudo-augmented model E(Y;) = (X;, Z;)
(7)as, see Lee and Geisser ((1972), Section 2). Due to the complexity of the joint
posterior density, it is of practical importance to know under what conditions that the
resulting posterior is proper. In a manner analogous to Yang and Chen (1995), it can
be shown that the joint posterior (2.7) is proper if Ny > m +r, Efil p; > 71, and there
exists at least one full rank design matrix X; such that y; # X;(X!X;)"1 X}y;, where N;
is the number of full rank design matrix for X;,i=1,...,N.

As usual, the parameter estimation of Bayesian models can’t proceed much further
without certain approximations due to intractable marginal conditionals of parameters.
In our case the parameter I'*~! is the most troublesome. After integrating out 7 and
72 in (2.7), a useful conditional (posterior) of I'*~! can be derived

(28) p(I*™" | y) oc [ T2 A WA T 2B W B 4 d] P2,

where W = diag(W;), a block-diagonal matrix with m xm blocks of W; = I'*+ (X! X;) !,
A* = A' ® I, ® denotes the Kronecker product, B = (B4, 52,...,0n), B = vec(B),
vec() is a matrix operator which arranges the columns of a matrix into one long column,
W* =Wl - W IAA* WA LAY WL, d = SN |yl (L, — Xi(X1X:) "2 X)yi, and
b= Zf\;l Di.



GROWTH CURVE MODEL 327

For the case of parameter estimation, one can derive some estimate (for example,
unbiased estimate, MLE or posterior mode) of I'*~1, and substitute into the following
conditionals for the estimation of 7 and o—2:

(2.9) p(oc™2 |y, I*7!) = Gamma (?—:éﬂz, %) ,
where h = 3/W*8 + d; and
(2.10) p(A [y, 071 = T (A, 9, p),

a multivariate T' distribution, with A = vec(r), A\* = (A¥*W~14*)"14*W~-13, Q =
B(A*W~14*)7!, v = p—mr. Note that a ¢ x 1 vector T is said to possess a multivariate
T-distribution with p degrees of freedom, i.e., T' ~ Ty (u, X, p) if

F(T) = @o)™207 (S) 1 (5) 1917201 + (T — ) ) (T - )] 772,

where I'() is the GAMMA function and v = p—t. Accordingly, E(T") = yu and Cov(T) =
525%. It can be shown that A\* is the generalized least squares estimator of A for the
model defined in (2.1)—(2.3) with known {02,T*}, see equation (2.2) of Vonesh and
Carter (1986). The variance-covariance matrix of A* is 02(A* W~14*)~1. We note that
under the model assumptions A*|(02,T*) ~ Np,.(\, 02(A* W1 A4*)~1).

Although (2.8) is nonstandard, as long as one can simulate observations from (2.8),
the estimate of I'*~! and the Rao-Blackwellization estimates of o=2 and A = vec(7) can
* be obtained through (2.9) and (2.10) (Casella and George (1992)). We shall not pursue
this here but the estimation of 0~2 and 7 will become by-products in the process of
prediction of future observations in next section.

3. Approximations and the MH sampling algorithm for predictive densities

We shall now discuss the problem of prediction. Two types of prediction are consid-
ered, namely the prediction of future observations for a new subject and the prediction
of future values for a partially observed subject. Because of the complexity of the predic-
tive densities, we propose both approximations and a prediction-oriented MH sampling
algorithm. The former represents a crude but easy-to-implement method while the latter
may be the most sophisticated method so far.

First, suppose one is interested in the prediction of a future py x 1 observation
vector V' to be drawn from the model (2.1)-(2.3). Based on the Bayesian formulation
in (2.6) and follow essentially the same algebra leading to (2.8), one gets the predictive
density of V given y and I'™*~1, ‘

(31) p(V | Y, F*_l) = TPV(“’V: QV7p +PV - m’r‘),

where py = Xy (a}, ® In)A*, Qv = 2C with C = Xy (a}, ® In)(A* WA (ay ®
L)Xy + (XvI* X, + I,,) and h and v are defined in (2.9) and (2.10), respectively.
Note that py is based on the generalized least squares estimator A* and (aj, ® I, )A* can
be interpreted as the predictor of individual 8y. Furthermore, the associated variance-
covariance is %C’ and —U—E—g- can be viewed as the estimate of o2 with known I'*.
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Likewise, for the case of predicting the future values Va(py2 X 1) of a partially
observed subject Vi (py1 X 1,py1 > m), one gets the conditional predictive density of V2
given y, V; and I'*~!

(32) p(‘/Z | Y, I/1711*——1) = TPV2 (MV?, sz,P +pv — mr),
where

pve = Xva{A[(X{y Xv1) ™ + A7 Bvs + (X Xva) (X Xva) 7L+ A
(ay ® Im)X*}
= Xvo{T* Wi Bv1 + (X1 Xv1) "' Woi (ay ® Ln) Xy},
Bvr = (X Xv1) 1XL Vi, A=T"+(ay @ In)(A* W 1A% ay & L),
Wy =T* + (Xi Xv1) 7,

~

g — ~ . s ﬂ
yVl (AyV1WyV1AyV1) lAyVIWyVllﬁyVI with ﬁyV1=<ﬂ“V1 )

Ajvy and Wyy, are direct extensions of A* and W, respectively, by including V; as the

(N + 1)-th observation, Qyo = #022 1, hyvi = By WoviByva + dyvi, Wy and
dyv1 are extensions of W* and d in (2.9), respectively, to accommodate the (N + 1)-th
observation Vi, Uyv1 = P+ py1 —mr, Cooq1 = Cog — 021011 Cio = XV2[(XVlXV1) +
A_l]_1X1'/2 + Ipvg.

It can be shown that [(X{, Xv1)+A~1"1 = (X1 Xy1) 1= (X Xv1) "W (X,
Xy1) 7t + (X{ Xv) T Wy (ay © Im)(AyVIWy—‘}lAZVl)_l(aV ® I )Wyt (Xi1 Xv1) ™,
which is quite useful for deriving different forms of py2 shown above. Accordingly,
pve is constructed from Xy2 and the individual predictor of 8y, which is a weighted

average of By1 and X\* or Byv1 and Ayv1- For the estimation of variance components, it

hyVl
Uy

is important to note that the assocw,ted variance-covariance is 5C22.1 and again

—é%{_ii can be viewed as the estimate of 02 with known I'*. In general, it agrees with
that of Bondeson (1990) and Vonesh and Chinchilli ((1997), Section 6.2.4) except that
they were based on the conditional distribution of {o,T*} while here it is relied on the
conditional distribution of I'* alone. Hence the only difference is that o2 is replaced by

proper estimate in terms of I'™.

3.1 Approximations

As the estimation of parameters discussed in the previous section, there is no closed
or easily recognizable predictive densities of P(V | y) and P(V3 | y,Vl) But one can
substitute T'*~! with some sensible estimate I™*~1 given y or given y and V] into (3.1)
and (3.2). Then one has the approximate predictive densities

(33) p(V | y’f*_l) ETPV(ﬁ'V’QV7p+pV -'mlr)7
and R R
(34) p(Va |y, Vi, I* ) = Ty, (five, Qva, p + pv — mr).

For the choices of I*~1, the posterior modes of (2.8) and its extensions p(T*~! | y, V)
are possible candidates. However it will involve some iterative procedures inevitably.
To keep the approximations as simple as possible, we turn to non-iterative solutions:
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the unbiased (Vonesh and Carter (1987)) and empirical Bayes (EB) estimators (Reinsel
(1985) and Rao (1987)). Hence the predictive density P(V |y) is approximated by

(3.5) Tus(V | y) = Tpy (iiv, Qv, p + pv — mr),

with I~ = Tyl = 63108, Tus = 518y — it (1 — af(A4) 1a:)63s (X1 X:) 7Y,
Sy = B(Iy — A/(AA) 1A B, 635 = d/k, and k= YN (p; — m), or

(36) TEB(V ' y) = TPV (ﬂV70V7p +pv — mr),

with f‘*—l = f‘;}’gl = &EBf‘Eé’ f‘EB = NT'rim[Sy — Zf'v:l(l et ag(AA’)_la,-)
Meanwhile, the conditional predictive density P(V, | y, V1) is approximated by

(3.7) Tus(Va | ¥, Vi) = Tpy, (v, Qva,p + pv — mr),

with 1 = gl = 635k, fup = mib=slSn — S - al(HH)"ay)

F8a(XiX:) ™, Syvi = (B, Bv1)(Ing1 — H'(HH')"\H)(B, Bv1)', H = (4,av1), 635 =
N+1

dyvi/ka, ko = Zz:] (pi —m), or

(38) Tes(Va | 4, Vi) = Tpy, (fiva, Qva,p + py — mr),
with T*=1 = IpE! = 623158, Tep = g [Syvt — St (1 - aj(HH')'a,)65
(XiXi)™', 6%p = dyv1/(k2 +2). .

For the Tys(V | y) and Tys(V2 | y, V1) approximations, I'yp is an unbiased esti-
mator of I' (Reinsel (1985)) and is termed the residual method of moments (RMM) in
Vonesh and Chinchilli ((1997), Section 6.2). It should be noted that this estimator is
similar to the restricted maximum likelihood estimation in that it corrects for small sam—
ple bias. In fact, for balanced and complete data (X; = X), it can be shown that 63y
and FUB are the REML estimates. For unbalanced data, I‘UB is unbiased and consistent.
It has properties similar to the REML estimates in that it is based on a set of linearly
independent error contrasts (Iy — A'(AA’)"1A)B’ or (In,1 — H'(HH') " H)(B, Bv1)’,
see Vonesh and Carter (1987) and Vonesh and Chinchilli ((1997), Section 6.2) for further
details.

Next, for the Tep(V | y) and Te(Va | ¥, Vi) approximations, I'gg is constructed
from Sy /(N —r—m—1) and d/(k+2) or Syv1/(N+1—r—m—1) and dyv1/(k2 +2).
As discussed in Reinsel (1985), it is not possible to give a closed form for the optimal
value of the “shrinking constant” in the unbalanced case. This is solely motivated by
the optimal property of EB estimates for balanced data.

However, on occasion both I‘UB and I‘EB can result in non-positive semi-definite
estimate of I'. To ensure having a positive semi-definite estimate of I", we make the
adjustment suggested in Vonesh and Carter (1987) whenever necessary. Furthermore,
Vonesh and Carter (1987) focused only on the problem of estimation and proposed two
large sample tests for linear hypothesis testing of parameter A. Nevertheless, instead of
extending their results for prediction, Vonesh and Chinchilli ((1997), Section 6.2.4) pro-
posed a t approximation for the prediction of single future value for a partially observed
subject. This is motivated by knowledge that, when data are balanced and complete, it
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has an exact ¢t distribution. Here we extend it to accommodate simultaneous predictions
of several future values for both types of prediction:

(3.9) Tve(V | y) = Tpy (fvave, Qvave, N — 7+ py),

where fiyove is the same as fiy in (3.5), Ovove = N];i;z&%B{ng[(X{,lXVl) +
A7 XY, + Lo} with A = A(T™), I'* = ['yp /63, ['up and 635 are defined in (3.5);
and :

(3.10) Tyvc(Va | ¥, V1) = Ty, (Avave, Qvave, N + 1 — 7+ pva),

where fiva.vc is the same as fyg in (3.7), Qveve = %‘%{i—:z&%B{ng[(X{,le) +
Al71X| o + Lyya} with A = AQ™), I'* = I'yg/6&5, I'us and o2 are defined in (3.7).
Essentially, Tyg and Tyc are very much alike. Both give identical predicted values, while
the only differences are in the degrees of freedom and estimates of o2.

In the vein of Bayesian prediction, normal approximation was proposed in Fearn
(1975) for all a; = 1. His proposed estimate of I' is (S, + R)/(N + p—m — 2) or
(Syvi+ R)/(N + 1+ p— m — 2) depending on the type of prediction. Hence they are
not corrected for the factor X=L SN 52(X1X;)71 or Mri SN 62(X!X;)"" as other
aforementioned approximations. However, Fearn’s approximation serves as a convenient
benchmark to assessing the performance of the proposed T' approximations and the MH
sampling algorithm discussed next.

3.2 The MH sampling algorithm

Gelfand et al. (1990) showed the applications of Gibbs sampling in a wide range
of normal data models, including the hierarchical growth curve mentioned earlier. The
Bayesian marginal posterior and predictive densities can be extracted from the full con-
ditional distributions after successively simulating observations from [3 | y, 7, !, 02,
[t |y,B6,T Ye%, ! | y,71,B80%, and [0? | y,08,7,T"!]. In particular, the predic-
tive density of future observations V given 7 and o2 is Ny, (XvTay,0%l,, ). Then the
Rao-Blackwellized density and prediction of V' can be obtained from the finite mixture
(average) density of Ny, (Xv7av,02l,,) from all stationary (r;,07).

In the same spirit of the Rao-Blackwellization, we turn things around and pro-
pose simplified sampling scheme by successively simulating only two sets of conditionals,
namely [V | y,T* '] and [[*~! |y, V], and [V | y, V41, T* 1] and [[*~1 | y, VA4, V2], for the
prediction of V' and V3, respectively. After the execution of the MH sampling scheme,
the predictive density and related prediction of V' and V, and the densities of parameters
(I'*~1,02,7) and their estimation can be obtained through the Rao-Blackwellization of
conditionals defined in (3.1), (3.2), (2.8), (2.9) and (2.10), respectively.

The sampling procedure proceeds as follows:

0. Choose an initial value of T*~!.

1. Generate V given y and I"™*~! from (3.1) or generate V; given y, V4 and I'*}
from (3.2).

2. Generate I'*~1 given y and V in the form of (2.8) using the MH algorithm with
independence chain (Chib and Greenberg (1995), Section 5) and a candidate generating
density Wishart,,(R™!, N+1—r), where R = mlT:,:[Syw - ng{l(l —al(HH') 'a;)s?
(X{Xi)_l] and s? = dyV]_/kQ.

In order to ensure the samples are drawn from the entire domains of the densities
of V given y and V, given y and V3, Gelman and Rubin (1992) suggested using “over-
dispersed” initial values in multiple chains and assessing the convergence by using the
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Fig. 1. Ramus heights of 20 boys.

potential scale reduction measure \/E Following these guidelines we implement the
sampling procedure using seven chains with seven different starting values of I'*~1 and
V5. The starting values for V, are the MLE and six others obtained from +2, +4, +6
times of standard deviation. The starting values for I'*~! are generated from a Wishart
distribution with mean I*~! /(N + 1 — ) and degrees of freedom N + 1 — r, where I™*~1
is the MLE of T*~!. After a sufficiently long burn-in iterations in each chain we then
use the remaining samples as simulated from the densities of V' given y and V5 given y
and V7.

4, Numerical Results

In this section we apply the results in Section 3 to analyze both real and simulated
data. For the purpose of illustration, only the conditional prediction is discussed, i.e.,
the prediction of future values V5 given y and V;.

4.1 Ramus-bone data :

This data set was first analyzed by Elston and Grizzle (1962) and consists of mea-
surements of the ramus height (in mm) on 20 boys for ages 8, 8.5, 9 and 9.5 (See Fig. 1).
Lee and Geisser (1975), Fearn (1975), Geisser (1981) and Lee (1988) also analyzed the

data set. Since the observations are equally spaced in time, the within-subject design

matrix can have the alternative form X’ = (_13 _11 i é) The between-subject design

matrix A is a 1 x 20 vector consisting of all 1s. We continue the cross-validation analysis
in Lee and Geisser (1975) and Fearn (1975) for predicting the last value of a partially
observed vector by withholding one vector y; as V and using the rest for predicting the
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Table 1. The MAD and MSD between the predicted and the actual values of final measure-
ments: ramus-bone data.

Ten Tus Fearn Tvo ILS MH MHRB
MAD 05798 0.5885 0.5731 0.5885 0.5650 0.5835  0.5810
MSD 05643 0.5622 0.5601 0.5622 0.6405 0.5645 0.5618

last component V5 of V = (“2) and repeating this for all vectors y;, 7 = 1,...,20. In

Fearn (1975) the hyperparameters in (2.5) were set as R = ( g 0?2) and p =m = 2. His

approximation is compared with the T' approximations Tyg(df = p + pv — mr = 78),
Tes(df = p+pv —mr = 78) and Tyc(df = N +1 — r + pya = 20) defined in (3.7),
(3.8) and (3.10), respectively. Furthermore, the mean of V5; (MH) and conditional mean
pve | T3 of (3.2) (MHRB) represent the predicted values of V3 from the presumably
more accurate MH sampling algorithm, where V5; and I‘;.""l are the last 500 samples of
‘seven chains each with length 1500, with a total of 3500 samples. Besides, the predictor
based on individual least squares estimator is also included since its prediction property
is exactly known. It is denoted by fiyvoins (ILS) where

fvais = Xvafvi ~ Npve(XveBv, 02 { Xva(Xi 1 Xv1) "1 Xis + Ipva})

with estimated variance-covariance 635 {Xy2(X{, Xv1) ™ X{5 + v}
The following two discrepancy measures are calculated:

N N
MAD = |y — pl/N  and  MSD = (up; — §p5)* /D,

j=1 j=1

where yp; and §p; are the p-th actual and predicted values of subject j. The results are
listed in Table 1.

It is noted that the values of MAD and MSD of Fearn’s approximation in Table 1
don’t completely agree with the numbers (MAD = 0.5725 and MSD = 0.5590) in Table 3
of Fearn (1975). We believe that the discrepancy is due to individual rounding effects.
The results are somewhat surprising because even predictors from the MH sampling al-
gorithm, MH and MHRB, do not produce the smallest MAD and MSD. The individual
least squares predictor has the minimum of MAD (0.5650), whereas Fearn’s approxima-
tion has the minimum MSD (0.5601). Possible explanation of this may be found in Lee
(1988). With the AR(1) covariance assumption, the values of MAD and MSD are 0.5638
and 0.5178, respectively. This indicates that there is a better fit of the data set than the
random coefficient structure assumed here in terms of prediction. To have a profound
study of these methods, we now turn to simulations.

4.2 Simulations
We will first extend the analysis of ramus-bone data by utilizing its data structure
and the assumed parameters of 7, I', 02 to simulate one data set for more convincing

comparisons, see Fig. 2. The MLEs are 7 = (500.;&76550), I'= (g:gégg g:g?gg) and 02 =
0.1935. For this simulated data, the prediction results are presented in Table 2.

From Table 2 it can be observed that the Rao-Blackwellized predictor MHRB has
smallest MAD = 0.4414 and its MSD = 0.3016 is slightly larger than the MSD (0.2995)
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Fig. 2. Simulated ramus heights of 20 boys.

Table 2. The MAD and MSD between the predicted and the actual values of final measure-
ments: simulated data based on ramus-bone data structure.

TE B TUB Fearn TVC ILS MH MHRB
MAD 0.4476 0.4418 0.4536 0.4418 0.5196 0.4441 0.4414
MSD 0.3052 0.2995 0.3092 0.2995 0.4067 0.3039 0.3016

Table 3. The coverage probabilities of prediction intervals.

Ten Tus Fearn Tyvc ILS MHRB
Nominal level 90% 0.8860 0.8977 0.8889 0.9051 0.9069 0.8963
(0.0054) (0.0051) (0.0053) (0.0050) (0.0049) (0.0052)
95% 0.9389 0.9457 0.9394 0.9565 0.9543 0.9489
(0.0040)  (0.0038)  (0.0040) (0.0034) (0.0035) (0.0037)
99% 0.9851 0.9877 0.9851 0.9911 0.9917 0.9880
(0.0020)  (0.0019) (0.0020) (0.0016) (0.0015) (0.0018)

of Tys. The “averaged” predictor of MH samples, with MAD = 0.4441 and MSD =
0.3039, is slightly inferior. As expected, ILS is the worst with the largest MAD = 0.5196
and MSD = 0.4067. Among the four approximations, the Tyg and Ty ¢ approximations
are the best (MAD = 0.4438 and MSD = 0.3023) and are very comparable to MH and
MHRB. However Fearn’s approximation has the largest MAD = 0.4536 and MSD =
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Table 4. The MAD, MSD and coverage probabilities for predicting the last two components
Va(2x 1) = (1) with N=10and X' = (2, % 111

-3 -1135/"
Ten Tys Fearn Tyc _ILS
MAD Vaai 0.6100 0.6080 0.6093 0.6080 0.6451
Vaa 0.8007 0.7962 0.7982 0.7962 0.8598
MSD Vo 0.5862 0.5849 0.5841 0.5849 0.6499

Vazo 1.0010 0.9961 0.9940 0.9961 0.1450
Coverage Probabilities for Vo 1
Nominal level 90% 0.8714 0.8892 0.8746 0.9088 0.8860

(0.0047)  (0.0044) (0.0047) (0.0041)  (0.0045)
95%  0.9284  0.9408  0.9306  0.9600  0.9432

(0.0036)  (0.0033) (0.0036) (0.0028)  (0.0033)
99%  0.9788  0.9832  0.9790  0.9952  0.9822

(0.0020) (0.0018) (0.0020) (0.0010) (0.0019)
Coverage Probabilities for V2
Nominal level 90%  0.8608 0.8878 0.8636 0.9194 0.8788

(0.0049)  (0.0045) (0.0049) (0.0038)  (0.0046)
95%  0.9216  0.9380  0.9196  0.9672  0.9338

(0.0038)  (0.0034) (0.0038) (0.0025) (0.0035)
99%  0.9776  0.9852  0.9750  0.9974  0.9810

(0.0021)  (0.0017) (0.0022) (0.0007) (0.0019)

0.3092. The Tgp approximation is slightly better than Fearn’s with MAD = 0.4476 and
MSD = 0.3052.

Next we compare approximate and the Rao-Blackwellized prediction intervals for the
20th subject by calculating the coverage probabilities of the 3500 simulated samples of V,
from our MH sampling procedure. The results of three nominal coverage probabilities are
listed in Table 3. The numbers in parentheses are the estimated standard errors. Among
the six competitors, MHRB and Tyg are the two with closest coverage probabilities to
the nominal level. The two frequentist approaches Ty ¢ and ILS are also very good in
achieving the nominal level, whereas Tgp and Fearn’s approximation are slightly inferior.

Based on the analysis so far, the Rao-Blackwellization of the MH sampling algorithm
performs consistently well in prediction accuracy and coverage probability. However,
with the trade-off between accuracy and time involved, the approximations are quite
reasonable and worth further investigation in order to make a solid conclusion.

The final comparisons solely focus on the performance among approximations. Uti-
lizing the structure of ramus-bone data (with different numbers of subjects N = 10 and
N = 20), we withhold only the last vector as V' in each simulated data set and consider
the prediction of the last two values for 5,000 iterations. Now the MAD, MSD and cov-
erage probability are the averages of 5,000 absolute deviations, squared deviations and
0-1 values.

The comparisons of approximate prediction accuracy and coverage probabilities for
(2 x1) = (‘2;) given y and V; with N = 10 are shown in Table 4 where X' =

(_13 _11 } ; é) and Xi,5 = (; é) The degrees of freedom for Teg, Tus and Tyc

are 46, 46 and 9, respectively. From Table 4, it can be seen easily that the performance
of the approximations is very much comparable in terms of MAD and MSD. Note that
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Table 5. The MAD, MSD and coverage probabilities for predlctmg the last two components
1

Va(2x1) = (V2_;) with N =10 and X' = (zls 85 9 9.5 10

TEB TUB Fearn TVC ILS
MAD Vo 0.4753 0.4635 0.4857 0.4635 0.6451
\ZP 0.5495 0.5284 0.5705 0.5284 0.8598
MSD Vai 0.3592 0.3415 0.3742 0.3415 0.6499

Va2 0.4839 0.4425 0.5177 0.4425 1.1450
Coverage Probabilities for Va1

Nominal level 90%  0.8646  0.8820  0.8874  0.9050  0.8860
(0.0048)  (0.0046)  (0.0045) (0.0041)  (0.0045)

95% 09234  0.9348  0.9358  0.9568  0.9432

(0.0038)  (0.0035)  (0.0035) (0.0029)  (0.0033)

99% 09788  0.9846  0.9824  0.9962  0.9822

(0.0020)  (0.0017) (0.0019) (0.0009)  (0.0019)
Coverage Probabilities for Va
Nominal level 90% 0.8414 0.8696 0.8750 0.9100 0.8788

(0.0052)  (0.0048)  (0.0047) (0.0040)  (0.0046)
95%  0.9074  0.9268  0.9298  0.9640  0.9338

(0.0041)  (0.0037)  (0.0036) (0.0026) (0.0035)
99% 09754  0.9832 09814  0.9978  0.9810

(0.0022) (0.0018) (0.0019) (0.0007)  (0.0019)

the expected MSD of ILS for V57 and V55 are 0.6450 and 1.12875, respectively. They
are very close to the simulated values 0.6499 and 1.1450, respectively.

For the comparison of coverage probabilities, Typ and Ty are considerably better
than Tgg and Fearn’s approximation for all three nominal levels. Nevertheless, Typ
tends to be lower than the nominal level while Ty tends to be higher.

As mentioned in Subsection 3.1, there is some potential bias in Fearn’s estimate of

T". The sensitivity of such estimate in terms of different design matrices is not known.

Therefore we set the design matrix as X = ( é 815 ; 915 10) to reflect the actual age

scale and rerun the simulation with the identical seed. The results are reported in Table 5.
Since ILS is the only one that is invariant to such transformation, it produces exactly the
same outcomes as in Table 4. But all the other predictors turn to have smaller MAD and
MSD. Comparatively, Fearn’s method has much larger MAD and MSD for predicting
both components of V5 than the other three T approximations. On the contrary, Fearn’s
coverage probabilities become slightly better. However both Tgg and Typ have lower
simultaneous coverage probability for V5 at the 90% nominal level and nearly the same
as in Table 4 for other cases. Overall Tyc is very consistent in coverage probabilities.
In general, the situation in simulation with N = 20 is quite similar only with smaller
discrepancy in every respect due to larger sample size. Hence they are not reported here.

Based on these findings, the differences among the approximations are small, but it
shows a clear pattern that the two approaches with RMM estimate of I'*, namely Tyg
and Tyg, perform better than the other two approximations. They will be useful in
case the more accurate and more involved Rao-Blackwellization from the MH sampling
algorithm is not available.
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5. Concluding Remarks

In this article we consider a Bayesian approach to the problem of prediction in
an unbalanced growth curve model using noninformative priors. Three approximations
and the Metropolis-Hastings sampling algorithm are proposed. Two of the multivari-
ate T' approximations using RMM estimate of I'* are shown to be better than the
normal approximation proposed in Fearn (1975), and are slightly outperformed by the
Rao-Blackwellization from the Metropolis-Hastings sampling algorithm. The proposed
prediction-oriented Metropolis-Hastings sampling algorithm is efficient, accurate, and
more simplified than the other Markov chain Monte Carlo methods in similar stud-
ies. Although posterior distributions, parameter estimation, predictive densities and
related prediction can be conducted through the Rao-Blackwellization of the proposed
Metropolis-Hastings sampling algorithm, they are computationally intensive. By con-
trast, all the computations in the approximations are non-iterative and avoid numerical
integration.
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