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Abstract. Local polynomial smoothing for the trend function and its derivatives in
nonparametric regression with long-memory, short-memory and antipersistent errors
is considered. We show that in the case of antipersistence, the convergence rate of
a nonparametric regression estimator is faster than for uncorrelated or short-range
dependent errors. Moreover, it is shown that unified asymptotic formulas for the
optimal bandwidth and the MSE hold for all of the three dependence structures.
Also, results on estimation at the boundary are included. A bandwidth selector for
nonparametric regression with different types of dependent errors is proposed. Its
asymptotic property is investigated. The practical performance of the proposal is
illustrated by simulated and real data examples.
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1. Introduction

In this paper local polynomial fitting with long-range dependent, short-range depen-
dent and antipersistent errors is investigated. A data-driven procedure for the practical
use of this estimation is also proposed. Here, a stationary process X; with autocovari-
ances (k) = cov(X;, X;4x) is said to have long-range dependence (or long memory), if
the spectral density f(A) = (2m) ™1 Y po _ exp(¢kA)y(k) has a pole at the origin of the
form

(1.1) FO) ~ AT (as A — 0)

for constant ¢; > 0 and o € (0,1), where “~” means that the ratio of the left and
the right hand sides converges to one (see e.g. Mandelbrot (1983), Cox (1984), Kiinsch
(1986), Hampel (1987) and Beran (1994) and references therein). In particular, this
implies that, as k — oo, the autocovariances (k) are proportional to k>~! and hence
their sum is infinite. If (1.1) holds with & = 0, then the sum of all autocovariances is a
positive constant and the process X; is said to have short-memory. On the other hand,
a stationary process is called antipersistent, if (1.1) holds for a € (—1,0). This implies
that the sum of all autocovariances is zero.

The most important motivation to introduce the concept of antipersistence is to
quantify the phenomenon of overdifferencing. That is, if a stochastic process is slightly
nonstationary lying between a stationary long-memory process and a random walk, then
its first difference will have antipersistence. There are some reports about antipersistent
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phenomena, in practice. For instance, Beran et al. (1999) found that the first difference
of the daily world copper price from Jan. 2, 1997 to Sep. 2, 1998 is significantly antiper-
sistent together with significantly nonzero mean function. This means that the original
series is the sum of a trend function and a nonstationary error process whose first dif-
ference is antipersistent. Karuppiah and Los (2000) pointed out, that the first difference
of many intraday foreign exchange series, in particular those between Japanese Yen and
US Dollar and German Mark and US Dollar, are clearly antipersistent.

Nonparametric regression with short- or long-range dependent errors has gained
increasing attention in the literature. Kernel estimators are proposed for observations
with short-range dependent errors (see e.g. Altman (1990), Herrmann et al. (1992))
and for observations with long-range dependent errors (see e.g. Hall and Hart (1990),
Csorgd and Mielniczuk (1995) and Beran (1999)). Wang (1996) proposed nonparametric
regression for data with long-range dependent errors via wavelet shrinkage. In this
paper, the local polynomial fit introduced by Stone (1977) and Cleveland (1979) will
be adapted to nonparametric regression with short- or long-range dependent as well as
antipersistent errors. This approach is known to be an automatic kernel method (see
Miiller (1987) and Hastie and Loader (1993)) having many exciting statistical properties.
For recent developments in this context see, e.g. Ruppert and Wand (1994), Wand and
Jones (1995) and Fan and Gijbels (1995, 1996). Local polynomial fitting is adapted to the
autoregressive context for modelling nonlinear time series under some mixing conditions
e.g. by Masry (1996), Masry and Fan (1997) and Feng and Heiler (1998).

A crucial problem in the practical use of nonparametric regression is the data-
driven bandwidth selection. Recent proposals for bandwidth selection in nonparametric
regression with independent or short-range dependent errors may be found in, e.g. Chiu
(1989), Gasser et al. (1991), Hirdle et al. (1992), Herrmann et al. (1992), Fan and Gijbels
(1995), Ruppert et al. (1995), Heiler and Feng (1998) and Feng and Heiler (1999). A
bandwidth selector for nonparametric regression with long- memory errors is proposed
by Ray and Tsay (1997). The proposals in Herrmann et al. (1992) and Ray and Tsay
(1997) are adaptations of the iterative plug-in idea of Gasser et al. (1991).

The contributions of our paper are:

1. Asymptotic formulas for local polynomial estimators for the trend function and
jts derivatives are obtained under short memory, long memory and antipersistence. To
our knowledge, local polynomial fitting and nonparametric estimation of derivatives has
not been investigated in the literature for the cases of long memory and antipersistence.
Note that antipersistence implies that the autocorrelations sum up to zero so that another
technique has to be used than in the case of long-range dependence. We show, in
particular, that unified formulas can be obtained that are valid for all three cases (short
memory, long memory and antipersistence). Note that these three cases correspond to
three very different types of dependence structures.

2. In contrast to previous literature on nonparametric regression with long memory,
results are obtained not only for interior points but also for boundary points. The results
hold for kernel estimators (with boundary correction) as well as local polynomial fits.

3. A unified iterative plug-in bandwidth selector is proposed for nonparametric re-
gression with all of the three types of dependent structures with a so-called exponential
inflation method (see Beran (1999) and Beran and Ocker (1999, 2001)). The asymp-
totic behaviour is briefly investigated. This proposal is applied to some simulated and
practical examples. An extended simulation study will be given in a forthcoming paper
(Beran and Feng (1999)).



LOCAL POLYNOMIALS FOR FRACTIONAL MODELS 293

The paper is organized as follows. The model and the local polynomial estimators for
the mean function as well as its derivatives are introduced in Section 2. The asymptotic
results are given in Section 3. The bandwidth selector is proposed in Section 4. Examples
in Section 5 illustrate the practical use of the proposal. Section 6 contains some final
remarks. Proofs of theorems are listed in the Appendix.

2. The model and the estimators
Consider the equidistant deéign nonparametric regression model
(21) Y; = g(t:;) + X,

where t; = (i —0.5)/n, g : [0,1] — R is a smooth function and X is a stationary process

having the form
(2:2) (1-B)°X; =U;,

where § € (—0.5,0.5), B denotes the backshift operator such that BY; = Y;.; and
U; is a stationary process with short memory so that Y po _ cov(U;, Uit) = C with
0 < C < oo. The parameter § is called the fractional differencing parameter. The
fractional difference (1 — B)?, introduced by Granger and Joyeux (1980) and Hosking
(1981), is defined by

(2.3) (1-B)Y = ibk(é)B’“
k=0

with

(2.4 bu(6) = (1) D)

Tk+L(6—k+1)

The spectral density of X; in (2.1) has the form (1.1) with o = 26. Hence, X; has long
memory if § > 0. If § = 0, X; = U; has short memory. And X; is antipersistent, if 6 < 0.
Model (2.1) is a special case of the SEMIFAR (semiparametric fractional autoregressive)
model introduced by Beran (1999). See also Beran and Ocker (1999, 2001). In what
follows we will consider local polynomial estimation of g*), the v-th derivative of g. The
theorems in the next section give formulas for local polynomial estimators that are valid
for the whole range § € (—0.5,0.5).

Assume that g is at least (p -+ 1)-times differentiable at a point to. Then g(t) can
be approximated locally by a polynomial of order p:

(2.5) 9(t) = g(to) + ¢ (to)(t — to) + - - + g (o) (t — to)? /P! + Ry

for ¢ in a neighbourhood of ¢35, where R, is a remainder term. Let K be a symmetric
density (a kernel of order two without boundary correction) having compact support
[~1,1]. Giving n observations Yi,...,Y,, we can obtain an estimator of g™ (v < p) by
solving the locally weighted least squares problem

2

- 3 : t; — to :

(2.6) Q= Z Yi— ) Bilti—to) p K ( 3 ) = min,
=0

i=1 j
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where h is the bandwidth and K is called the weight function. Let 3 = (ﬁo, Bi,..., B,,)T,
then it is clear from (2.5) that v!3, estimates g**) (o), v = 0,1,...,p. Let

1t —to -~ (tg —to)?
X=1:
1tn—to -+ (tn—to)?

Let ej, j = 1,...,p + 1, denote the j-th (p+1)x1 unit vector, and let K denote the

diagonal matrix with
B t; —to

as its i-th diagonal entry. Finally, let y = (Y3,...,Y;)T. Then §®)(ty) can be written as

(2.7) i (to) = viel (XTKX)'XTKy

= {w”(to)}",
where {w”(t)}T = vlel,;(XTKX) X K is called the weighting system. We see that
™) (tg) is a linear smoother with the weighting system w"(to) = (w?,...,w%)T, where

w? # 0 only if [¢; — to] < h. The weighting system does not depend on the dependence
structure of the errors. For any interior point tg € [h,1 — h| the non-zero part of w”(t)
is the same, i.e. §*) works as a moving average in the interior. Furthermore, w"(to)
satisfies:

n n
(2.8) Zw;’(ti—to)”zyl and Zw;’(ti—to)jzo for j=0,...,p, j #v.
i=1

i=1

It is the property (2.8) that makes §*) exactly unbiased if g is a polynomial of order
not larger than p. The property (2.8) also shows the main difference between a local
polynomial estimator and a kernel estimator, since for a kernel estimator property (2.8)
only holds approximately.

3. Asymptotic results

3.1 Assumptions

In this section we discuss the asymptotic properties of the estimators proposed in
the last section. It is well known that a local polynomial estimator is asymptotically
equivalent to a certain kernel estimator, called an (asymptotically) equivalent kernel
estimator of the local polynomial estimator. Hence, the asymptotic properties of a local
polynomial estimator are the same as those of the equivalent kernel estimator. Although
it is shown in Ruppert and Wand (1994) that one can analyze local polynomial fitting
directly as a weighted least squares estimator rather than as an approximate kernel
estimator, the asymptotic results given in this section will be proved by means of the
asymptotically equivalent kernel function.

From here on we will mainly consider the case with p—v odd. This implies p—v > 1.
Let k = p+1. Wehave k > v+2 and k—v even. A brief discussion of the case with p—v
even will be given latter. For the asymptotic results given below we need the following
assumptions:
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Al. The weight function K (u) is a symmetric density (i.e. a kernel of order two)
with compact support [—1, 1] having the polynomial form

K(u)=> auI_; 1(u)
=0

(see e.g. Gasser and Miiller (1979)).

A2. g is an at least k times continuously differentiable function on [0, 1] with & >
v+ 2 and k — v even.

A3. The bandwidth satisfies: A — 0, (nh)1~29h%" — 00 as n — 0.

A4. A local polynomial fit of order p =k — 1 is used.

Under the assumptions Al and A4 it can be shown that §(*) converges to g at
the same rate in the interior as well as at the boundary.

3.2 Asymptotic bias and variance

In the following, formulas for asymptotic bias and variance of §®) will be given at a
point ¢ in the interior (¢ € [h, 1—h]), at the left boundary (¢t € [0, h)) as well as at the right
boundary (¢ € (1 — h,1]). The discussion will only be carried out for ¢ € [h,1 — k] and
the left boundary t € [0,h). The formula for the right boundary (1 — k,1] is analogous
to the left boundary. Note that asymptotically any fixed point ¢ € (0,1) will not be a
boundary point, since h — 0 as n — oo0. A standard definition of a left boundary point
is t = ch with 0 < ¢ < 1. For each t € [h,1 — h] we define ¢ = 1. For each c € [0, 1], the
truncated kernel K.(u) is defined by '

(3.1) K. (u) ——-( 3 K(a:)d:c) K(u)Ij_¢1)(u).

Two special cases of K .(u) are K;(u) = K(u) for the estimation at an interior
point and Ko(u) = 2K (u)ljo 1} for the estimation at the left end point. Let pj. =

f_lc w K.(u)du be the j-th moment of K.. And define

1 Hie - Hpe
Hie M2, - Hptle
(3.2) N,.= . .
Hp,e Bp+le """ H2pc

Denote by p; = pj1 = f_ll v/ K (u)du the j-th moment of K(u). Let N, = Np; is
the matrix as defined in (3.2) with p; . being replaced by u;. An important difference
between N, . and N, is that p; = 0 for j odd, but in general, any p;. is non-zero, if
c# 1. A k-th order kernel K(, ) can be defined as follows. For 4,5 = 1,...,k, let

(s je) = ! and define
(3.3) K(y,k,c) (u) = V!Q(u,k,c) (u)Kc(u)’

where

Quk,e)(u) = Zawucu] b,
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It is easily established that the function defined in (3.3) satisfies

1 0, i=0,...,v—1v+1,...,k—-1,
(3.4) / WKppo@du={ v,  i=v,
¢ :B(u,k,c)y j=k

where S, 1) is a non-zero constant. Hence, K, ) is a k-th order kernel (for ¢ = 1)
or boundary kernel (for ¢ < 1) for estimating the v-th derivative, which we will call an
“equivalent kernel”. Denote K(, i 1) by K,k). K(u5) is the same as defined by Gasser
et al. (1985) up to a (—1)” sign. Like K, K(, k) is a polynomial kernel, too.

Let w}(t) = (W4,,..., w4 )" denote the weighting system of a kernel estimator
with K(, k). Then we obtain a kernel estimator of g®:

(3.5) ) =D @Y,

=1
where ) . .
(3.6) Wie = g Kk ( — ) :

g(v) is a kernel estimator with boundary correction. Observe that, here K, ) changes
over ¢ € [0,1]. In the case of equidistant design the definition (3.5) is asymptotically
equivalent to that given by Gasser and Miiller (1984), provided that corresponding
boundary kernels are used. For §*) and §(*) we have:

LEMMA 1. Under the assumptions Al to A4 the p-th order local polynomial esti-
mator §) at any point t € [0,1] is asymptotically equivalent to the k-th order kernel
estimator §*) defined in (3.5) in the sense that

v

w; ~1
Y
wi,c

0
(3.7) lim sup =0, defining 5= 1.

n—00 1<i<n

Lemma, 1 is given by Miiller (1987) for an interior point. This result is extended to
the boundary area by Feng (1999). Lemma 1 shows that a local polynomial estimator
with p — v odd has automatic boundary correction.

Define z; = (t; —t)/h, y; = (t; —t)/h. Let ng = [nt]+1, b = [nh], b = [nch], where
[-] denotes the integer part. Using the notation

no+b
(38) Vn(ha C) = (nh)—l——26 Z K(u,p,c) (xi)K(u,p,c) (yJ)’Y(Z - .7):

i,j=’n,0 —b.

we obtain

THEOREM 1. Let the assumptions Al to A4 hold. Then for § € (—0.5,0.5), we
have
i) Bias:

(&) (¢
(3.9) Bl — g0 = pe- L DPe) 35 @R o(alk=)),;
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ii):
(3.10) nlingo Val(h,c) =V (c),

where 0 < V(c) < oo is a constant;
iii) Variance:
(3.11) (nh)1= 2 1% var[§™) (t)] = V(c) + o(1).

For p—v even, let k = p+2, if ¢ is an interior point, and k = p+1, if ¢ is a boundary
point. Then Theorem 1 also holds. This means that the bias term is of a lower order at
a boundary point than at an interior point.

Remark 1. For bandwidth selection with the plug-in method one has to calculate
the value of V := V(1), i.e. V(c) with ¢ =1 in the interior. Simple explicit formulas for
V can be given as follows:

1
(3.12) V= 27rcf/ Kfy’k)(x)d:c
-1

for § =0 and
1 1
(3.13)  V =2¢;I(1 - 26)sinmé / 1 / 1 K i) (@)K @)z — y|®~Ddady

for 6 > 0 (Hall and Hart (1990)), where ¢y = (2r)~'C. The explicit form of V for § <0
is more complex, since the integral [ il Kury(y)lz — y|?*~1dy does not exist. However,
at any point z the kernel K, x)(y) may be written as Koy = Yoo Biz)(z — y)t =:
Ko(z)+ K1(z —y), where r is an integer, Ko(z) = Bo(z) and K1(z—y) = X, Bi(z)(z—
y)'. Note that, in the case of antipersistence we have ) 7> (k) = 0. For § <0,

(3.14) V = 2¢,T(1 - 26) sin(r6) /_ Kin(@)

x {/_1 Ki(z —y)lz — y|* 'y — Ko(z) 1 [z — yl”’ldy} dz.

y|>1

If g is estimated by a local linear fit with the uniform kernel as the weight function,
then we have, in the interior, K 1)(z) = K(z) = Iz <13/2- In this case we have
Ko(z) = Ijz1<13/2 and Ky = 0. The formulas (3.12), (3.13) and (3.14) give the same

result

26 B .
(3.15) V=2 cfT'(1 — 26) sin(wd)

526+ 1)
with V(0) = lims_,o V(6) = wcy (see corollary 1 in Beran 1999).

3.3 The MISE
Let

1
(3.16) 16) = [ lg® et

0
Denote by B,k the kernel constant of K r). The following result holds:

THEOREM 2. Under the assumptions Al to A4 and for § € (—0.5,0.5), we have
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i) The MISE (mean integrated squared error) of §) is given by

(3.17) / E{[™ ) — ¢® (0)]2}dt
——MISEaSympt(n h) + o(max(h?*~") (nh)?~ 1h‘2”))

—y ( )ﬁ V. k —_ —2v
— h2(k ) X (v,k) + (nh)25 1h 2 174
_’_O(max(hz(k—u), (nh)26—1h—2u));

ii) The asymptotically optimal bandwidth that minimizes the asymptotic MISE is
given by
(3.18) ha = Copen(26-1)/(2k+1-28)

where
1/(2k+1—26)

— 12
(3.19) Cope = [21/—}—1 26 K2V

2k—v) I(g™)E ’

where it is assumed that I(g®*)) > 0.

Note that by inserting ha in (3.17), Theorem 2 implies that the optimal MISE is of
the order

1
(3.20) /0 E{[g () — ¢ (0)]*}dt = O(n2(25~1)(k—u)/(2k+1—26)).
The following remarks clarify the results given above.

Remark 2. Theorem 2 does not hold for p— v even. For p— v even, the integrated
squared bias over the interior is of the order O(h?(P+2=¥)), but that over [0, 1] is of
the order O(h2(P+1=)+1), That is, the bias in the boundary region dominates the bias
in the interior and it will cause a slower convergence rate of the MISE. This is the
so- called boundary effect for nonparametric regression estimators. In particular, for a
kernel estimator for g, i.e. a local polynomial one with p = 0 and v = 0, the integrated
squared bias over the interior is of the order O(h*), and that over [0, 1] is of the order
O(h3) (see Gasser and Miiller (1979)). For p — v odd, the integrated squared bias
over the interior and over [0, 1] is of the same order O(h2(k ¥)). In this case we have
MISE([0, 1]) = MISE([h,1 — h])(1 + O(h)). Hence, in local polynomial fitting p — v is
often taken to be odd in order that the MISE can be calculated over the whole support
[0,1] of g. Similar to the terminology in Gasser and Miiller (1984), we call a (v + 1)-th
local polynomial estimator §®) with k = v + 2 a standard local polynomial estimator.
So, standard local polynomial estimators are those with lowest polynomial order such
that p — v is odd. The first three standard local polynomial estimators are the local

linear estimate for g, the local quadratic estimate for ¢’ and the local cubic estimate for
1

g".

Remark 3. Theorems 1 and 2 extend previous results (see Altman (1990), Hall
and Hart (1990), Herrmann et al. (1992), Csorgé and Mielniczuk (1995) and Beran
(1999)) in several ways by including § < 0, estimation of derivatives, estimation with
higher order kernels and the pointwise asymptotic behaviour in the boundary region.
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These results hold for kernel estimators with boundary correction. For kernel estimators
without boundary correction Theorem 2 holds with the whole interval [0, 1] replaced by
[A,1 — A], where A is a small positive constant.

Remark 4. 1In the case when the error process is antipersistent, one obtains higher
rates of convergence than for iid errors. For the most important case with £ = 2 and
v = 0, (3.20) yields the well known rate of convergence O(n~%/5) for the MISE in
nonparametric regression, if § = 0 (short memory, for example iid). However, consider
for instance § = —0.25 or —0.4 respectively, then for the same & and v, the rate of
convergence is O(n~12/11) and O(n—36/29) respectively. Also note that, as § — —0.5 and
k — oo, the rate in (3.20) tends to O(n~2).

Remark 5. The results in this paper can easily be extended to a parametric regres-
sion model with time series errors. If this is done, we can see that the traditional O(n™1)
lower bound for the rate of convergence of the MISE under the iid assumption no longer
holds for strongly dependent errors. If the errors are just short range dependent, the
rate is still correct but with some change in the constant. In the case of long-memory
errors, the rate is strongly reduced. An interesting fact is that the rate of convergence
is higher than O(n~1), if the errors are antipersistent, and this rate tends to O(n~?) as
6 — —0.5. Another, more extreme example is the simple linear regression model

Y: = Bo + Biti + X

with t; = i/n and an error process X; = €; — €;,_1, where ¢; are iid mean zero random
variables with var(e) = 02 < co. Note that in this case § = —1 so that Theorem 2 is not
directly applicable. It is however easy to show that in this case an O(n~?2) convergence
rate is achieved.

Remark 6. Suppose that the degree of smoothness at a point ¢ is given, i.e. there
is a ko such that g0 is continuous but g¥+1) not. Clearly, §® is only meaningful for
v < ko. The rate of convergence of the MSE is derived under the assumption that k < ko
and v < kg — 2. For k < kg, the theoretical rate of convergence is faster for larger values
of k. For k > kg, Theorem 1 does not hold, but it may be conjectured that using k > ko
does not improve the rate of convergence as compared to k = kg. An exact derivation of
this result is an open problem.

4. Bandwidth selection

Based on the results in the last section a plug-in bandwidth selector may be devel-
oped. The proposal here follows the iterative plug-in idea of Gasser et al. (1991). How-
ever, it differs from the existing iterative plug-in bandwidth selectors in the following
points: 1. The bandwidth selector proposed here is a unified procedure for nonparamet-
ric regression with different dependence structures (antipersistence, short memory, long
memory); 2. The starting bandwidth is different; 3. The bandwidth Ay for estimating
g is obtained from h (i.e. the bandwidth used for §) with an exponential inflation
method. In contrast, Gasser et al. (1991), Herrmann et al. (1992) and Ray and Tsay
(1997) use a multiplied inflation method.

Denote by hy the optimal bandwidth that minimizes the MISE of §. Plug-in esti-
mators for Ay use the formula (3.18) with the unknown constants 8, V as well as I(g(®)
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being replaced by some consistent estimators. If the error process X; is modeled para-
metrically, then both, § and V, can be estimated with the rate of convergence n=1/2 (see
Beran (1995, 1999)). In Ray and Tsay (1997) § and V are estimated nonparametrically.
In the following, the finite sample effect of estimating 6 and V is not discussed. This
problem will be considered in detail elsewhere.

A natural estimator of I(g(¥) is

n

(4.1) Hg®)=n" D [a® )"

=1

with a bandwidth hy. In the following proposition, the following modified versions of
assumptions A2 to A4 are used:

A4, A local polynomial of order p1 = p+ 2m (m € N) with p=F%k — 1 is used.

A2 Let ! = p; + 1. Then g is at least k' times continuously differentiable with
k' = max(l, 2k);

A3 hy — 0, (nhi)"2h2*¥ — 00 as n — oo.
Let L, be the asymptotically equivalent kernel for estimating g®) . The accuracy of
I (¢(®)) is quantified by the following proposition.

PROPOSITION 1. Let Al, A2 to A4’ hold. Assume that U; in (2.2) are normal.
Then

. o aem By [ 1,
(42) EU@W)—H¢“M=2@?“J%Qlifwawmuww+mmféw%%v

and
(4.3)  varlI(g™)] = of(nhy) *~Dh;*] + O(n* ).

The normality of U; are assumed for simplifying the proof. This results may be
extended to nonnormal innovations. Similar results for independent data may be found
in Gasser et al. (1991) and Ruppert et al. (1995).

The mean squared error (MSE) of I(¢®) is dominated by the squared bias, i.e.

o o fon -k B [ L b
MSE(T(®)} = {an{O2ED [7 g0 @g0 0 + (ahe> v |

The optimal bandwidth for estimating I(¢(*)) which minimizes the MSE is of the order
O(n(28-1)/(k+1+1-28))  Note that, this is not the same as the optimal bandwidth for esti-
mating g*) itself. For a bandwidth hy = O(n@8-1/(k++1-28)) we have MSE(I(g™®))) =
O(n2(-F)(26-1)/(k+1+1-26))  When [ g(®)(z)g()(z)dz < 0, the results can be slightly
improved, supplied that the constant in hy is properly estimated. However, this will not
be discussed here. In the most important special case with £ = 2, [ = 4, the optimal
choice is h = O(n(26-1/("=26)) which results in MSE(/(g")) = O(n(3¥6-1/(7-20))_

Based on Proposition 1 we propose the following algorithm for selecting bandwidth
in nonparametric regression with unknown dependent structures. The proposal is made
for general k and [. However, what we keep in mind are the two practical cases: k = 2,4
with [ = k + 2. The algorithm is defined as follows:

i) Start with the bandwidth hg = n~? with 8 = (2k +1)/(k +1+ 1);
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ii) For i =1,2,... estimate g using h;—; and let r; = y; — §(¢;). Estimate 6 and V
from r; with an approprlate method; A
iii) Set hg; =hd, witha=(2k+1- 26)/(k + 1+ 1 — 26) and set

1-26 RV
4.4 h; = 2
(44) (Zkﬂ(zu’k) I(g® (¢; by )

1/(2k+1-28)
) n(28-1)/(2k+1-28)

vi) Increase i by 1 and repeat steps ii) and iii) untill convergence is reached at some
i° and set b = ho.

The constants a and 3 may be chosen differently for different purposes. For instance,

= (2k 4+ 1)/(k + 1 + 1) may be used in order that h is not too large and assumption
A3 holds. This means that § at the first iteration is already consistent and hence 6 and
V can be estimated by the method introduced in Beran (1999). Gasser et al. (1991)
show that the starting bandwidth should not be too large. This is the reason, why they
propose to use the starting bandwidth hy = n~P with 8 = 1. For long-memory data
hfy = n~! is too small to be used at the beginning. Hence, in Ray and Tsay (1997) the
method of Herrmann et al. (1992) is used as a pilot method at the first step by assuming
short memory. Compared with ha, ho is also very small. For example, for k = 2 and
I =4, hg = o(h3) for all § € (—0.5,0.5). ho is determined by the fact that, if hg =n~ '
is used, under the assumption § = 0, then h{ = O(n~5/7).

The formula hy; = (hi;—1)® may be called an exponential inflation method. The
factor @ = (2k+ 1 —28)/(k + 1+ 1 — 28) is chosen in order that the MSE of I(g®)
is of the optimal order, when convergence is reached. The choice of o in the inflation
method used by Gasser et al. (1991), Herrmann et al. (1992) and Ray and Tsay (1997),
ie. hg; = hi—1n® with a = (1 - 26)/(2(2k + 1 — 26)), is motivated by minimizing the
variance in I(g(*)). For our inflation method, the order of the variance of I [(g®)) is
minimized by o = 1/2 for all § and k.

The main reason for using the exponential inflation method is to reduce the number
of iterations i required for obta.mmg convergence of the bandwidth. Note that, i°
depends strongly on 8. In fact, i® — 0o as § — 0.5 (see Ray and Tsay (1997)). However,
i9 also depends on the inflation method. In general, our exponential inflation method
needs a smaller number of iterations than the method by Ray and Tsay (1997). For
example, set k = 2, @ = 1/2 and 8 = 5/7. Then the relative rate of convergence of the
estimated bandwidth is the same as in Gasser et al. (1991), Herrmann et al. (1992) or
Ray and Tsay (1997), respectively. However, the number of iterations is equal to i%=4
for 6 = 0, as opposed to 11 for the method by Gasser et al. (1991) and Herrmann et al.
(1992) For § = 0.4, we have i® = 6 whereas for the proposal by Ray and Tsay (1997),
i0 is equal to 43.

The asymptotic properties of h is given by theorem 3.

THEOREM 3. Let Al and A2 hold. Let g and g®) be estimated with local polyno-
mials of orders k and | respectively. Assume U; in (2.2) are normal and the error in 6
and V is negligible, then h is a consistent estimator of hy such that

(4.5) b = har{1 + O[(ha — ha)/ha) + Op(n( =R/ (kHiH1=20))),
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A simulated example of LPF for antipersistent data

o 100 200 300 400 500
@)
A simulated example of LPF for independent data

o 100 200 300 400 500
(o)

0 100 200 300 400 500

(c)

Fig. 1. The data (long dashes), the trend (solid line) and § (short dashes) for the three
simulated examples with § = ~0.4 (a), 6§ = 0 (b) and § = 0.4 (c), respectively.

The difference between ha and hy provides a natural bound for the rate of conver-
gence of a plug-in bandwidth selector. The exact form of ha — hym will not be discussed
here. Results on this topic may be found in Gasser et al. (1991) for independent data and
in Ray and Tsay (1997) for data with long-memory. For independent data with k = 2,
I = 4, we have (ha — hy)/hm = 0p{I(g®)) — I(g®))}. Now, the rate of convergence
of the proposed bandwidth selector is n~2/7. This is the same as for the direct plug-in
estimator proposed by Ruppert et al. (1995) and it is higher than that of the proposal
of Gasser et al. (1991), where the rate of convergence is dominated by a bias term of the
order O(n~'/%) with a root n consistent variance term.
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. Table 1. Estimates of § and ha for the simulated examples.

Example 6 b 95%-CI for § ha h
Fig. 1a —0.4 —0.336 [-0.405,-0.267] 0.075 0.076
Fig. 1b 0 0.048 [-0.020,0.117] 0.106  0.110

Fig. 1c 0.4 0.417 [0.349, 0.486] 0.173 0.166

IPC-Index in Mexico Transformed Data

2500
35

25

1.5

1500
N

0.5

0 200 400 600 800 1000 b 200 400 600 800 1000
(a) b)

Fig. 2. The IPC stock market index in Mexico from Jan. 2, 1992 to Nov. 10, 1995 (a) and
transformed data r¢ with the estimated trend (b).

5. Application

Examples in this section were computed with the data-driven program for SEMIFAR
model written by Beran in S-Plus (see Beran and Feng (1999)), with the kernel smoothing
being replaced by a function for local polynomial fitting. For simplicity, unweighted
standard local fits for estimating g and g¢”, respectively, are used. Here the optimal
bandwidth is defined on the support [A,1 — A] with A =0.1.

5.1 Simulated examples

In order to show how the estimation and the selected bandwidth depend on the
dependence level, three simulated examples are shown in figures la to 1c. The data are
generated with § = —0.4,0, 0.4, respectively, following the model:

(51) YL = 2tanh(5(ti - 05)) + Xz
with
(5.2) (1 - B)'SXi = €,

where ¢; are iid normal distributed random variables, which are normalized according to
& such that the variance of X; is equal to one. The estimates and confidence intervals
given by the SEMIFAR program are summarized in Table 1.

Figure 1 shows that the accuracy of the estimation depends strongly on the depen-
dence level in the data. When § assumes a large positive value, a large bandwidth will
be selected in order to reduce the variance of the estimation. This causes a larger bias.
In this case § may be far from g, if n is not large enough. Another explanation for this
phenomenon is the local trend caused by long memory (Beran (1994)).
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5.2 A practical example

Beran and Ocker (2001) propose to analyze volatility in financial time series by
fitting a SEMIFAR model to the power transformed absolute differences r; = |Y; —
Y;—1|'/%. These turn out to be almost normal. See Ding et al. (1993) and Ding and
Granger (1996) for a similar proposal. Beran and Ocker (2001) show that long-memory
phenomenon in r; only occurs for relatively small stock markets. As an application of
the proposal in this paper, a local polynomial fit is used to analyze r; for the IPC stock
market index in Mexico from Jan. 2, 1992 to Nov. 10, 1995 (Fig. 2a). The volatility series
ry is displayed in Fig. 2b together with the estimated trend. The detrended “residual”
series X has significant long memory with § = 0.121 and a 95%-confidence interval of
[0.072,0.171].

6. Final remarks

It is clear that the bias of a nonparametric regression estimator for observations with
dependent errors is the same as that for uncorrelated errors if the estimator is a linear
smoother and the error process is stationary. However, the variance of a linear smoother
depends on how the errors are correlated. If the errors have short memory with § = 0,
then only the constant V is influenced. In particular, V is larger than (0) [ K (2,/’ gy (W)du,
when the dependence structure is dominated by positive correlations. In this case, the
optimal bandwidth is larger than in the case of independent errors (Herrmann et al.
(1992)). If the error process has long memory, i.e. § > 0, then not only the constant V'
but also the order of the variance is changed. The variance converges at a slower rate to
zero than in the case of short memory. On the other hand, if § < 0, the data are mostly
negatively correlated and ZZ‘;_ oo Y(k) = 0. In this case, the variance of G converges
to zero at a higher rate than under independence or short-range dependence.

For the practical application of the results in Section 3, the iterative plug-in method
can be adapted for bandwidth selection with unknown dependent structures. However,
as shown in Section 4, the rate of convergence of a plug-in method is determined by the
difference between ha and hyy. An interesting question is, if other bandwidth selection
rules for nonparametric regression with independent data, which aim at a direct estima-
tion of the MISE (e.g. Fan and Gijbels (1995), Feng and Heiler (1999)), can be adapted
to bandwidth selection in nonparametric regression with long memory. These methods
have some advantages over the plug-in method. For instance, for independent data, the
double smoothing bandwidth selector by Feng and Heiler (1999) does not require the
estimation of ¢g(¥), and the rate of convergence is faster than the best possible conver-
gence rate of a plug-in bandwidth selector based on ha. This and other open questions
on bandwidth selection in nonparametric regression with long- memory will be discussed
elsewhere.
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Appendix: Proofs of the theorems

PROOF OF THEOREM 1. The proof will only be carried out in detail for an interior
point t. Define z; = (t; — t)/h, y; = (t; — t)/h, ng = [nt] + 1 and b = [nh] as before.

(i): The proof of the pointwise bias is standard.

(iii): (iii) holds if (ii) holds, since

(nh)' =% h? var(§®)(t))

no+b
= (nh)' K>} wiwfy( - j)
i,j=no—b
no+b
= (nh)! =20 N @ddq(i- 5)[1+o(1)]
i,j=no—b
no+b
= ()P Y K (@) K @i — )L+ o(1)]
i,j=ng—b
= Va(h)[1 + o(1)]

(ii): The results will be proved separately for § = 0,0 < 6 < 0.5 and —0.5 < 6 <0.
The formulas (3.12), (3.13) and (3.14) will be obtained immediately.
a) 6 = 0. Observe that, for § =0, Y o _ (k) = C and

no+b no+b
Va(h) = (nh)™" > Kum(@i) Y, Ker@i)rG—1).
i=no—b j=ﬂ0—b

Let & be an integer such that b’ = o(b), b — oo as n — oo (e.g. b’ = [VB]). For
ng—b+b <i<ng+b—b we have

no+b
S Kem@rG-5)= Y, Kwn@G-i+ D Kewn)ri-27)
j=no—b lidl<b |i—j12b'

For |i — j| < b we have |z; — y;| = o(1) and hence K(y;) = K(z;)[1 + o(1)], because
¥ = o(b) and K, 1) is Lipschitz-continuous. Then we obtain

Z Ky ()i — 3) = CK py(za)[1 + o(1)],
li—j]<b’
because Y |;_; <y V(¢ — §) = C + o(1). Furthermore,
Z K(u,k)(yj)'y(i - .7)2 0(1)7
[i—j{=b

because K(,, k) is bounded and 37,5y ¥(i — 5) = o(1).
For i = ng — b or i = ng + b we have, analogously,

> Kumy i —3) = [(C+7(0)/21K ) (z:) (1 + o(1))
= O(K(l,,k)(.’l:i)).
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It is clear that D~ K, k) (y;)7(i — j) = O(K(yk)(z:)) holds for all ¢ such that ng —b <
i<nog—b+b orng+b—0b <i<ng+b. Since b’ = o(b), we have

no+b
(A1) Va(h) = (nh)™1 D" KZ, 4 (2:)[C + o(1)]

i=np—b
1
= C/—1 K(zy,k)(w)d:c +o(1).

b) & > 0. In this case we have (k) ~ c,|k[?~! with ¢, = 2¢;T(1 — 26)sin7é > 0
(see Beran (1994), pp. 61-63).

ng+b
(nh)™ % " K (@) Kk (¥5)76 - )
i,j=ng—b
no+b
= ¢ (nh)™1% D" Ky (@) K (y;)li — 526
i,j=no—b
ity
ng+b
=c,(nh)™2 > Ko@) Kw (i)l —y;?
1,j=no—b
i#]

1 1 :
= C'y/l/1K(u,k)(z)K(u,k)(y)|$_ y|*°~dzdy

(A.2) Va(h)

, c¢). The proof for § < 0 is based on the decomposition of the equivalent kernel

and the property 3 e (k) = 0, where y(k) ~ c,|k|?*~! for large k with ¢, =
2¢sT(1 — 26) sin(w6) < 0 in the case of antipersistence (see Beran (1994)). For given
¢ we have Zyiz:_b Y(E — J) = = 22|j—no|>bY(¢ — J)- Recall that the equivalent kernel
has the form K, () = > ;_o @' L5 <1}~ At a point z;, K, k) (y) can be rewritten
as K(p)(y) = Yoo Bulzi)(zi — y)' =: Ko(z:) + Ki(ws — y), where Ko(z:) = fo(:),

Ki(z:i —y) = 21;1 Br(z:)(z: — y)t.
Observing that t is an interior point we have

no+b no+b
Vo=(nh) ™% 3" Kuu(@) D, Kurwi)ri- i)
i=ng—b j=no—b
no+b
> Kww@)r(i-3j)
J=np~b
no+b
= > Ki(zi—y;)v(i - j) — Ko(z:) > i-3)
j=no—b |j—no|>b
ng+b
=c,{ Y. Kilmi—y)li—i1* " — Ko(zs) Y, |i— i
j=no—b li—no|>b

J#i
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no+b
= ¢, (nh)?1 Z Ki(z; — yj)|zi — y;12° " — Ko(:) Z e
et li—nol>b
Jj#i
1
= cﬁy(nh)% {/ Ki(z; —y)|z: — y*° " Ldy — Ko(mi)/ |z; — y|25_1dy}
-1 [y|>1
Finally, we obtain
no+b 1
Vi = cy(nh)™t Z K py () {/ K1 (z; — y)|z: — y[Pdy
i=ng—b -1
—Ko(z:) s — y|25_1dy}
[y]>1
1 1
= c’r/l K,x)(2) {/ Kz y)le —y?*dy
—Ko(z) |z — ylZa*ldy} dz.
ly|>1

The proof at a boundary point ¢t = ch with 0 < ¢ < 1 is similar to that given above
and is hence omitted. Especially, note that the proof in “(ii): ¢)” can also be carried out
for ¢ = 0. This concludes the proof. O

PROOF OF THEOREM 2. Theorem 2 follows from Theorem 1, since in the case
that p — v is odd the MISE on the boundary area is asymptotically negligible. O

PROOF OF PROPOSITION 1. From here on I(g(*) will be abbreviated as I.
a) Bias in I, denoted by B(I):
n
B(l) = n ') B{[§ ()"}
i=1

= 7 Y B ) - gD 6.

From Theorem 1, at an interior point t; we have
E{[g®(t:)2} = [B{g® (t:)})® + var{g®) (t:)}
. —k) B 1,
= [g® )] + 25~ =5 g (gD ) + (ki) RV

Since l—k is even, the part of B [f ] due to the boundary region is asymptotically negligible.
We have

A L _ )6 o
Bhy=nt ) {2";: k)%)—g(")(ti)g(’)(ti)+(nhk)25 %
ticlhi,l—hal '

1
: 0
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b) Variance in I: X

The formula. of var[] in this paper aims at the relationship between it and B(I). A
more explicit formula of var[f | in the case when X are iid, may be found in Ruppert et
al. (1995) (see also Gasser et al. (1991) for results with k = 2). -

(A.3) var[l] = n 2var {Z(g%)(ti))?}
i=1

= 0% var {an[@“@ (t) — B@® (t:))? +29® (¢) BG® (m-))]}

i=1

0 (n‘2 var [i(f}(k) (t:) — E@E™ (ti)))2}>

+0 (n‘z var [an §®) (1) E@G® (ti))D =Vi+Vs,  say.

i=1

We consider at first V;. Define & = ) (t;) — E(§®(¢;)). We have

37| =7t 33 e ) - ot

i=1 j=i

(A4) n~2var

with ;, being an interior point. (A.4) is due to the fact that var[¢?] is of the same order

at each point and cov(£2, 532) = o[var(¢2)] as [i— j| — co. Under the normal assumption,

(A5)  var(&) = var[(§™ (ti) — E(§™ ()]
= B((§%(t:y) — BG® (t:,)"] — B*[(§® (t,) — EG® (8:,))))
= 3var’[§(*) (t;,)] — var[§®) (t:,)]
= 2var’[§™ (t;,)].
By combining (A.4) and (A.5) we obtain Vi = o(var?[§¥) (t;,)]) = o((nhi)¥~2h;*F).
Let by = [nhg]. And let @;, ¢ = 1,2,...,2bg + 1, be the possible nonzero kernel
weights for §(*)(t;) at an interior point (see Section 3), which are symmetric about

i = by + 1. Observing that the influence of the points with ¢ < 2bg or i > n — 2b;, on V5
is asymptotically negligible, if hy — O.

n—2by
V2 =0 (n-z var[ > @"“)(ti)E(g(’“)(ti))D

i=2bp+1 .
n—2byg i+by
=0 (n?var{ > E@®®) | D @int1Y;
1=2br+1 j=i—bg
n—2bg i4-bx
=0 [n2var Z Z Bj—igbp+1EG® (Gigpr1-5)) | Vi p | -
=2b+1 | j=i—bx

Observing that > 4+ B it bp 11 E(GP (bigbet1-5)) = g®P(t;) and g@*) is bounded,

j=i—bg
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we have
n—2by
(A.6) Vo =0 (n‘2 var[ Z %) (t,)Y; )
i=2bx+1
=0 (n—2va,r {Z YD = O(n*¥-1).
i=1

Proposition 1 is proved. O

A SKETCHED PROOF OF THEOREM 3. In the following it is assumed that the error
in 6 and V is asymptotically negligible. Hence the unknown parameters 6 and V will be
directly used in the proof.

The iterative plug-in algorithm is motivated by fixpoint search. Here a bandwidth
By = O(n(¥~1)/(2k+1-28)y plays an important role. Observe that, on one hand we
have h}, = O(hy). On the other hand, k) is a bandwidth such that §® = O,(g(®)
and I = Op(I). But now, both of %) and I are not yet consistent. Assuming that
the starting bandwidth satisfies ho = o(h}), e.g. hg = n~(2k+1D/(k++1) a5 proposed in
this paper, an iterative plug-in bandwidth selection procedure may be divided into the
following three steps according to the relationship between hy ; and hy.

Step 1. When hg; = op(hl), I = Op(n?*~1h~(2k+1+8)} is infinite in probability.
In this case one obtains h; = Op(hg;). This implies that h;_; = o(h;), i.e. the here
bandwidth is of larger order.

Step 2. When hy,; = Op(h4), I = O,(I). Now, h; = Op(hn). But, in general, the
constant is not yet consistent.

Step 3. When h}, = op(hs,), I is consistent and one obtains a consistent band-
width selector h;.

Let i be defined as in Section 4. Let i’ be the number of iterations in Step 1, and
i* the number of iterations in Step 2 (i* = 0 or 1). Then i® = ¢’ +i* +k+1 where k+ 1
is the number of iterations in Step 3. The selected bandwidth k; is consistent in the first
and all subsequent iterations in step 3. However, the next k iterations (after the first
one in Step 3) still improve the variability of the estimator A (Gasser et al. (1991)). For
given 8, k and [, the required number of iterations depends on «, 8 and the inflation
method. Assume that k¥ = 2, | = 4. By the proposal of Gasser et al. (1991), i’ = 7,
i* =1 and i® = 11. The purpose of Gasser et al. (1991) is to minimize the variance in I.
When the MSE of [ is to be minimized, more iterations are required. By the proposal
in this paper for minimizing the MSE of I, if § = 0, we have ¢’ = 3, i* = 0 and i® = 6.
For 6 = 0.4, we have i = 6, * = 0 and i® = 9 (note that i® = 43 by the proposal of Ray
and Tsay (1997) for the case with § = 0.4). In both cases, Step 2 does not appear.

The asymptotic results and hence the rate of convergence does not depend on ho.
Theoretically, any Ao such that A1 — 0, nhg1 — 00 as n — oo could be used as the
starting bandwidth. The asymptotic results depend only on the inflation method and «.
The rate of convergence for our proposal can be calculated as follows.

We have

(A7) (b — hm) /b = (b — ha)/hag + (ha — har) [
= (h = ha)/ha + (ha — hu) /b
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Taylor’s expansion of h gives

. . 1 i

h—hA——2k+1_26hAI I -1I).
It follows that 1

h— ERL R o Y4 S

(h—ha)/ha HT1-25" (I=1).

Let hy ;0 = O(n(8-1)/(k+1+1-28)) 'then we obtain

(A8) (h = ha)/ha = O, (n(=F)@8=D/(b+141-28))

Theorem 3 is proved by combining (A.7) and (A.8). O
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