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Abstract. Knowing a probability density (ideally, an invariant density) for the tra-
jectories of a dynamical system allows many significant estimates to be made, from
the well-known dynamical invariants such as Lyapunov exponents and mutual infor-
mation to conditional probabilities which are potentially more suitable for prediction
than the single number produced by most predictors. Densities on typical attrac-
tors have properties, such as singularity with respect to Lebesgue measure, which
make standard density estimators less useful than one would hope. In this paper we
present a new method of estimating densities which can smooth in a way that tends
to preserve fractal structure down to some level, and that also maintains invariance.
We demonstrate with applications to real and artificial data.
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1. Introduction

Density estimation in one dimension is an essential part of data analysis, and meth-
ods such as histograms and kernel density estimators (see, for example, Silverman ( 1986))
are well known. In higher dimensions, the problem is much harder, principally due to
the requirement for a large amount of data. For dynamical systems, density estimation
is potentially extremely useful, but the problems of practical estimation are particularly
acute because the usual assumptions used to smooth the data points are not appropriate.
In addition there is an “invariance” constraint that should often be applied.

In this paper we show how one can take advantage of the existence of high qual-
ity one-dimensional density estimators to construct higher-dimensional estimators with
smoothing properties that are more appropriate for dynamics, and how to apply invari-
ance constraints to these estimators. The approach is based on the Radon transform,
widely used in tomography, though our application requires different algorithms to the
FFT-based methods that are used in medical imaging. Allingham et al. (1999, 2001)
have described this method and compared it with other methods, but have not shown
how to estimate densities that explicitly satisfy an invariance constraint; the present
paper will provide little in the way of detail on the estimation method, but will show
how to make the estimated densities invariant.

*This research was partially supported by the Australian Research Council.
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In Section 2, we discuss the requirements for a useful density estimator for dynamical
systems. In Section 3, we describe the Radon transform and show how it can be applied
to reconstruct densities. In Subsection 3.1 we discuss the computational aspects of the
method, with reference to an example using experimental data in Subsection 3.2. In Sec-
tion 4, we consider how to enforce invariance, and present an example that demonstrates
that invariance can sometimes greatly improve dynamical behaviour.

2. Densities and dynamics

In this paper we are interested in discrete-time dynamical systems with dynamical
noise. That is, if the state is z; € R™ then

(2.1) Te41 = (@) + (@)

where the dynamical noise ¢; is an i.i.d. random process, and may be identically zero. In
the zero noise case, the system will in general have attractors, which may be fixed points,
periodic orbits, or more complicated objects possibly having a fractal structure. In the
noisy case, Chan and Tong (1994) show that, under reasonable assumptions, (2.1) will
be an ergodic stochastic system. That is, there will exist a definite probability measure
representing the long-term limiting distribution of the system’s states. Equivalently, the
probability measure can be thought of as attaching weights to different parts of phase
space corresponding to how much time a “typical” trajectory spends there. Given a
sufficiently smooth €; we may take this distribution to be a probability density.

In this paper we will only consider systems with dynamical noise; however, it is
interesting to note that the methods we present could also be applicable to the noiseless
case: Although we do not have as strong a guarantee as in the noisy. case, noiseless
systems do often possess a “physically” relevant invariant measure representing the long-
term behaviour of typical trajectories. More troublesome is the fact that these physically
relevant invariant measures are unlikely to be densities. We might, none the less, attempt
to estimate them as densities —we could then think of our estimates as being relevant
for the system with a small amount of added noise. For the behaviour of dynamical
systems in the presence of small noise, see Zeeman (1988), and for discussion of some of
the problems of the existence and estimation of measures, see Froyland (1996).

Given a density p of the long-term distribution of states of the system, we can use
it to give essentially all the useful information about the system: for example, with
either known or embedded states, dynamical invariants such as Lyapunov exponents can
be calculated as suitable averages (Froyland et al. (1995); Froyland (2001)), while with
embedded data we can compute mutual information (Allingham et al. (2001)). Froyland
et al. (1995) and Allingham et al. (2001) have discussed some of the uses of densities
in dynamics. In the present paper we will concentrate on estimating the density and
on applying it for simulation and prediction. For prediction, we must estimate joint
densities and from them deduce conditional densities. For example, if y; is observed and
2zt = (Yt Yt—1, - - -, Yt—k) is the embedded state, we can estimate the conditional density
P(ye+1 | 2:) as discussed in Section 4. Thus, the estimated density p induces a process
that may serve as a model of the original system.

At first, we will consider how to estimate densities from one or more orbits of the
system, without concerning ourselves with invariance. We assume that a finite orbit
segment x4, t = 1,...,T, is either known for each ¢, or has been re-created by embedding
observed data (Stark (2001)). Later we will show how to ensure the density is invariant.
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That is, the density p is invariant under the action of the induced process p(y;+1 | 2¢)
—this usually ensures that p is in fact the long-term distribution exhibited by the induced
process.

The question is now, how can we compute a density from an orbit segment in a
space of dimension greater than 1, given that the orbit segment is nothing more than a
finite set of points? We must make some extra assumptions which result in smoothing
the points in some way, so as to interpolate between the points.

The natural thing to try first is a histogram, possibly one that adapts itself to the
data (Fraser and Swinney (1986)). For purposes such as conditional density estimation,
this approach appears to require too much data (Allingham et al. (2001)). An alternative
is to use some sort of smoothing kernel (Silverman (1986)), but unfortunately, as was
shown in Allingham et al. (2001), these methods suffer in more than one dimension
through being unable to alter the directions in which they smooth from place to place.
(There is no problem in one dimension as there is no choice about the directions in
which to smooth, only the degree.) As such, it is difficult to prevent kernel methods
from smoothing excessively across important structures if we are to maintain adequate
smoothing in other directions.

3. The Radon transform and density estimation

Kernel estimators, and even histograms, work well in one dimension. Let us as-
sume from now on that we can always make adequate one dimensional estimates where
required. We are going to describe a method in which a large number of these one di-
mensional estimates are used to construct a higher dimensional estimate. If we think of
a gray-scale image as being equivalent to a probability density, this approach is already
well-established in medical tomography, where images such as X-rays taken from differ-
ent angles are combined into a single two or three dimensional picture. Each image can
be thought of as a projection, in a particular direction, of the density function of bone
and tissue. The original density is to be reconstructed from the projections.

The Radon transform (Lim (1990)) describes the action of a projection on a function.
‘Tomographic image reconstruction uses many projections to estimate the original density
by inverting the Radon transform.

The Radon transform for a function p : R® — R is a projection onto a line in the
direction of unit vector 7, given by

(3.1) ot 7) = / 5(t — 11 - o)p(z)dz.

Here, t is the projection of a point z € R” onto the line, 7 - z is the inner product, and
6 is the Dirac delta function. There are efficient FFT methods for computing this linear
transform and its inverse: see Lim (1990).

In our application, we project data points in R” onto each of many lines, and use a
one-dimensional density estimator to reconstruct the density on each line. We then use
the inverse Radon transform to deduce the density at points in R”.

The function we are trying to estimate is a probability density and is therefore non-
negative. A simple inverse Radon transform will not preserve non-negativity. Although
this is also true in medical imaging, tomographic reconstructions are interpreted by eye
and artifacts can be ignored. For present purposes, however, the artifacts make an FFT-
based reconstruction essentially useless (Allingham et al. (2001)). We must add the
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constraint p > 0 explicitly. This will force us to use less efficient methods: specifically,
we will use quadratic programming, which takes time bounded by a polynomial in I.J
where [ and J measure the problem size (as defined in Subsection 3.1) rather than the
O(1Jlog(1J)) of FFT methods.

3.1 Computational considerations ,
In two dimensions the Radon transform (3.1) becomes

(3.2) p(t,0) = /6(t — zcosf — ysin§)p(z,y)dx dy.

We use a finite set 0;, j = 1,...,J, of projection angles. For each angle §; we project
the data points onto the line making an angle of 6; with the z-axis, and then compute
a one-dimensional kernel density estimate K (t,6;) for that projection, evaluating it at
points t;, 1 =1,...,1.

Assume we want to evaluate p at a finite set of points (zx, ), possibly points on a
grid. Our estimate of the density at each of these points represents the density averaged
across a region that the point “owns”, such as a grid box; we will call the region the
(k,£) pizel. Likewise, each point ¢; on the projection line at angle f; corresponds to an
interval that we shall call the (¢, j) interval. Equation (3.2) discretizes to

(3.3) p(ti,0;) = Z A(i, zr cos 05 + yesin ;) p(x, ye)
k,l

where A(%, 2;ke) is the fraction of the area of the (k,¢) pixel that projects onto the (i, §)
interval. (As a result, A = 0 for most choices of i, j, k and £.)

Make p(t;,0;), i =1,...,I, 5 =1,...,J, into a vector R € R™ where m = I x J
in any suitable fashion, and likewise make p(zx,ye) into a vector P € R™. Then (3.3)
becomes a matrix equation

(3.4) R=AP

where the elements of the m x n matrix A correspond to A from (3.3). After solving (3.4)
for P, we can unpack the vector P into p(z,ye) and so obtain the desired estimate. Note
that A is sparse because most (k,£) pixels have zero area projection onto a given (4, )
interval: that is, A(%, 2j5¢) = 0 for most values of %, j, k and £.

Since m # n in general, (3.4) will not have a unique solution. It is usual to use
enough projections so that m > n, and to find an approximate solution to the resulting
over-determined set of equations. We have found that minimizing in either the ¢; or ¢
norms works well; the first gives rise to a linear program and the second to a quadratic
program, for both of which there exist efficient solution packages. In either case, it is
simple to add the constraint P > 0 to the solver. For the #, case we solve

minimize ¢ W2e over P, e subject to P>0and e = AP — R.

Here we have introduced a weight matrix W = diag(w;) which, as described in Allingham
et al. (2001), places less weight on large R; values, which are likely to have greater errors.
A possible choice for w; is 1/ max{R;,é} for some small positive §. The quadratic
program is strictly convex and has a unique solution. It can be solved using either
simplex-based or interior point methods, though it is important to take advantage of
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the sparsity of A. For the examples presented in this paper, we used the optimisation
package MOSEK, (see EKA Consulting (accessed 2001) and Andersen and Andersen
(2000)) to solve the resulting quadratic programs. Even with sparse matrix methods, the
polynomial growth of computation time makes it difficult to get fine resolution in higher
dimensions because of the large number of pixels required. Resolutions on the order of
100 % 100 in 2 dimensions, with a few hundred projections, are readily achievable, taking
about one day of computation time on a 350MHz PC. For resolutions of only 50 x 50
in 2 dimensions, as is used for the examples in Subsection 4.1, the computation time is
cut to about 1 hour. In higher dimensions we must either assume the density in certain
pixels is zero (for example, if we believe the attractor is confined to some small region),
or reduce the resolution.

3.2 Application to neural recordings

Part of a time series of data from a recording of a voltage-clamped squid giant axon
(Mees et al. (1992)) is shown in Fig. 1, together with a two dimensional embedding of
the full data set, which contains 400 points. This data has been modified somewhat.
Firstly, the initial 100 points have been discarded, as they appear to represent a transient.
Secondly the time-series has been “unfolded” according to the transformation:

Vg, V1 < —130
Ve vy + 70, otherwise.

This unfolding has the effect of changing the system from one with dynamics appearing to
be “slightly more than one-dimensional” to a system with truly one-dimensional dynam-
ics. It is clear that this transformation is invertible. Finally, the data was transformed
again to remove intervals clearly having zero-density, and rescaled to lie in [-.5,.5]. Ref-
erence to Fig. 1 suggests a system with one-dimensional chaotic dynamics, and some
degree of noise.

Using the £; norm and the method of Subsection 3.1, we estimated a density, which
is shown in Fig. 2. The estimate is p(v;41,v:) where v is the transformed axon voltage.
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Fig. 1. A segment of the time series from the squid giant axon experiment, and a lag-1
embedding of the entire 400 point data set. The data have been transformed in order to
produce a system with one-dimensional dynamics, and to compress regions where the density
would be zero.
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Fig. 2. A mesh plot and the corresponding contour plot of the density estimate of the embedded
transformed squid data. The differential smoothing along and across the attractor is strongly
apparent in the mesh plot.
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Fig. 3. A time series simulated from the two dimensional squid density estimate, by converting
it to a conditional probability estimator and sampling recursively from that. The embedding
makes apparent the effect of the discretization of the estimator, but the general features of
the embedded data have been preserved (see Fig. 1). Note the outlier points, caused by small
nonzero artifacts in our estimate. Also note that there are some points in the simulation just
outside the boundaries of this figure and hence not shown here: the smoothing causes the
density estimator to spread slightly too far. This is also apparent in the contour map in Fig. 2.

From this, we compute

_ P(Vey1,v;)
(3.5) PVt | ve) = o)

so we are assuming the dynamics is one-dimensional, with the voltage as the state. We
assume the original system is stationary, so the conditional density estimator can now
be used to generate simulations of the system by starting with any vy and, whenever v,
is known, drawing v;;1 from the conditional distribution implied by (3.5).

A typical simulation and its embedding are shown in Fig. 3. Within the limitations of
the discretized grid on which we estimated p, the dynamics has been captured relatively
faithfully.

Allingham et al. (2001) have described other applications of the density estimate
for this data, for example in computing Lyapunov exponents.
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4, Invariance

So far, we have not required that the probability density, p(xt-1,2¢), that we esti-
mate be invariant under the action of the induced system,

(4.1) Prob(z; | Z1-1,81_2,...) = p(xt | T4-1) (: T’}’)%%) .

A necessary condition for this invariance is that its projection onto each axis (or onto
each coordinate plane) be the same. That is, for all z,

(4.2) JECOUE [ plw )

Again assuming stationarity, this must be true since every time the system enters the
state z (from some state y with frequency p(y,z)) it must also leave the state z (to
some state z with frequency p(z, 2)). In fact (Kilminster (2002)), it turns out that this
condition is also sufficient to guarantee that p is invariant under the action of the induced
system associated with it. It is usually true, then, that the long-term behaviour of (4.1)
will match p.

We expect invariance to be helpful since if p is an estimate of the density of our
embedded data, we should expect it to be close to the true density of “embedded states”
of the original system. If p is also invariant then the distribution of states generated
by (4.1) will match p, and hence be close to that of the original system. Thus invariance
should usually ensure a model that has behaviour similar to that of the original system.

To enforce the invariance condition for a density estimator of a two dimensional
embedded system, we therefore need only add the constraint

(4.3) MLP =1I,P

where II; and II; sum the discretized densities onto the = and y axes respectively, with
the summation expressed in terms of the packed P vector. Since this constraint is linear
it is easily incorporated into the quadratic or linear program to be solved.

Our final problem definition is therefore

minimize €7 W2e over P, e subject to P >0, €= AP — R and II; P = I, P.
The additional constraint typically makes little difference to the solution time.

4.1 The need for invariance

Ensuring invariance is less important than might be expected in some cases since
usually the density is derived from embedded data, and for most data, points (z¢—1,x),
there is a corresponding point (zt,7:4+1). For this reason, the estimated density of-
ten comes very close to satisfying (4.2). To demonstrate that invariance is sometimes
important, we look at a one-dimensional map forced by noise. The orbit is given by
equation (2.1), where the noise realizations e, are i.i.d. N(0,0.152) random variates. The
map f is given by

f(z) = 2z exp(—z®*) + 0.15 exp(—(52)?)

and is shown in Fig. 4. Observe the slight asymmetry for z around 0. We remark that
this map has a stable periodic orbit of period 5, but unstable fixed points of all periods.
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Fig. 4. The map used to demonstrate the need for invariance has a slight asymmetry around
z = 0. We show a typical time series generated by this map according to equation (2.1). The
asymmetry of the map is reflected in the time series, with z spending more time on the positive
axis than on the negative axis.

Estimate Long Term Density for Estimate

x_{t-1}

Fig. 5. Density estimate without invariance, and density of states from the induced system.
There is a marked difference between the two.

Estimate Long Term Density for Estimate

Fig. 6. Density estimate with invariance, and density of states from the induced system. The
two densities are indistinguishable.

The level of the noise is sufficient to prevent the orbit from settling into the basin of the
stable orbit, as seen in the time series that accompanies the map.

In Figs. 5 and 6 we show the density estimates with and without invariance for
p(xs—1, ;) calculated for the 150 points of the time series shown in Fig. 4, and also the
long-term density of states, (z¢_1,z:) generated from the system each estimate induces.
In Fig. 5 we made no attempt to enforce invariance, while in Fig. 6, we added the
constraint (4.3) to the quadratic program in order to generate an invariant estimate.
While by eye, the two estimates appear very similar, the behaviour of the models induced
by each varies markedly.
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Fig. 7. Free-run simulations both with and without invariance. The invariant estimator is
more faithful to the dynamics. '
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Fig. 8. The “up-down” statistic shows a strong bias in simulations from the ordinary density
estimator, but none in the estimator with the invariance property.

We can see the difference in behaviour in Fig. 7 in which we have plotted free-run
simulations for the estimate both with and without invariance. A fairly characteristic
property of our original system (as can be seen in Fig. 4) is the greater proportion of
“upward spikes” to “downward spikes”. We see that the invariant estimate respects this
property, whereas without invariance the ratio has become closer to 1 : 1. The invariant
estimator is more faithful to the true dynamics.

We can measure the performance of models with respect to matching the proportion
of “upward” and “downward” spikes by considering a simple “up-down” statistic that
measures the proportion of time that z; < 0 (i.e., it measures something to do with the
proportion of down spikes). Figure 8 shows experimental results, plotting this statistic for
each of 100 different simulation runs, again each of 150 points, against the value obtained
directly from the data used to generate each density. The invariant estimator (crosses)
shows no bias, and reflects the data, but the estimator without invariance (circles) shows
a strong bias, with some gross errors. (The true proportion is approximately equal to
0.338.)

5. Concluding remarks

We have introduced a new density estimation method based on a weighted Radon
transform, but with added non-negativity and invariance constraints that are necessary



INVARIANT DENSITY ESTIMATION 233

for estimating probability densities in dynamical systems, but which increase the com-
putational complexity beyond the standard FFT-based use of Radon transforms.

The application and example in the present paper showed only the use of the es-
timator in simulation, by converting a joint density to a conditional density, but the
estimator can also be used to find many of the standard dynamical invariants.
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