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Abstract. A large number of statistical procedures have been proposed in the litera-
ture to explicitly utilize available information about the ordering of treatment effects
at increasing treatment levels. These procedures are generally more efficient than
those ignoring the order information. However, when the assumed order information
is incorrect, order restricted procedures are inferior and, strictly speaking, invalid.
Just as any statistical model needs to be validated by data, order information to be
used in a statistical analysis should also be justified by data first. A common statisti-
cal format for checking the validity of order information is to test the null hypothesis
of the ordering representing the order information. Parametric tests for ordered null
hypotheses have been extensively studied in the literature. These tests are not suis-
able for data with nonnormal or unknown underlying distributions. The objective of
this study is to develop a general distribution-free testing theory for ordered null hy-
potheses based on rank order statistics and score generating functions. Sufficient and
necessary conditions for the consistency of the proposed general tests are rigorously
established.

Key words and phrases: Distribution-free test, lack-of-fit, ordered null hypothesis,
order restricted inferences, partial order.

1. Introduction

In some scientific investigations, prior subject matter knowledge and past experience
may provide valuable information about the ordering of treatment effects at increasing
treatment levels, even though the exact magnitudes of the treatment effects are still
unknown and need to be studied. This type of information, while still incomplete, can
be useful in an investigation aimed to acquire a more specific understanding of the
magnitudes of the responses. Many researchers have devised statistical procedures that
explicitly utilize available order information. As expected, these procedures are typically
more efficient than the corresponding omnibus ones without using the order information.
The books by Barlow et al. (1972) and Robertson et al. (1988) summarize many order
restricted procedures. Since then, an additional large number of publications on order
restricted inferences have emerged.

However, perceived order information may deviate severely from the true model
underlying the current data. When the assumed order information is moderately to
severely misspecified, any order restricted statistical procedure performs poorly and,
strictly speaking, is invalid. Therefore, just as model checking is indispensable in any
statistical analysis, it is necessary to justify the validity of order information based on
the current data before using it. In other words, the data should be allowed to speak for
themselves about the assumed order information.

As a concrete example, consider the study conducted by Hundal (1969) to “assess
the purely motivational effects of knowledge of performance in a repetitive industrial
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task. The task was to grind a metallic piece to a specified size and shape. Eighteen
male workers were divided randomly into three groups. The subjects in the control
group A received no information about their output, subjects in group B were given
a rough estimate of their output, and subjects in group C were given accurate infor-
mation about their output and could check it further by referring to a figure that was
placed before them.” (also see Hollander and Wolfe (1973), p. 121.) The basic data
in Table 10 (Section 4) consist of the numbers of pieces processed by each subject in
the experimental period. One question of interest to the investigator is whether differ-
ent degrees of knowledge of performance affect the output. This can be answered by
testing the null hypothesis of equal means for the three groups against the alternative
hypothesis of unequal means. The Kruskal-Wallis test yields a P-value of 0.113, which
indicates insufficient statistical evidence to reject the null hypothesis. Now suppose that
past experience indicates that increased degree of knowledge of performance will not
decrease productivity in this particular task. Then, the alternative space is restricted to
increasing treatment effects, for which the Jonckheere-Terpstra test can be used. The
resulting P-value is 0.0231, which indicates strong evidence of motivational effects on
productivity. Order information (assuming its validity) not only provides an investigator
with more efficient procedures, it can also help him select proper statistical inferences.
For instance, in the motivational effects example above, it is probably more relevant to
comparc succcastve degrees of knowledge of performance using Lec and Spurrier (19954,
1995b) than to conduct all pairwise comparisons. With all the benefits of utilizing order
information, however, one should remember that the very basis for the use of order re-
stricted procedures is the validity of the assumed order information. One needs to ask :
Do the data agree with the assumed order information?

A common statistical format for checking the validity of order information is to test
the null hypothesis of the ordering representing the order information. The nature of
this type of testing is the same as that of a goodness-of-fit test. As D’Agostino and
Stephens (1986) point out, “The major focus is on the measurement of agreement of the
data with the null hypothesis; in fact, it is usually hoped to accept that Hp (the null
hypothesis) is true”.

Several authors studied parametric procedures for testing the null hypotheses of a
given ordering. Eeden (1958) considered the situation in which the null hypothesis im-
posed a simply ordered trend on the normal means. Perlman (1969) considered testing
for null hypotheses defined by closed convex cones assuming multivariate normal dis-
tribution. Robertson and Wegman (1978) studied the distributions of likelihood ratio
tests for ordered null hypotheses under normality and extended the results to expo-
nential families. Mukerjee et al. (1986, 1987) studied multiple contrast tests and their
power functions. Wollan and Dykstra (1986) considered the use of a conditional test
and found that it was less biased than the likelihood ratio tests. Shi (1988) derived
likelihood ratio statistics when the order restriction was defined by the positive orthant.
Testing for ordered null hypothesis has also been studied in some nonnormal parametric
settings. Robertson (1978) and Lee (1987) considered testing for the null hypothesis of
an order restriction on multinomial parameters. Dykstra and Robertson (1982) obtained
likelihood ratio statistics for testing the null hypothesis of star-shaped multinomial pa-
rameters. Singh and Wright (1990) considered testing for an order restriction in fixed
effects models. Li and Sinha (1995) considered ordered null hypotheses about gamma
scale parameters.

Prior order information is most valuable in applications with small to moderate
sample sizes. In these applications, the assumption of parametric underlying distribu-
tions is usually untrue and cannot be efficiently verified. Due to insufficient sample sizes,
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the assumption of normal distributions cannot be justified by central limit theorems. A
traditional solution to this kind of problem is to use a nonparametric test, which does not
assume specific underlying distributions. Parsons (1979) considered rank analogies to
the likelihood ratio tests for ordered null hypotheses. Shiraishi (1982) considered scores
other than the Wilcoxon scores.

The major objective of this study is to develop a general distribution-free testing
theory for ordered null hypotheses based on rank order statistics and general score func-
tions. Special cases of this theory are several intuitive distribution-free tests analogous
to the likelihood ratio and multiple contrast tests in a parametric setting. Sufficient and
necessary conditions for the proposed tests to be consistent are rigorously established.

The layout of this paper is as follows. Section 2.1 introduces a general testing theory
and proves the distribution-free property. Section 2.2 provides sufficient and necessary
conditions for the consistency of the proposed tests. Section 3 presents power character-
izations of several special tests based on simulation. Section 4 analyzes the motivational
effects example using the proposed method. A summary is given in Section 5.

The rest of this section gives a mathematical description of the research question.
Since most previous researches on this topic assume one-way models, this paper consid-
ers the corresponding nonparametric location-shift model. Extension of the proposed
methodology to other nonparametric models such as two-way layouts is straightforward
and will be discussed in Section 5.

Let Xi1,...,X1nyy- -, Xk1y-- -, Xkn, be k independent random samples from con-
tinuous distributions with cumulative distribution functions F(X — 61),..., F(X — 6}),
respectively, where §; denotes the median of the i-th population and F(z) is completely
unknown.

Most order information about #y,...,60; can be represented by inequalities among
61,...,60k; thatis, 6, < 6, for some pairs (s,t), wherel < s, ¢ < k. The order information,
or equivalently, the corresponding inequalities, defines a subset Q of R* as the restricted
parameter space for 8 = (6y,...,0x). Some commonly seen orderings about 6y, ..., 6,
are as follows:

(i) Simple ordering: Qs = {#: 61 < --- < 6},

(ii) Simple tree ordering: Q7 = {#: 6, < 6;,i=2,...,k}

(iii) Umbrella ordering with peak p: Qu, ={8:6; < - <0, > --- > ;}.

The question of checking the validity of prior order information is to test

(1.1) Hy:6€Q versus Hy:8¢ RF—-Q.

A pair of populations, (s,t), 1 < s #t <k, will be called related in Q if §; < 6; for
any 8 € Q. Furthermore, if there is no ¢, 1 < ¢ # s, t < k, such that 6, < 6, < 6, for all
0 € Q, then related pair (s,t) will be called directly related in Q. Let DC(Q) = {(s,1):
(s,t) is directly related in Q, 1 < s # ¢t < k}. Then, DC(Q) is the smallest set of
related pairs that contains the complete order information. This is because deleting any
pair from DC(Q) leads to a less restrictive or informative ordering about 6y,...,80x. Let
C(Q) = {(s,t): (s,t) is related in Q, 1 < s # ¢t < k}. Then, C(Q) is the largest set of
related pairs that contains the complete order information. This is because adding awy
new pair to C(2) leads to a more restrictive or informative ordering about 6,,. .., 6.
The minimal set DC(Q) and maximal set C'(£2) for the three orderings (i), (ii) and (iii)
are, respectively,

(i) Simple ordering: DC(Q) = {(i,i+1):i=1,...,k —1}

C(Q)={G,7):1<i<j<k},
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(ii) Simple tree ordering: DC(Qr) = C(Qr) = {(1,4):1=2,...,k},
(iii) Umbrella ordering with peak p:

DC(Qy,) = {(i,j) s j=i+1lfor 1<i<p-1,
and j=i—1forp+1<i<k}
C(Qu,) ={(i,§) :1<i<j<p andp<j<i<k}
Obviously, DC(Qy,) = DC(Q;) and C(Qy,) = C(£s).
It is easy to see that any set B((Q) satisfying DC(Q2) C B(Q) C C(Q) contains the

complete order information about 6y,. ..,0;. Thus, each such B(Q) provides a basis for
checking the validity of the order information.

2. A general nonparametric testing theory

Section 2.1 provides a general method for constructing distribution-free tests for
testing question (1.1): Ho : @ € § versus Hy : 8 € Rk — Q. Section 2.2 establishes
sufficient and necessary conditions for the proposed tests to be consistent.

2.1 Test Statistics and Distribution-Free Property
Let R;sﬂ be the rank of Xyj in the sample of mg — g + 17t items obtained by

combining the s-th and ¢-th samples. Obviously, R§.St) is also a function of the joint rank
vector R = (Ry1,..., Ringy---» Rk1, .-, Rkn,), where R;; is the rank of X;; among all
the N = ny + ...+ ni observations from the k samples combined.

Consider general scores {an,, (1) }i=t for the s-th and t-th samples satisfying

amst(]‘) S am.st (2) S U S amst (mst)~
A two-sample linear rank statistic for samples s and ¢ is of the form
Mo (R) =) am, (BS™).
j=1

As an example, the Mann-Whitney-Wilcoxon rank sum statistic
23 )
' ¢
Wst (R) = Z Rgs
j=1

corresponds to scores am,,,(t) =14, i = 1,...,mg. The expected value and variance of
M,,(R) under 05 = 0, are, respectively,

’

Eos=0t (Mst) = ntamst

and
0f.m.. = Var M., (R)) = = -1 S ) — @m,,)?
O:mgy — os=9e( st( )) - Mt (mSt )Z(amst (Z) amst) )
$ i=1
where

Mst

1
a = — Za 1).
Mse Mt — mst( )
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To facilitate the proof of consistency of the proposed tests in the next subsection, the
following version of the standardized M, (R) is used:

’

M, (R) — niGm,,
Mst(R) - St\(/ﬁ)a t s .
0:mge

The standardized Mann-Whitney-Wilcoxon statistic used in this paper is thus

Wer(R) — Bo,—o (Wa(B) _ X5 B — mu(mss +1)/2

WolB) = TN et VaB) N 1712

See Chapter 9 of Randles and Wolfe (1991) or Chapter 3 of Hettmansperger (1991) for
details.

For any fixed B(Q) satisfying DC(2) C B(2) C C(f), let | B| denote the number of
elements of B(Q2). For example, |[DC(Qs)| = k — 1 and |C(Qs)| = k(k + 1)/2. Without
loss of generality, the |B| statistics, M (R), (s,t) € B(2), will be arranged according
to their indices (s,t)’s so that the |DC| pairs (s,t) € DC(Q) are in lexicographic order,
followed by the remaining |B|—|DC]| pairs (s,t) € B(f2)— DC(Q), again, in lexicographic
order. The arranged M (R), (s,t) € B(Q2) will be denoted by M;(R),..., M,p|(R).

Suppose that In(zy,...,7|5) is a function on RIB! and k(n, B(Q)) > 0 is a positive
scaling constant. This paper proposes the following test statistic:

T(R,n, B(Q)) = k(n, B(QY)) - ln(My(R), ..., M 5| (R)),

where n= (ny,...,ng).
The following are three natural special cases of T(R,n, B(Q)):
(1) Nonparametric Multiple Pairwise Contrast Test Statistic:

Ck R) = i W
B(n)() (s,tgrélg(n) +(R)

corresponding to k(n, B(Q)) = v/N and lf.c*)(xl, .-+, T|B|) = min;<;<|B| Ti.
(2) Test Statistics Based on Distances to the Null Hypothesis Space:

Dpy(R)= D g(max{-W.(R),0})
(s,t)€B(2)

corresponding to k(n, B(R)) = v/N and l,(,D)(xl,...,a:|B|) = —Zlﬂ g(max{—z;,0}),
where g(z) is an increasing function of z > 0. The most natural choices of g(z) are
g(z) = z and g(z) = 2.

(3) Tryon-Hettmansperger (1973) Statistic:

Hy(B)= D haWs
(s,t)EB(Q)

corresponding to k(n, B(Q)) = VN and ls.H)(xl,...,x|B|) = Zlﬂ h;z;, where h =
{hst > 0, (s,t) € B(Q)} are positive coeflicients.

Obviously, the constant k(n, B(Q2)) in the test statistic T(R,n, B(2)) does not affect
the power performance of the test and can be chosen for convenience. It is usually
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desirable and relatively straightforward to choose k(n, B(£2)) so that T(R,n, B(2)) has
a nondegenerate limiting distribution.

This paper proposes the following test for Hp : 8 € Q versus Hy : 8 € RF — Q.

Test T(R,n, B(Q)): Reject Hy : 0 € Q if and only if

T(R,n, B(Q)) < t(n, B(Q)),
where the cutoff value t(n, B(Q2)) is the largest constant satisfying
P{T(R",n,B(Q)) > t(n,B(Q))} > 1-q,

and R* is uniformly distributed over the set of all permutations of {1,..., N}.
The next theorem states that test T'(R, n, B(2)) is of a constant size no more than
o under a very mild condition about l,(z1,...,%)). The proof is in the Appendix.

THEOREM 2.1. Suppose that for any i =1,...,|B|, ln(z1,...,zp)) is an increas-
ing function of z; for fixed z1,...,Zi1, Tit1,...,TB}. Then

P, T(R,n, B(Q)) < t(n,B(Q))} = c(ln, B) <
0cHo P (z) 0,7 {T(R,m, B(Q) <t(n, B()} = c(ln, B) <

where c(ly, B) is a constant that does not depend on F(z).

Theorem 2.1 can be applied easily to show that Cp o) (R), Dp(q)(R), and Hp(R)

are all level o tests, because the functions l,(,C*)($1,--.,$|B|), lS.D) (z1,...,7B)), and
1) (z1,...,2B)) used in these tests are all increasing functions.

Since the cutoff value t(n, B(Q2)) does not depend on F(z), the following corollary
is immediate. Thus, tests CE(Q)(R), Dp(q)(R), and Hp(R) are all distribution-free.

COROLLARY 2.1. Under the condition of Theorem 2.1, test T(R,m,B(Q)) is
distribution-free.

2.2 Sufficient and necessary conditions for consistency

This subsection provides easy-to-check sufficient and necessary conditions for the
proposed test T(R,n, B(Q)) to be consistent. In virtually all the useful rank-based pro-
cedures, the scores {am,, };=f can be obtained from a strictly increasing square integrable
score generating function ¢ : (0,1) — R as follows:

1
mst+l

amst(i)zbmst¢( > +dmst7 i:]-w":mst;

where b,,, > 0 and d,,,, are constants, and
1 -
(2.1) 0 < / (p(u) — ¢)? du < 0o
0

with ¢ = fol é(u)du. It is easy to check that M (R) does not depend on b, or dn,,.
Therefore, one can always let b,,,, = 1 and d,,,, = 0, which will be the case in the rest
of this paper. A mild condition for the limiting normality of M:(R) is given by

(2:2) lp(u)] < klu(t —w)]*"?  and  |¢(u)] < klu(l - )"~/
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for some § > 0 and k > 0. See p. 95 of Puri and Sen (1971) for details. Virtually all
commonly used score generating functions satisfy this condition.

The following theorem provides a sufficient condition for the consistency of T'(R,n,
B(£2)). The proof is in the Appendix.

THEOREM 2.2. Assume conditions (2.1) and (2.2) about the score generating func-
tion ¢(u). Suppose that n;/N — X; € (0,1) as N =ny + -+ + nx — +00. Assume that
increasing function ly(z1,. .., z|p)) 18 continuous and converges to a continuous function
I(z1,...,78)) as N — +oo. If

2.3 ) < 0,... h i i »
(2.3) (z1,..-,zB)) <U0,...,0) whenever  Join @ <0

then, for any fized 8 € Hy and F(z),

i For@iT(R,n B(Q) <t(n,B(Q))} =1.

The sufficient condition (2.3) states that if l,(zy,...,2)p)) is less than I,(0,...,0)
whenever one or more z;’s are negative, then the corresponding test T'(R,n, B(2)) is
cousistent. .

It is easy to check that the functions l,(,c )(asl, ..., 7B|) and lS.D) (z1,...,2p)) used
in tests Cyq) (R) and Dp(q)(R) satisfy condition (2.3). Therefore, tests 'y (R) and

Dpq)(R) are consistent. However, the function 1) (z1,...,78)) used in test Hp(R)
does not satisfy this condition.

The following slightly different version of the sufficient condition puts more emphasis
on DC(€). It may be more convenient to use when B(f2) is much larger than DC ().
The proof is essentially the same as that of Theorem 2.2 using the fact that for any fixed
0 € Hy, there must exist some (s,t) € DC(Q) such that 6, > 6;.

COROLLARY 2.2. A sufficient condition for the consistency of test T(R,n, B(Q2))
is to replace condition (2.3) in Theorem 2.2 by

lzy,...,z18)) <1(0,...,0)  whenever min _z; < 0.
1<i<|DC|

It can be shown that condition (2.3) may not be necessary for the consistency of
test T'(R,n, B(2)), but a slightly weaker condition is. The following theorem states
that a necessary condition for the consistency of test T'(R,n, B(Q)) is that the function
In(z1,...,2B)) is less than [,(0,...,0) whenever one or more z;’s are negative in a
neighborhood of (0,...,0). Notice that the only difference between the necessary and
sufficient conditions in Theorems 2.2 and 2.3 is that the sufficient condition (2.3) requires
the above inequality hold for any (z1,...,7|)) with one or more negative x;’s. The proof
of the following theorem is in the Appendix.

THEOREM 2.3. Suppose that n;/N — \; € (0,1) as N =ny + - + np — +00.
Assume that increasing function ly(xy,. .. » | B|) 1§ continuous and converges to a con-
tinuous function l(zy,...,7)5) as N — +oo. If test T(R,n, B(Q)) is consistent; that
is, for any fized 8 € Hy and fixed F(z),

NEI-lr-loo P0,F(x) {T(R: n, B(Q)) < t(na B(Q))} = ]-;
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Table 1. Powers for simple ordering when (n1,n2,n3) = (5,5, 5).

(01, 602,03) B(Qs) cr Dy D> H
(0, O, 0) C .0433 .0448 .0497 .0461
tn,C(Qs)) —1.984 —3.551 —5793 —3.238
DC .0319 .0461 .0381 .0452
t(n,DC(Vs)) —1.984 —2.089 -3.938 —1.671
(0,1, 0) C 216 .068 .147 .028
DC 211 215 213 .024
©,2, 1) c 204 .002 079 .000
DC 204 .204 .204 .000
(1,0, 0) C 331 .403 .420 .378
DC 228 .341 .292 .330
(1,0, 2) c 210 .002 .08 .00
DC 210 210 .210 .026
(1,1, 0) c 334 400 424 375
DC 219 334 .284 .328
(1, 2, 0) c 695 525 686  .217
DC 671 683 .682 120
2,0, 1) c 700 526 686 215
DC 676 687 685 L7
(2,1, 0) c 733 868 846  .879
DC .399 757 .642 .836

then there exists a § > 0 such that

(24)  Uzi,...,zp)) <U0,...,0) whenever |z;]<6, i=1,...,|B|, and

min z; < 0.
1<i<|B|

Condition (2.4) in the above theorem can be used to show the inconsistency of a
given test. Consider the function ls.H) (T1,...,2)8)) = Zlill hiz; used in test Hp(R)
with |B| > 2. Obviously, l,(.H)(O,...,O) = 0. Without loss of generality, assume that
hi1 > hy > 0. Then, lS.H)(x—I—l, ~x,0,...,0) = (hy —h2)z+hy > 0 for any —z < 0, which
violates condition (2.4). Therefore, test Hp(R) is inconsistent except for the trivial case
when |B| = 1.

3. Characterization of Power

This section studies the power characterizations of the four tests CE(Q) (R), Dp(n)(R)
with g(z) = z (denoted as D1), Dp(q)(R) with g(z) = z? (denoted as D;), and Hp(R).
While test Hp(R) is not consistent, it is included here as a comparison. Three types
of ordered null hypotheses are considered: simple ordering (§2s), simple tree ordering
(1), and umbrella ordering (Qy,). For each type of null hypothesis, two choices of
B(Q) are investigated: B(2) = C(Q) and B(Q?) = DC(Q). Since C(Q) and DC(Q) are
the largest and smallest B(2), their contrast will shed light on the impact of B(Q2) on
the power performance. The number k of samples considered in the simulation study
ranges from 3 to 6. A number of combinations of balanced and unbalanced sample
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Table 2. Powers for simple ordering when (n1,n2,n3) = (5, 10, 15).

(61,02,63) B(Qs) c* Dy D H
(0, 0, 0) C 0477 .0500 .0499 .0500
t(n,C(Qs))  —2.052 —3.566 —6.045 —3.327
DcC 0436 .0481  .0481  .0499
t(n,DC(s)) —1.960 —2.108 -3.840 —1.764
(0, 1, 0) c 573 18 433 .064
DC .620 .551 .621 .086
(0,2, 1) c 576 .032 .386 .000
DC .625 547 .625 .001
(1, 0, 0) c 468 556 545 507
DC .356 .452 414 426
(1,0, 2) c 343 .004 137 013
DC .343 282 .343 .006
(1,1, 0) o, 681 .693 725 638
DC .633 719 .689 .655
(1, 2, 0) C 994 .936 .989 .582
DC .995 .994 .996 .535
(2,0, 1) C .881 .749 834 204
DC 877 .833 .878 .052
(2 1, 0) c 939 979 971 982
DC .780 963 017 979
sizes (n1,...,ny) are examined. The International Mathematics and Statistics Library

(IMSL) of FORTRAN subroutines is used. The critical values t(n, B(Q)) and sizes
maxXgeHy, F(z) Fo,Fz){T(R,n, B(Q)) < t(n,B(Q))} = c(ln, B) of a test are estimated
based on 1000000 iterations. The power of a test Pye g1, p(z) {T(R,n, B(Q)) < t(n, B(Q))}
at an alternative 8 € H; is estimated based on 10000 iterations. Note that the sizes of
the tests are not necessarily equal to o due to the discreteness of the test statistics. One
can adjust the sizes to o by using the corresponding randomized tests. However, the
nonrandomized tests are the ones usually applied in practice. As can be seen later, the
power comparisons are more informative without the adjustments of the sizes.

The general observations in the next paragraph are based on the extensive study
described above. But for the sake of space, only the simulated powers for selected cases
of k, n = (ny,...,nx) and @ = (61,...,0x) and normal underlying distribution F(z)
are reported here in Tables 1-9. Since the size of a test is the power of the test when
61 = -+ = 0 = 0, the rows in Tables 1-9 corresponding to 6; = --- = ) = 0 provide
the sizes and critical values of the tests.

The following observations can be made on the power characterizations. First, no
test is uniformly most powerful. This is expected since the alternative space H; is
typically a very vast region. Second, test C* has the best overall power performance
among the four tests. Test C* is especially powerful at an alternative where only a small
number of pairs of related populations violate the null ordering. Test D, outperforms
test Dy, but both tests can be very inefficient for some conceivable alternatives in practice
when k is moderate, say, k = 5. Third, for a given alternative and for the same type
of test, the power is higher if B(2)(2 DC(Q)) includes all and only the pairs of related
populations in the alternative that violate the null ordering. Therefore, if the most likely



Table 3. Powers for simple ordering when (n1,n2,n3, n4,n5,16) = (5,5,5,5,5,5).
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(61,62,63,604,05,06) B(Qs) cr D, Doy H

(0, 0,0,0,0,0) c .0478 .0491 .0500 .0492
t(n,C(Qs)) —2.402 —12.429 —19.669 —9.505

DC .0393 .0376 .0500 .0460
t(n,DC(Qg)) -—2.193 —3.760 —6.415 —1.984

(0, 0,0, 0, 1, 0) c .098 .022 .040 .006
DC .152 .158 191 .038

0,0, 1, 1, 0, 0) c 224 .118 .197 .034
DC .148 .129 .160 .058

(0,0,2, 1,1, 0) c .449 .147 .352 .006
DC .250 .427 .403 124

0, 1,01, 1,0) c .236 .094 .193 .017
DC .253 .336 .369 .037

0,1,1,1,0,2) c 174 .007 .062 .008
DC .143 .054 127 .000

©,1,2,1,1,2) c .132 .001 .015 .002
DC .131 .014 .091 .003

©,2,0,1,1,2) c 412 .005 .086 .003
y37% .534 .096 .438 .001

(0,2,1,1,1, 1) c .215 .082 .196 .011
DC .151 117 170 .005

(1,0,1,1,0,2) c .230 .038 .148 .001
DC .250 .331 .370 .002

(1,0,2,1,0, 1) c .487 .310 .480 .046
DC .343 653 .605 .099

(1, 1,0, 1,0, 0) c .344 615 .599 .509
DC .257 .446 412 .301

(1,1, 1,0, 2,2) c 175 .005 .053 .010
DC .147 .142 171 016

(1, 1,2, 1,0,2) C .455 157 .371 011
DC .255 .303 .358 .005

(1,2,0,1,0, 2) c .591 .359 .600 .016
DcC .592 499 672 .001

(1,2,1,1,0, 1) c .476 564 .630 .357
DC .244 .307 .345 .039

(2,0,1,0,2,2) c .559 .068 .339 .000
DC .586 610 714 .041

(2,0,2,0,2,1) c .692 .506 734 .024
DC .808 .970 .965 .252

(2,1, 0,0, 2,0) c 754 .885 .920 .402
DC .644 .948 907 .759

(2,1,1,0,1,2) c 462 314 .485 .042
DC .247 314 .350 .045

(2,1,2,0,1, 1) c .609 718 781 .419
DC .597 .633 721 163

(2,2,0,0,1,0) c .825 .982 .982 .898
DC .603 .743 784 570

(2,2,1,0,0, 2) c .745 892 .92 .404
DC .263 414 .400 .120

689
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Table 4. Powers for simple tree ordering when (n1, n2,n3) = (5,5, 5).

(61, 02,03) B(QT) c* Dy Dy H
(0,0, 0) C=DC .0295 .0496 .0479 .0496
t(n,B(Qr)) —-1.984 -2.716 —-4.811 -2.716
(1,0,0) C =DC 319 .509 .483 .509
(1,0,1) C =DC .210 174 .229 174
(1, 0,2) C=DC 211 .018 145 .018
(2,0,0) C=DC .828 951 .942 951
(2,0,1) C=DC 701 765 798 765
(2,0,2) C=DC .685 .320 .629 .320

Table 5. Powers for simple tree ordering when (n1, n2,ns) = (5,10, 15).

(61,02,03) B(Qr) Cc* D, Dy H
(0, 0, 0) C=DC .0453 .0496 .0498 .0495
t(n, B(Qr)) —1.877 -3014 —4.868 —3.014

(1,0, 0) C=DC 539 .604 596 .604
(1,0, 1) C=DC 392 205 296  .203
(1,0, 2) C=DC 390  .031 220 013
(2, 0, 0) C=DC 969 985 984  .985
(2, 0, 1) C=DC 912 863  .898  .862
(2,0, 2) C=DC 909 438 801  .383

Table 6. Powers for simple tree ordering when (n1,n2,n3,n4, ns,ng) = (5,5,5, 5,5, 5).

(61,062,063, 04,05, 06) B(Qr) c* D, Do H

(0, 0,0, 0, 0, 0) C=DC 0325 .0498 .0500  .0499

t(n, B(Qr)) —2.193 —6.267 —9.829 —6.162
(1,0, 0,0, 0, 0) C=DC 0355 0606 0582 0.609
(1,0,0,0,0,2) C=DC 0320 0421 0469 0.256
1,0,0,0,1,2) C=DC 0276 0237 0335 0.136
1,0,0,1,22) C=DC 0220 0048 0156 0.022
1,0,1,2 2 2) C=DC 0130 0005 0019  0.004
(1,0,2, 22 2) C=DC 0125 0001 0003 0.001
(1,0,1,22 1) C=DC 0133 0016 0046 0.010
(2,0,0,0,0,0) C=DC 0854 098 0977 00984
(2,0,0,0,1, 2) C=DC 0781 0861 0903 0.785
(2,0,0,1, 2 2) C=DC 0705 0555 0751 0455
(2,0,1,2 22 C=DC 0564 0230 038 0208

alternatives are expected to violate the null ordering for some pairs of related populations
not in DC(R2), then DC() can be augmented with these pairs accordingly to obtain
a B(f) that improves the power performance. As an example, if the null hypothesis
of nondecreasing treatment effects, i.e., simple ordering g, is under consideration and
the alternatives are most likely to have an up-then-down pattern with peaks at high
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Table 7. Powers for umbrella ordering when (ni,n2,n3) = (5,5,5) and p = 2.

(61,062, 03) B(Qu,) c* Dy Da H
(0, 0, 0) C=DC 0295  .0497 .0478  .0497
t(n, B(Qu,)) —1.984 -2.716 -—4.811 -2.716
(0,0, 1) C=DC .205 170 222 170
(0,0, 2) C=DC 679 317 .616 317
(1,0,0) C=DC 217 178 .237 178
@,0,1) C=DC 327 517 490 517
(1,0,2) C=DC .693 760 792 .760
(2,0,0) C=DC .684 331 .626 .331
(2,0,2) C=DC .823 .948 .939 .948
0,1,2) C=DC .209 .021 .141 .021

Table 8. Powers for umbrella ordering when (n1,n2,n3) = (5,10,15) and p = 2.

(61,62,03) B(Qu,) c* Dy Do H
(0, 0, 0) C=DC 0474 0500  .0497  .0499
t(n,B(Qu,)) -1.941 —2.787 —4.584 —2.780
(0,0, 1) C=DC 617 387 565 343
(0, 0, 2) C=DC 994 930  .989  .721
(1, 0, 0) C=DC 396 240 .33 228
(1,0, 1) C=DC 698 758 754 757
(1,0, 2) C=DC 995 981 994 972
(2, 0, 0) C=DC 909 501 850 448
(2,0,2) C=DC 998  1.000 999  1.000
(0,1, 2) C=DC 616 232 539 .053

treatment levels, then a reasonable choice of B(Qg) is to augment DC(Qg) = {(i,1+1) :
i=1,...,k—1} with {(3,j) : (k+1)/2<1i,2<j—4;i,j =1,...,k}. Thus, for instance,
for k£ = 5, use B(Qs) = {(1,2),(2,3),(3,4),(4,5),(3,5)}; and for k = 6, use B(Qg) =
{(1,2),(2,3),(3,4),(4,5),(5,6), (3,5),(3,6), (4,6)}. In most applications, however, no
information regarding the alternatives is available. As a practical guide for potential
users of the proposed tests, a rule of thumb is to use test C* with B(Q) = DC(Q).
The reason is that in many applications essential violations of a null ordering at an
alternative usually occur for a small number of pairs of directly related populations. For
these alternatives, test C* using B(Q2) = DC(R2) is generally competitive compared with
test C* using B(Q2) = C(9)), but the latter can be inconvenient to implement when £ is
moderately large.

1. Implementation and an example

To compute the cutoff value t(n, B(R?)) in test T'(R,n, B(f2)), one can exhaust all
N!/(]—[f=1 n;) assignments of ranks to the k groups and compute T'(R,n, B(2)) for each
assignment. The frequency table of all the N1/ (Hf=1 n;) values of T(R,n, B(Q)) provides
the exact distribution of T(R*,n, B(Q?)) and thus t(n, B(£2)). This method is only feasible
when N is small or moderate. When N is relatively large, one can use standard Monte
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Table 9. Powers for umbrella ordering when (ni, ng, ns, n4,ns, ng) = (5,5,5,5,5,5) and p = 4.

(01, 62, 63,064,065, 66) B(Qu,) c* Dy D2 H
(0, 0, 0, 0, 0, 0) c 0309  .0491  .0500  .0483
t(n,C(Q,))  —2.402 —8.460 —13.364 —7.207
DcC .0384 .0450 .0500 .0498

t(n,DC(Qy,)) —2.193 —4.178 —6.949 —2.820

(1,1,1,0,2,2) c .552 746 .780 .661
DC .562 .691 721 .668
(2,0,1,0,2,2) c 747 951 .960 .849
DC .798 .950 .955 .861
(2,0,20,2 1) c 734 .882 .935 .419
DC .862 .984 .981 .543
(2,1,0,0,2 0) c .689 .898 .923 .666
DC .646 .865 863 .440
(2,1,1,0,1,2) C .600 1940 .922 .946
DC 414 .881 .792 .942
(2,1,2,0,1, 1) C .573 .810 .837 .668
DC 617 .829 .826 675
(2,2,0,0,1,0) c .732 .909 .949 701
DC .598 .551 .689 .341
(2,2,1,0,0,2) lo} .759 .983 .980 967
DC .657 .915 .902 .884
(0,0,0,0,1,0) C .097 .069 .087 .042
DcC .150 .106 .167 .034
(0,0,2,1,1,0) o} .081 .001 .008 .001
DC .137 .072 .126 .001
(0 1,0,1,1,0) e} .090 .005 .019 .001
DcC .143 .013 .055 .001
0,1,2,1,1,2) e} 175 .071 .189 .004
DC .235 217 .313 .039
0,2,0,1,1,2) c .470 .296 .488 .043
DC .595 .410 .669 .032
(0,2,1,1,1,1) c 137 .045 .106 .005
DC .150 .083 1130 .013
(0,1,1,1,0,2) C .402 .043 .166 .009
DC .533 .095 .342 017
(1,0,1,1,0,2) C .452 .164 .341 .046
DC .599 .437 .660 .089
(1,0,2 1,0, 1) le} .205 063 .146 .005
DC .333 .512 .533 .045
(1,1, 0,1, 0, 0) c .141 .038 .104 .013
DC 145 .031 .079 .005
(1,1, 21,0, 2) c .449 .166 .336 .039
DcC .601 441 KT) 076
(1,2,0,1,0,2) e} 643 592 775 .200
DC .780 .678 .893 .052
(1,2,1,1,0,1) le} 205 152 231 .067

DC .243 191 .313 .037
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Table 10. Motivational effects of knowledge of performance.

Control Group B Group C
no information rough information accurate information
40 38 48
35 40 40
38 47 45
43 44 43
44 40 46
41 42 44

Carlo simulation to obtain an estimate of t(n, B(€2)). In this case, it is more convenient
to estimate the P-value instead of t(n, B(2)). To carry out the simulation, generate k
samples of random numbers from uniform (0, 1) distribution with sample sizes nq, ..., ng,
respectively. Compute the joint ranks R* and the test statistic T(R",n, B(f)). Repeat
this process for M times. The proportion of T'(R",n, B(€2)) less than and equal to the
computed T'(R,n, B(2)) based on the data provides an estimate of the exact P-value.

Motivational effects example revisited. In this example, one wants to check the valid-
ity of the prior belicf that incrcascd motivational cffects will not dcercasc productivity
in this particular task. This question can be answered by testing Hy : 61 < 62 < 63
versus Hi: not Ho. Based on Section 3, the test Cpq)(R) with B(Q) = DC(Q) =
{(1,2),(2,3)} is a reasonable choice. This test rejects the null hypothesis for smaller
values of Cpcq)(R) = V' N min{Wi5(R), Wa3(R)}, where N is the total sample size.
The P-value is given by P{v/N min{Wi2(R*), Was(R*)} < Cheo(y(R)}, where R is
uniformly distributed over the set of permutations of {1,...,18}. The basic data in
Table 10 consist of the numbers of pieces processed by each subject in the experimen-
tal period. The Mann-Whitney-Wilcoxon statistics for samples 1 and 2 and samples 2
and 3, are, respectively, W;,(R) = 43 and Wy,(R) = 47.5. The standardized Mann-
Whitney-Wilcoxon statistics are, respectively, Wia(R) = .151 and Wy3(R) = .320. The
test statistic is therefore C¢ o) (R) = .641. An estimate of the exact P-value via Monte
Carlo simulation based on M = 10000 iterations is 0.98. Hence, at any reasonable level
of significance, there is no statistical evidence against the belief that increased knowledge
of performance will not negatively affect productivity when performing this industrial
task.

5. Conclusion

This study provides a general nonparametric theory for testing ordered null hypothe-
ses. The proposed theory not only has the desirable property of being distribution-free,
but also accommodates various types of intuitive nonparametric test statistics proposed
in this paper. The sufficient and necessary conditions for the consistency of the proposed
tests are simple and easy to use.

While this paper concentrates on one-way location-shift models, the methodology
is directly applicable to some other models involving k treatments by replacing the
pairwise linear rank statistics for one-way models with their corresponding nonparametric
counterparts under other models. For example, in two-way layouts with no interactions,
all the theorems and proofs in this paper hold if the pairwise statistics Mg (R) are
replaced by their corresponding Wilcoxon signed rank statistics.
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Appendix

A1 Proof of Theorem 2.1

LetX;} =X«,;j—0,,;,’i = 1,...,k,j = 1,...,711', Then, X:;,’l‘: 1,...,k,j= 1,...,711',
are independently and identically distributed according to continuous distribution func-
tion F(z). Let R} be the rank of X5 among all Xjj, ¢ = 1,...,k, j = 1,...,n;
It follows from Theorem 2.1 of Randles and Wolfe (1991) that the rank vector B* =
(Ri1,-- -, Rin,,- - Riy, .., REy, ) does not depend on F(z) and is uniformly distributed
over the set of all permutations of {1,..., N}. By the definition of T'(R,n, B(f2)), one
can see that

(A.1) Po r(o){T (R, n, B(Q)) > t(n, B(Q?))}
= P{T(R*,n, B()) > t(n, B())} > 1 — .

Let S(-“) be the rank of X;; among XJ,..., Xz, , X{,. -, Xfn,. Then My (R") =
PO amst(Sft)). Notice that for any (s,t) € B(Q), s < 6;. This implies that, for any
(s,t) € B(R2) and any F(z), SJ(.St) < Rj(-St) for j = 1,...,n, which further implies that
M,,(R*) < M_,(R) and therefore M ;(R*) < My (R). Hence, for any 8 € Hy and F(z),

(A.2) T(R",n,B(Q)) = k(n, B(Q))lo(M1(R"),..., M p(R"))
< k(n, B(Q))ln(M1(R),. .. ’MIBI(R))
=T(R,n, B(Q)).

It follows from (A.1) and (A.2) that, for any 8 € Hy and F(z),

P r){T(R,n, B(Q)) < t(n,B(Q))}
< Poyp(z){T(R*,n,B(Q)) < t(n, B())}
= P{T(R*,n, B(Q)) < t(n, B())} £ ¢(In, B) < «.
Theorem 2.1 is therefore established.

A2  Proof of Theorem 2.2

Without loss of generality, assume that k(n, B(Q)) = 1 since consistency and
power performance do not depend on k(n, B(f2)). For convenience, only the case when
In(z1,...,2B)) = U(z1,. ..,z B) will be discussed in detail. The extension of the proof to
a general case is straightforward using the continuity of lp(x1,...,%,) and [(z1, ..., 7)5)).
As mentioned in Section 2.2, test T(R,72, B(Q2)) does not depend on by, or dn,,.
Therefore, it suffices to let b,,,, = 1 and d,,, = 0, which leads to scores a,,, (i) =
¢(i/(mse +1)),i=1,...,ms. According to (9.2.5) in Randles and Wolfe (1991),

(A.3) lim 2%met )\)\t/ ¢)%du

N—>+OO mst )\ + /\t

and
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At -
B WS WL

_ Mst
Myl . ny 1 ¢
A4 lim ——t = lim .
( ) nsdoo Mgy n—+4o0o |:mst Mgt 1=21¢ (mst+1>

It follows from (3.5.12) in Hettmansperger (1991) that

1 T R(_St)
(A-5) m Z¢ (ms:+ 1)

st j=1

P /\t oo /\s )\t
- Fly—6;,—0, dF
2 [ t- 00+ i Fw)| oFw

as N — +o00.

It follows from (A.3)-(A.5) that

! an ¢ R;St) _ ntc_”msz
mer ist 7=l Mg + 1 Mst  p
(A6) Mst(R) = N . oo, /\/ﬁi—t — Qst - b(gsvetaF)v
where ag; = /(1 + )\t/)\s)[fo1 (p(u) — ¢)2du] * and
(A7) b0 BF)—/OO¢ As Fly+6,—6s)+ At F(y)| dF(y) — ¢
. 5101, = - N+ N Y t s N+ N Y Y

* As A
=/ {¢[As AtF(y+9t—95)+AﬁfAtF(y)}

T W+ )| Jar )

Note that since F(z) is monotone and ¢(u) strictly increasing,

>0 98 < 0,
(A.8) b(0s,0:;, F)=0 when 6;=20;
<0 6, > 0,.

By (A.6) and the continuity of I(z1,...,2B)),

(A9)  T(R,mnB(Q) S5 q6,F) =1(arby,...,apbs), as N — +oo,

where a1b1, ..., q )b p| are as:b(0;, 0, F), (s,t) € B(Q), arranged in the same lexicogical
order as that of M;(R), i = 1,...,|B|. It follows from (A.8) and (A.9) that, when
O = =0,

(A.10) T(R,n,B(Q) 51(0,...,0), as N — +oo.

Il

Since the cutoff value t(n, B(Q2)) is the a-th percentile of T(R,n, B(Q2)) under ¢, = - -
O, it is easy to show by contradiction that

(A11) Jim_tn, B@)) = 1(0,...,0)
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For any fixed @ € Hy; that is 8 ¢ €, there exist some (s,t) € C(Q) such that 6, > 6;.
According to (A.8), the M, (R)’s corresponding to these (s, t)’s converge in probability to
negative values as:b(0s, 0;, F)’s. It follows from condition (2.3) that ¢(8, F) < I(0,...,0)

for @ € H, and any fixed F(x).
According to (A.8), there exists an Ny > 0 such that, when N > Np,

t(n, B(Q) > A6, F) = %(q(O, F)+1(0,...,0)).

According to (A.9) and the fact that ¢(8, F) < (0,...,0), for any € > 0 there exists an
Ny > 0 such that, when N > N1, Py px){T(R,n, B(Q)) < A(0,F)} > 1 — €. There-
fore, for any € > 0, when N > max{No, N1}, Pp r){T(R,n,B(Q)) < t(n, B(Q))} >
Py po){T(R,n, B(Q)) < A(#, F)} > 1 — €. Sufficiency of condition (2.3) for consistency
is hence proved.

A.3  Proof of Theorem 2.3
(Proof by contradiction) Let ® be the cumulative distribution function of standard

normal distribution. Define

A=, g, im b6.,0, @1, m _b6,0,)]

T (stje 8y =65 ——

It is easy to see from (A.7) that A > 0.
Suppose that the conclusion in Theorem 2.3 is not true. Then, for any § > 0,
condition (2.4) does not hold. As a special case, condition (2.4) does not hold for

6* = ﬁ; > 0. Therefore, without loss of generality, there exist 2 < O,...,mg < 0,
$2+1= . ,:EIOBI, such that |2?] < 6, fori=1,...,|B|, but
0 0 .0 0

(A12) Wzt Zp, Tpyrs- - Tpp)) > U0, ..., 0).
Since I(z1,...,%)p|) is increasing componentwise, 1(z?,m0, ... ,m®% > 1(0,...,0) where
m® = max{z3,...,ap } < 6".

Suppose that in the arrangement convention used throughout this paper the first
argument x; in the notation I(x,. .., x|p|) corresponds to the pair (s1,%;) € B(Q2). Now

construct the following 6 for which test T'(R,n, B(?)) is not consistent. Let 65 = 0.
Choose 0], < 0 so that as,¢, b(85,,0;,,®) = z7, where @ is the cumulative distribution
function of standard normal distribution. This is always possible since a,,¢, b(63,, 07, , ®)
is a continuous function of 87, ; and b(67,, 07, , ®) = 0 and limg; _g: ——co [b(6},, 67, )| >
6*. By using the similar argument, it is possible to choose the remaining 67,7 # s1,1¢1,
such that 87 < 6; and asb(8%,0;,®) > mP for all (s,t) € B(Q) — {(s1,¢1)}. Notice that
6" € H, since 85 > 0; and (s1,t;) € B(Q2). However, according to (A.9), under " and
F(z) = ®(z), T(R,n, B(Q)) L ¢(6",®) = l(asbs,...,qpbp) > U(z},m?...,m°) >
1(0,...,0) as N — +o00. Therefore, limy_, 400 Po- s {T(R,n, B(R?)) < t(n,B(Q))} = 0,
which means that test T(R,n, D(§)) is inconsistent under #* and I’(z) — ®(x). By
contradiction, the necessity of condition (2.4) for the consistency of test T'(R,n, B())

is established.
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