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Abstract. The extrapolation design problem for polynomial regression model on
the design space [~1, 1] is considered when the degree of the underlying polynomial
model is with uncertainty. We investigate compound optimal extrapolation designs
with two specific polynomial models, that is those with degrees {m,2m}. We prove
that to extrapolate at a point 2, |2| > 1, the optimal convex combination of the two
optimal extrapolation designs {£,(2),£3..(2)} for each model separately is a com-
pound optimal extrapolation design to extrapolate at z. The results are applied to
find the compound optimal discriminating designs for the two polynomial models with
degrees {m, 2m}, i.e., discriminating models by estimating the highest coefficient in
each model. Finally, the relations between the compound optimal extrapolation de-
sign problem and certain nonlinear extremal problems for polynomials are worked out.
It is shown that the solution of the compound optimal extrapolation design problem
can be obtained by maximizing a (weighted) sum of two squared polynomials with
degree m and 2m evaluated at the point z, |z{ > 1, subject to the restriction that the
sup-norm of the sum of squared polynomials is bounded.

Key words and phrases: Chebyshev polynomials, convex combination, extremal
problems for polynomials, Lagrange interpolation polynomial, optimal discrimination
designs.

1. Introduction

When analyzing data obtained from scientific experiments, regression models have
been used extensively to illustrate the relationships that may exist between variables.
Among the numerous regression models, polynomial regression may be one of the most
frequently used. However in many cases the specification of the exact degree of the
polynomial model may still be a problem and need to be taken care of in the stage of
designing the experiments.

The literature about designing experiments with concerns about uncertainty of the
models dates back to Box and Draper (1959), where it was demonstrated that large
bias may be introduced in estimation when the model is assumed to be linear and
the true regression function may be quadratic. Many papers thereafter have addressed
this issue and provided different design strategies, for some examples see Stigler (1971),
Atkinson and Cox (1974}, Liuter (1974a, 1974b), Huber (1975), Studden (1982), Sacks
and Ylvisaker (1984), Huang and Studden (1988), Dette (1991, 1994, 1995a), Pukelsheim
and Rosenberger (1993), and Dette and Studden (1995). On the other hand, there has
also been appreciable previous work on optimal designs for extrapolation in a regression,
most of them are for the one dimensional case. For example, Hoel and Levine (1964) pro-
vided optimal extrapolation design solution for the polynomial regression models. Kiefer
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and Wolfowitz (1965), Karlin and Studden (1966), Studden (1968) considered the models
when the elements of the vector of regression functions form a Chebyshev system. Hoel
(1965) and Studden (1971) investigated the optimal extrapolation designs with multi-
dimensional design space. Huber (1975) dealt with the extrapolation design problem
when the true regression function is in a class of possible candidates, such as regression
functions with certain bounded derivatives, Kiefer (1980) discussed the extrapolation
problems in the one dimensional case as well as in a ball of dimension g, ¢ > 1, when
model uncertainty induced bias in the estimation. Spruill (1984) investigated minimax
extrapolation designs for a special class of regression functions. Chao (1995) studied the
extrapolation design problems with discrimination of models in mind. Dette and Wong
{1996) proposed a new class of model robust optimality criteria for extrapolation, which
is motivated in part by Kiefer's L,-class of optimality criteria.

In this work, the model robust extrapolation design problems proposed by the last-
named authors are investigated in more details. It is usually not easy to derive the
optimal designs analytically for general compound optimality criteria, and even numer-
ical solutions are difficult to find for higher degree models. A natural thought is that
for a compound type of criterion, a convex combination of the optimal designs for the
individual criterion may be optimal. This is usually not true in the general case. We
study this problem for those models where the set of support points of the optimal ex-
trapolation designs for one model is a subset of the others. More precisely, we investigate
compound optimal extrapolation designs for two specific polynomial models with degrees
{m,2m}. We prove in Section 3 that to extrapolate at a point z, |2| > 1, the optimal
convex combination of the two optimal extrapolation designs {£,(2),£3,,(2)} for each
model separately is a compound optimal extrapolation design to extrapolate at 2. Then
the asymptotic distribution {when the degrees of the two polynomials tend to infinity)
is derived. The results are applied to find the compound optimal discriminating design
for the two polynomial models with degrees {m,2m}, i.e. discriminating models through
estimation of the highest coefficient in each model. In Section 4 properties of the com-
pound optimal extrapolation design are investigated in more details and it is shown that
there is a dual problem in approximation theory. More precisely we prove that the com-
pound optimal design problem is dual to the problem of maximizing a (weighted) sum
of squared polynomials of degree m and 2m evaluated at the point 2z, |z[ > 1, subject
to the restriction that the sup-norm of the sum of the squared polynomials is bounded.
Moreover the solution of one problem can be obtained from the other and vice versa.
Consequently the results from design theory can be used to solve a nonlinear general-
ization of a classical extremal problem for polynomials. Finally all proofs are given in
Section 5.

2. Hoel and Levine designs and robust optimality criteria

Assume that for each x € [—1, 1] an experiment can be performed, and the outcome
is a random variable y(z), with mean value 7 fi.(z), where fe(z) = (1,z,2%,...,2%)7T,
and a common variance ¢2. The vector of parameters O = (8p,0;,...,0k) and the
variance o2 are unknown. Suppose that n uncorrelated observations of the response
y(z) are to be obtained at levels x;, 2,...,%,. An exact design specifies a probability
measure §{ on [—1,1] which concentrates mass ¢; at distinet x;, ¢ = 1,...,r, where
gn = ny are integers. An approximate design takes away the restriction that ny,..., n,

are integers. The moment matrix of a design £ for a polynomial model of degree & is
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defined by
1
@) 106 = [ H@F@ED = )i

where ¢; = ful] zidé(z) denotes the ordinary j-th moment of £, (j = 1,2,...). An
optimal design maximizes or minimizes an appropriate function of the moment matrix.
Since in the following our main interests are estimation of the “highest coefficient” & or
extrapolation at a point outside the design space, we will only consider designs £ with a
nonsingular moment matrix Mg(€).

The optimal design problem for extrapolation at a point z, |z| > 1 in a single
polynomial model with degree k is to seek an approximate design which minimizes the
variance of the estimate at point z, which is proportional to

(2.2) ve(€,2) = i (2) M (€) fiel2).

Hoel and Levine (1964) proved that in a polynomial regression the optimal extrapolation
design & = £;(z) is supported at the Chebyshev points, i.e. {84, = cos((k-v)m/k)}*_o,
which are the points in the interval [~1, 1] such that [T ()| = 1, where 7% (z) is the k-th
Chebyshev polynomial of the first kind, i.e. Ti(z) = cos(karccosz) = 2¢~1 H;‘-;l(:z: -
82k,25—1). The corresponding weights are given by gy, with

e @) _ (@)
ol Al

0<v<k,

(2'3) Qv =

where |2| > 1 and ¢ (2} denotes the »-th Lagrange interpolation polynomial at the
k + 1 Chebyshev points {85, }*_,. It is also given there that

k k 2
ve(€h(2),2) = Y (. (2)/arw) = (Z |£k,,,(z)|) = Ti(2).

v=0 =0

In the following we will call £;;(z) the k-th Hoel and Levine extrapolation design at point
z (the k-th Hoel and Levine design in short) for convenience.

The robust optimality criterion proposed in Dette and Wong (1996) for extrapo-
lation, when there is uncertainty in the degree of the polynomial, is defined as finding
designs minimizing the following information function

-1/p

: N
EP’{W} (00 <p<1p#£0),
(2.4) IL,(& 2) = { H {vj'l()é_gé{-;i)z)} 3 .
max{"j?gi;;,)z) P> 07=1 ’k} (p= ~00),

where v;(£,z) is as defined in (2.2), p; > 0 for all j and Z;;l p; = 1. The vector
(p1y...,pr) is called prior for the class of polynomials of degree & and a robust optimal
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extrapolation design minimizes (2.4) in the class of all approximate designs on the inter-
val [~1,1]. Note that TI,(£, 2) is an information function of the efficiencies of the design
£ for extrapolation at the point z in the polynomial models of degree 1,. .., k. The corre-
sponding equivalence theorem for characterizing the optimal extrapolation designs with
respect to the above criteria can be found in Pukelsheim ({1993), p. 290) and Dette and
Wong (1996). To be more precise, define for a design £, d; (£, z,z) = f;(Z)Mj_l(E)fj(Z').
Let £ (z) be the j-th Hoel and Levine design and let (p1, ..., ps) be a set of priors. When
—o0 < p <1, then £* minimizes II, (£, z) if and only if for all z in [-1,1],

k d3(¢”, z, 7) v; (£*, 2) F
25 P S R RS S A A R .
23 ;PJ { v;(£*, 2) 1} {”j(f;(z)az)} =0
Similarly, for p = —c0o, define

vil€i(2),2) 1295k v3(&5(2), 2)

A€T) = {ixl,‘Q,---,kips>O, u (€, 2) v; (§", 2) }

as the set of all indices where the maximum of the efficiencies is attained, then £* mini-
mizes II_ (€, z} if and only if there exist nonnegative constants 8; such that }:je AE)
A3; = 1 and the inequality

di(e*, 2,z
(2.6) > 8 Mﬂ <0,
holds for all x € [-1,1].
3. Optimality of convex Hoel and Levine designs for compound extrapolation

In this section, we will investigate the optimal extrapolation designs for two spe-
cific polynomial models, that is designs optimal in minimizing the information function
Iy p(€, ) with k = 2m, m > 1, and only pm, pom are positive. In order to simplify the
notation we put p,, = A, pam, =1 — A, 0 < A < 1 and obtain from (2.4)

(*00 <p< l,p:;éO),
vl z) )7 vm(6,2) 117
H)\,;p(‘f, 2) = { {Um(é-;;(z)y z) } {U2m(§5m(z), z) }

max { Um(gaz) U?m(gr'z) }
U (§5(2), 2) V2 (§3n (2), 2)
\ (p = _00).

~-1/p

{p=0),

The design minimizing Hj ,(£,2) will be called compound optimal extrapolation de-
signs from now on. Note that as mentioned above v, (£5(2),2) = T2(z), and from
the definition of Ty, (x) = cos(m arccos z) as well as the trigonometric identity, we know
Tom(2) = 272 (2)—1, and v (€3, (2), 2) = T3, (2) = (272 (2)—1)2. Tt will be shown that
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an optimal convex combination of the two optimal extrapolation designs {&5,(2),£5,,(2)}
for the individual polynomial model of degree m and 2m is a compound optimal extrap-
olation design. The optimal convex combination constant o ,, 0 < a3, < 1, can be
obtained through solving a nonlinear equation. This result will be stated in Theorem 3.1.
For the case p = —oo, II) _o is & nondifferentiable optimality criterion and it is usually
harder to find the optimal designs. However using results from the proof in Theorem 3.1
we are able to prove a corresponding result in Theorem 3.2. Then from the proof of
Theorem 3.2 and by verifying it with the equivalence theorem presented in Section 2, it
is given in Corollary 3.1 that for a special value of A, there is a design which is compound
optimal extrapolating at a point z for all p, —o¢ < p < 1. In Corollary 3.2 the asymptotic
distribution (when the degrees of the two polynomials tend to infinity) is derived.

THEOREM 3.1. For a given A, 0 < A < 1, and —oo < p < 1, the design
b, (2) = @3 pE0(2) + (1 — 05 )5 (2),
with o , being the unigue solution in (0,1) of the equation

by a(l ~ o) 1T (2)(a — 2T2(2))

& 3T @G -ep

is @ compound optimal extrapolation design.

THEOREM 3.2. For p = —oo, the design &, 1/2(2) = (1/2)€5(2) + (1/2)€3:n(2) is
a compound optimal extrapolation design.

COROLLARY 3.1. For A = ((1/2)Tom(2) + T2(2))/(Tom(2) + T2 (2)) and all —oco <
p <1, the design &, 1/2(2z) = (1/2)E5,(2) + (1/2)€3,.(2) is a compound optimal extrapo-
lation design.

COROLLARY 3.2.  The compound optimal extrapolation design fm,a;‘p (z) defined in
Theorem 3.1 (—oo < p < 1) and 3.2 (p = —00) converges (as m — oo} weakly to the
design £*(z) on (—1,1) with density

z2 -1

7|z — 2|V - 2%

Corollary 3.2 gives us some idea how the compound optimal extrapolation design
behaves as the degrees {m,2m} of the polynomials become large. It is interesting to
see that as m — o0, there is no difference on the asymptotic distribution for all p,
—0o<p<l

(3.2)

3.1. Optimality of conver imiting Hoel and Levine designs on discrimination for poly-
nomial models with degrees {m,2m}

In this subsection, we discuss the problem of designing experiments efficient for
discriminating polynomial models, which is closely related to the problem of finding
compound optimal extrapolation design discussed previously.

First recall that the design problem for the estimation of 8, = e};ek, where e, =
(0,...,0,1)7 € R&*1 denotes the (k + 1)-th unit vector, is to minimize e{Mgl(ﬁ)ek or

to ma,xjmize |M (E)I
B Toarel -1 _ k—
Ce, = {ex My (§)ex) ™ = |Me—1(E)
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A design maximizing |Mg(£)|/I Mg~y (£)] is called Dl-optimal and denoted by ff‘. It
is known (see Kiefer and Wolfowitz (1959)) that &' is also supported at the k + 1
Chebyshev points {s,}5_o. The corresponding weights are 1/k at the interior points
{st.u}E2] and 1/2k at the two end points -1 and 1. The parameter &5 has often been
used to discriminate polynomial models of degree k or & — 1.

In order to discriminate between polynomials of different degree, Dette and Studden
((1997), p. 180) define a p-mean of D;-efficiencies which for discriminating between
polynomials of degree (m — 1,m) or (2m — 1,2m) is reduced to

R L R

(—oc < p < 1) where the cases p = 0, —oo are interpreted as the corresponding limits
(see (2.4)). The following two corollaries give the compound optimal discriminating
design minimizing (3.3).

COROLLARY 3.3. Fora given A\, 0 < A< 1, and —co < p < 1, the design €21 o
p

where
1) _ D
gm:a;’p - aJ\,p m '+ (1 - a)t p) 217}:.1

with o3 ,, being the unigue solution in (0,1) of the equation

% —afl - a)p‘12?’+1 =0

s a compound optimal discriminating design.

COROLLARY 3.4. For p = —oo, the design (;‘2:1/2 = (1/2)¢P + (1/2)¢5 is a
compound optimel discriminating design.

Proofs of Theorem 3.1, 3.2 and Corollary 3.2 will be delayed to the Appendix, then
from the proof of Theorem 3.2, Corollary 3.1 can be proved easily, and with the first two
theorems, Corollary 3.3 and 3.4 can be obtained by observing that

. _ 1M 1 ()]
i 62 = e M7 0 = e
Consequently these results follow by considering the limits z — oo in Theorems 3.1 and
3.2

3.2.  Graphs of optimal weights and optimal information functions with respect to the
prior A and criterion parameter p ‘

Now we present some graphs of the optimal weights aj"p and optimal information
functions Il p(&m, at, {z}, %) with models of degree 1 or 2 (i.e. m = 1), for compound
extrapolation at pomt z= 2 to illustrate their behaviors with respect to the prior A and
criterion parameter p. These are given in Fig. 1.

From the graphs of the optimal weights and optimal information functions, for fixed
value of p, both a3, IIx p(§m.ay , (2), 2) become larger when A gets larger and when
p— -0, =1 /2 as expected. But for fixed value of A, it is interesting to note

that there is a turning point that for A < ((1/2)Tom (2) + T2(2))/(Tam(2z) + T (2)), &3,
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x
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(a) @3, w.r.t. A for different fixed p (b) a}, w.r.t. p for different fixed A

I p(€", 2) My p(€%,2)

s e 2

\A: 1/4

(c) My p{€*, 2) w.r.t. A for different fixed p (d) My x(€*, z) w.r.t. p for different fixed A

Fig. 1. Optimal weights a3 ,, and optimal information functions IIx 5(£*, 2} for £* = &1,a3 "
(z) = of &7 (2) + (L - of ;)63 (=) at z = 2 with models of degree 1 or 2.

is decreasing with respect to p, and for A > ((1/2)Tam(2) + T2(2))/(Tam(z) + T(2)),
@} , is increasing with respect to p. This phenomenon is also reflected in Corollary 3.1.
Note also that the phenomenon is somewhat different from that of the optimal weights
and optimal information functions with respect to p as obtained in Preitschopf and
Pukelsheim (1987), where the optimal designs for estimating subsets of components of
the parameter vector in a quadratic regression model were discussed.

4. Stieltjes transforms and extremal polynomials

In this section, we briefly indicate some extensions and applications of the results
in Section 3. Qur first result gives the Stieltjes transform
1

dé{t)

i = —

@o=[ =4
of the convex combination £, o (2) = o, (2) + (1 — )3, (2). It has been pointed ont in
Lau (1983) and Dette and Wong (1996) that the Stieltjes transform is useful for obtaining



564 HOLGER DETTE AND MONG-NA LO HUANG

the canonical moments and orthogonal polynomials with respect to the measure &, o(z).
A further application is given in the proof of Corollary 3.2 below.

THEOREM 4.1. The Stieltjes transform of the design &€mo(2) = a&h(2) + (1 -
@)€5,.,(2) 1s given by
2 DUapm_1(2)
@ -'L', — (Z 2m 1
( fm,a(z)) TQm(Z)(iF _ Z)
[t Qoo anm(z)ﬂi(x)}
(22 — D)Uzm-1(2) T2 (2)Uzm—1(z){(z? - 1)
where U;{z) = sin({j + 1) arccos )/ sin{arccos &) denotes the j-th Chebyshev polynomial
of the second kind.

Our second application refers to a generalization of a well known extremal property
of the Chebyshev polynomials of the first kind (see Rivlin {1990), p. 93). To be precise
let Pp.(x) and Py,,(x) denote polynomial of degree m and 2m respectively and consider
the extremal problem.

(P) max {).P,,z“(z) + (1= NP2(2) wé?ffill(Pr?z(ﬁ) + P, (x) £ 1}

where X\ € [0,1] is a given constant and the maximum is taken over all possible polyno-
mials Pr(z) and Pa,(z). The case X € {0,1} is well known and yields the Chebyshev
polynomial of the first kind as extremal polynomial. The following result gives a solution
of the general problem. Its proof is based on a duality between the extremal problem (P)
and a generalization of the minimax optimal extrapolation design criterion considered
in Theorem 3.2.

THEOREM 4.2. Let A€ [0,1) and 3 = B(A) = A/(1 = A).

{(a) If B(A) < Toy(2), then the solution of the extremal problem (P} is obtained by
the polynomials P (z) =0 and Pap(z) = Fom(x).

(b) If B(A) > Tom(2), then the solution of the extremal problem (P) is obtained by
the polynomials

Pm(:ﬂ) = \/(B — 1)(16 _(JZ;2m(z))Tm(x),

Pom(z) = F (______( %%(z()x - 1)

Note that for a uniform weight, A = §= the optimal solution of (F) is given by
the polynomials Pp(z) = 0, Pan(z) = Tom(z). A more interesting situation occurs
using weights proportional to 1/72,(z) and 1/TZ,.(2), which corresponds to some kind
of standardization by the best values obtainable by the individual polynomials. In this
case the condition S(\) < Tom(2) in Theorem 4.2 is equivalent to T2 (z) < 1, and part
(b) of the theorem applies. The dual problem of the extremal problem is the minimax
optimal extrapolation design problem considered in Theorem 3.2 . This means that the
optimum in (P) is always attained by two polynomials, namely

Pante) = 7 (720 g T2 -1).
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Appendix: Proofs

Throughout this Appendix, we assume z > 1 (and as a consequence Ty(z) > 0,
k = m, 2m); the remaining case is treated exactly in the same way.

PROOF OF THEOREM 3.1. For 0 < a < 1, let £, 0(2) = a&l,(2) + (1 — a)é5,,.(2)
be a convex combination of the optimal extrapolation designs £,(z) and £3,,(z) in the
polynomial of degree m and 2m, respectively. If {s; , }%_, denote the Chebyshev points,
then

(A.]) Smp = cos((m — v)T/m) = Sam,20,

for v = 0,1,...,m, and by (2.2) and (2.3) £mn.a(z) is supported on {sam,.}imy with
corresponding weights {w, }27,, given by

|€m 0 (%)} [£2m,2.{2)|
. v = 1—a)y—=—+, =YLy
{(A.2) Wy, =a T (2)] + (1 — a} Ton(e)] v=0,1 m
(A.3) Wy = (1= o) emamt@
' o |T2m(2)| R
Note that for » =0,1,...,m, we have
— Som2j—1) T _ (%~ Sam2s)
A4 £ v(2 A =
( ) 2m2 ) H (Szm 2 — 52m,25— 1 1;[ 82m 2 52m,2j)
?e
Tm(2)

map(2) = (1) " Tn(z) - b (2),

B T (32m,2u)

where the second equality holds by the fact that the points {szm,2j—1}72 j=1 are the m
zeros for the m-th Chebyshev polynomial of the first kind T,,(z) = cos(m arccosz),
ie. Tp(z) = 27! H;“:l(z — 82m,2j—1), and by (A.1). The last equality holds since
Tm(s;gm,g,,) =(=1)y"*"¥,v=0,1,...,m. As asimple consequence we obtain the following
Lemma which gives a simpler expression for the weights of the design &, o(2).

LEMMA A.l. For 0 < a < 1, the design £ a(2) = ol (2) + (1 — a)&3,,(2) is
supported at the Chebyshev points {sam . }20,, with corresponding weights

(A5) e, = u‘lT‘Zm(z)l ) |’e2m.‘2v(z)| _ ul‘em,v(zﬂ v=0,1,...,m, and

Tf%l(z) 1T2m(z)| |Tm(z)| ’

Hom 20—-1(2)|
A6 g={l —a)————=— = .
( ) Way—1 (1 CE) |T2m(2)| ) v 1: 25 T,
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where

N = L TEG)
e ;_Owgy a+(1 a)|T2m(z)ll

In a second step we will evaluate the covariance functions di (€m,a(2), 2, x) for k = m,
2m, which are needed in the equivalence theorems (2.5) and (2.6).

LEMMA A.2. Foru as defined in Lemma A.1 we have for every x and z with |z| > 1

AT dnlEma(2) 5 2) = LM (6ma(2)) on(a) = 22D,
(A.8) dom (o e (2), 2, 7) = fgm(z)M;ni(fm,a(z))f2m(w)
TLATAE) . Tane)(T20) - 1)
u l-a)

Proor. Note that from Lemma A.1, M, (£m,4(2)) can be written as

2m
Mm(’gm.a(z)) = Zwvfm(SZm,u)fg(-ng,u)

v=0
m m
= z w2ufm(32m,2v).f£ (32m,2v) + Z 'w2v—1fm(32m.2u—1)fnT1(32m,2u—1)
=0 v=1
™ |l oz ™
= l;) w.ﬂn(sm,if}fz(sm,v) + I"Z=;wZu—lfm('-“'2'arn,2u—1)."-5(3211'1,2:/--1)
= uMp (¢, (2)) + BWBT,
where B = (fm(82m,1), fm(S2m.3)s - - -, fm(S2m,2m—1)) i8 & {m + 1) X m matrix, and W is

a diagonal matrix with elements {ws,..1}7% . Then using a formula as in Rao ({1973),
p. 33) we obtain the inverse of this matrix

(A9) M7 (Ema(2)) = 1 M7 (ER(2)
- MG (LB M @B W)
BTMNE(2))

Now from Hoel and Levine (1964) or formula (2.13.10) of Fedorov (1972) and the fact
that T (2) = Y peg [m,w(2)] > 0, it yields

(A.10) A& (2), 2,2) = [ ()M (67, (2) )} i (@)
T~ (2}l ()
2D e

= mv |Z( 1my£mu )
0

= m(z)T (m)i
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which leads for » = 1,...,m, dn(£5(2),2, S2amav—1) = 0. This in turn implies that
fL(M R (2)B = (] That is after multlplylng fI(2) in front of M (€m,a(2)) the
second term in the right hand side of (A.9) is dropped and we have a simpler form for

expressing dm(Em,o(2), 2,2) as

dlomal@),2,) = = [HEMANE(N fn(2) = L Tn(e)Tm(@).

As far as expressing dom (Em,o (2}, 2, ) in a more explicit form, we have

2
(A11)  dom(&malz), 2, 2) = Z Cam(2)f2m,. (T)

w
=0 v

_ f: bam,20 (2)om,2.(2) n i Lom2v—1 (Z)£2m,2u—l($)‘

W3y, Wy —1

v=0 =1

The first term on the right hand side of the last equality can be simplified to be

= £2m.2u(z)£ m,?u(m) Z)T -T) (:’L‘)
(a12) ) 2 Zwm.,(z)m:r @

w
=0 2 m

_ RAETn(@) § e
= S S ) )

- Tn(2)Tm(z)

where we used (A.4), Lemma A.l and z > 1 in order to determine the sign of T;,,(2) and
Z,.(2z). Before evaluating the second term on the last equality, recall that

szo fam () = 1, for all x € R, and that by (A.4)
m ™
D loma (@) = Tulx) 3_(—1)™ Yl (2) = Tr(2).
v=0 v=0

Observing these identities and Lemma A.1 we obtain for the first term in (A.11) the
following expression

(A.13) i £2m,2u—l(z)‘€2m,2u—1(m) T‘Zm(z) Z |€2m -1 z)

£ -
W —1 (1 - £2m,2u— Z)I 2.2 1(3:)

v=1

Tgm Z)
Titw (D o)
Tgm(z)

T (1-a)
Combining (A.11)-(A.13) proves the second part of Lemma A.2. O

TS (T (x) = 1)

From Lemma A.2, it can be easily obtained that

TZ(z)
u ’

(A.14) Um (§m,a (2),2) =

and
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{(A.15) Varm{(Em(2), 2) = Trdr‘;(z) n sz(z()l({%é;) - 1)‘

Now we evaluate the term on the left hand side of the equivalence theorem (2.5) at the
support points {sam, . 127, To this end define

d%(gm,a(z)v ol I) _
Uk (Em,al2), 2)

1, k=m,2m,

(Alﬁ) ¢k(£m,a(z)) 2, :B) =

and let
(A17)  Yi(Emal(2), 2,2) = AMm{bmal2), 2, 2) {%ﬂ(s);ﬁ)‘l} P

V2m (§;m (z) ’ Z)

denote the left hand side of the equivalence theorem (2.5). By the fact that {som, 20-1}7%,
are the zeros of T, (x), and T, (z) has derivative zero at the points {som 2.}y, it is
easy to see from Lemma A .2 that ¥%(£,, o (2), 2, ) has derivative zero (with respect to
x) at all interior support points {som,. }277 ! of the design &y, ().

The following two lemmas are needed to evaluate (A.17) at the support points and
are immediate consequences of Lemma A.2 and the identities (A.14)-(A.16).

+ (1 - )‘)¢'2m(£m,a(z): 2.‘,.'1’5) {

LEMMA A.3. At the even support points {Som o }Teq we have

(-u) (1-o)(T3(z}-1)
u w Do (2) ’

_ (TA(5) - (e — 2T5,(2)
Pom (fm,a(z)s Zy 52m,2u) = usz(z)(T%(Z) _ a,) )

Om{Em,a(2), 2, 32m,20) = and

LEMMA A4. At the odd support points {S2m,2,—1}0=1 we have

PmEm,a(2), 2, 82m20-1) = (-1), and
_ (=1)(e* — 2077 (2))
¢2m(§m,a(2)7 z:32m,2u“1) = (1 — a)(T,?,(z) = O!) .

The proof of Theorem 3.1 is now completed by showing that e can be determined
such that there is equality in (2.5) for all support points of &, ,(z) and by observing
that the derivative of the left hand side vanishes at all interior support points of £, ()
(see the discussion following equation (A. 17)). Because this term is a polynomial of
degree 4m it must attain its maximum (over the interval [—1,1]) at the Chebyshev
points {som 127, and the assertion follows.

To prove the remaining assertion we note that by Lemmas A.3 and A.4, the ratio
b2m{Ema(2), 2,2}/ Pm{Emal2), 2, ), has the same value at all support points {8om,, } 27,
Therefore, when it comes to evaluate Y(&m a(2),2,#} = 0 at all support points we
obtain the same equation for a. Observing Lemma A.3, A4, {A.14) and (A.15) this
gives equation (3.1} of Theorem 3.1. Moreover if we let

oa(e) = r)‘M(T;(z) — @)PTHL - a)'? + aTE, (o) - 2T2(2)),
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then solving equation (3.1) within (0,1) is equivalent to finding the zeros for gx (a)
(0,1). Note that gx(0) = (A/{1—A)T2P+2(2) > 0, and ga(1) = T4, (2)(1 - 2T3(2)} <
and

g » (@D ) o
2o = - o { TS @ - a)+ (- @) - )

Téjm(‘z)(a - T:gz(z))ﬁ

is less than zero for all & € (0, 1). Consequently there is a unique solution of gx(e) =0 in
(0,1), say a,,, and there is equality in (2.5) for all support points of the design £as (z).00

PROOF OF THEOREM 3.2. We investigate the design &m,q(z) for which both effi-
ciencies in the criterion in Section 3 (p = —00) are equal, i.e.

Ui, (gm,a(z)a z) — 'UZm(Em,a(z)s z)
Um (E:n(z)ﬂ Z) U2m(‘£5m(z)! Z) -

Noting that £3,,(2) = &m o(2) we obtain from {A.10), (A.14) and (A.15)

(Ta(z) — o)
u(l — a@)Tom(2)’
which implies that o = 1/2. We now verify conditions in the equivalence theorem (2.6)

for p = —o0 and discuss equality at the support points. By Lemma A.3, A4, (A.14) and
{A.15) we find that all equations yield the same constants 81, 82 given by f2 = 1 - (1,

1.
- =

(1/2)T3m(2) + 17,(2)
Tom(2) + T2,(2)

b=

Finally, similar arguments as given in the proof of Theorem 3.1 show that &, 1/2(2)
does satisfy the equivalence theorem. Consequently §,, 1/2(z) minimizes Il_ (£, 2) and
Theorem 3.2 is proved. O

PrOOF OF THEOREM 4.1. By the linearity of the Stieltjes transform we have
(A.18) D(,Em,a(2)) = a®(z, {5 (2)) + (1 — )0(2, £5,,(2))

where the two expressions on the right hand side were already determined by Lau ((1983),
p. 129), ie

. _ (22 - 1)U2m—l(z) T2m(z) _ sz(l')
(419 oo e = e e i
*)) = (32 = DUm-1(2) Tol2) . Trm(z)
8(@,{nle)) = T2}z — 2) { (22 — DWUpo1(2) (22— D)Up—a(a) } )

Now from the identity 2T, (z)Up-1(2) = Uzpm—1(z) we have

(2% = DUzm-1(2) { Q) I3 (=) }

T2}z —2) | (22— DWam-1(z) (22 — Dlam-1(2)

and a combination of {A.18)-(A.20) yields the desired result. O

(A.20) @(x,&%(2) =
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Proor oF COROLLARY 3.2. Observing the relation

(A21) (o) = (2 4 VE D + (5 — VBT
@+ VD - VE T
2r? -1

{see Rivlin (1990), p. 5) and Theorem 4.1 (@ = 0), it is straightforward to show that

Jim B(z,E3,(2)) = —— {1 : \f—;:i} = 2()

uniformly on closed subsets of C'\ [-1, 1], where the sign of the square root is defined
by the condition |z + +/z? — 1| > 1. By Theorem A.1 in Van Assche (1987) the sequence
{€5,,(2))men converges weakly to a measure £*(2) with Stieltjes transform ®(z), and the
inversion formula for the Stieltjes transform (see Dette and Studden (1997), Section 3.6))
shows that £*(z) has a continuous density on (—1,1) given by (3.2). The same argument
shows that £y (2) = £*(2). Note that the weak convergence of the optimal extrapolation
design (for a fixed degree) was already established by Kiefer and Studden (1976) by a
different method.

Finally, the identity (A.21) shows that the solution o3} » of equation (3.1) converges
(as m — oo) to the unique solution 8* of the equation

LI PHg(l —a)P™! if —cc<p<l

(A.23) 1-

0 =

(A.22) U1 (

if p=-

B = >

Consequently we have £, . (2) = 8¢"(2) + (1 - §*)*(2) = £*(2) which proves the
assertion of Corollary 3.2.0

PrOOF OF THEOREM 4.2. Using a similar argument as in Dette (19955) we obtain
the following duality for the extremal problem stated in Theorem 4.2.
(A.24) max{APy(2) + (1 - A)Pj,(2) | I }( Pr(z) + Pin(2) <1}
(A.25) = n%in max{Avy, (£, 2), (1 — Nvan (€, 2)}

where the minimum in the second expressions varies over the class of all measures with
nonsingular information matrix Mz, (£). Moreover, the general equivalence theorem of
Pukelsheim (1993) shows that £* is a solution of the optimal design problem in (A.25)
if and only if there exist constants -y, 2 > 0, ¥1 + v2 = 1 such that

2

(£ 2 $)
(A.26) El U:d s <1, Vzel[-1,1].

Whenever the maximum in (A.25) is not attained for Av,,(£*, z) we have ;3 = 0, other-
wise the maximum is attained for both expressions, i.e. Avp(£*,2) = (1 — Nvom (€%, 2);
see Pukelsheim (1993). The solution of the extremal problem (P) is now simply obtained
by defining

day(€*,2,2)
Az2T Pl(z) = y—mis 2D =
( ) ! (3") " 'Uml(f*,z) y { 1,2,
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because this choice yields equality between (A.24) and (A.25) in all cases.
If B(A) = A/ (1 = X) < Tom (%) and £5,,(2) denotes the optimal extrapolation design
in the regression of degree 2m, then it follows from (A.7) and (A.8) (a = 0,z = z) that

A’Um(g;m(z)iz) < Tgm(z)(l - ’\) = (1 - A)”?m(fgm(ZLZJ'

In this case we have v, = 0, 92 = 1 in (A.26), which reduces to T§,,(z) < 1, by
Lemma A.2 (o = 0). Consequently £3,,(2) minimizes (A.25) and by (A.27) the extremal
polynomials are given by P.(x) =0, Pou(z) = FTom{z).

On the other hand, if 3(A) = A/{1—A) > Topm(z), then the minimum in (A.25) must
be attained in both expressions. By the results of the previous section it is conjectured
that the minimizing measure of (A.25) is a convex combination of £} (z) and £3,,(2),
iLe. &mafz) = o€l (2) + (1 — a)€3,,(2). The equality in the maximum of (A.23) and
Lemma A.2 determine «, i.e.

T2 (2)(8 — Tam(2))
ﬂng(z) — T2m(z) .

Note that o* € [0,1], becanse 8 > Topm(2), z > 1. Now a straightforward calculation
gives for the quantity « in Lemma A.2

_TE(R)(B-TE(2))
BTE(z) — Tom(2)

{A.28) | ot =

(A.29)

and (A.7) and (A.8) reduce to

m(x) ﬁ (.Z) — sz(z)
Tm(z) B T2(2)

(A.30) dn(€m,an(2),2,2) =

(A3) o (1,2:0) = a0 TnE) <i(5 - 1172(2) - 5+ A

Consequently by Lemma A.2, (A.30), (A.31) the equivalence theorem (A.26) can be
rewritten as

T2 (2) BT2(2) — Tom(2)
NTa(z) B Ta(2)

T2 (z) — Tom(2)
BT2 (=) — 12(8 - T2(2))

If ém,a- (2) is & solution of (A.25) we must have equality at so,, . (¥ = 2m). Tt can
be shown that all these conditions yield the same equation for v, = 1 - 71, ie.

BT (z) — 1)
(BT2(2) — Tom{z) }(B — T.(2))
Ta(2)(8 = 1)(8 ~ Tom(2))
Add =1—-m = .
(A34 ML LA ) - T )P - TAED)
Finally a similar argument as given in the proof of Theorem 3.1 shows that &, - (2)

satisfies {A.26) and consequently minimizes (A.25). The assertion of Theorem 4.2 now
follows from (A.27), (A.30), (A.31), (A.33) and (A.34).O

(A.32)

+ 72 (8= )Tn(a) - 6+ T 2} <L

(A.33) Yo =
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