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Abstract. We consider the problem of classifying a px 1 observation into one of two
multivariate normal populations when the training samples contain a block of missing
observations. A new classification procedure is proposed which is a linear combination
of two discriminant functions, one based on the complete samples and the other on the
incomplete samples. The new discriminant function is easy to use. We consider the
estimation of error rate of the linear combination classification procedure by using the
leave-one-out estimation and bootstrap estimation. A Monte Carlo study is conducted
to evaluate the error rate and the estimation of it. A numerical example is given to
illustrate its use.
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1. Introduction

Let X be a p x 1 vector of abservations from one of two normal populations 7; :
N{pgl %), i = 1,2. The observation is to be classified by a rule based on the linear
discriminant function. When the population parameters are unknown, Anderson {1951)
suggested the statistic

!
(1.1) W = [X — %(5@(1-) +j(2)) S‘l(}?“) _ )?(23),

where X and S are the usual unbiased estimators of u®), i = 1,2, and I respectively.
The statistic W in (1.1) is called Anderson’s classification statistic. The error rate
corresponding to this classification rule is called the unconditional error rate, which is

1
(1.2) 'y=5[Pr(W<0|XE‘.rr])+Pr(W20!X€7r2)].

The distribution of Anderson’s classification statistic is quite complicated. Anderson
(1951) and Wald (1944) considered the distribution of W, and Okamoto (1963) obtained
an asymptotic expansion for the expectation of the conditional error rate. Since the
exact expression for the unconditional error rate is very complicated, the conditional
error rate is considered by assuming X1}, X(2) and § fixed. The conditional probability
of misclassifying an observation X from =y into =y by W is

P=Pr(W< 0| XD X® §;Xem)
%(x(l} b X@yg-1x) _ x@y_ 0 g-1(x ) _ x@)
VXU - X@Ygs-138-1(X ) — "—(2))

= ®
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where ® denotes the cumulative distribution function of the univariate standard normal

distribution. .
Similarly the conditional probability of misclassifying an observation X from = into

m by W is
Pp=Pr(W 20| XM X? 8§ X em)
@' §-1(XW — F@) _ %()zm + X@ys-1(XW - X
VXM - X@yg-138-1(X 1) — X)

Hence the conditional error rate is
1
(1.3) . ¥ = §(P1 + P).

In this paper we consider the situation when the training sample includes missing
values. Chan and Dunn (1972, 1974) investigated the problem of handling incomplete
observation vectors. They presented several methods of ignoring and estimating the
values of these vectors, and used the resulting vectors in the discriminant function.
There appears to be no uniformly best method. They suggested some guidelines in
choosing the method for different situations.

Bohannon and Smith (1975) applied Hocking and Smith (1968) estimation proce-
dure to estimate the parameters and compared this procedure to the standard procedure
of ignoring the missing values in the construction of the classification rule and the esti-
mation of the error rate.

Twedt and Gill (1992) examined the impact of different methods for replacing miss-
ing data in discriminant analysis. They concluded that the methods of replacing missing
data were better than the one of ignoring the observation vectors with missing data.

The EM algorithm (Dempster et al. (1977)) may be used to estimate the parameters
in the classification statistic. This algorithm consists of an iterative calculation involving
two steps: i.e., the prediction and the estimation steps.

Anderson (1957) considered the maximum likelihood estimates of parameters of mul-
tivariate normal distributions when special patterns of missing observations are obtained
in the training samples. The estimators are then used for substituting the unknown pa-
rameters in the classification rule.

2. Linear Combination Classification Procedure

We consider a special pattern which contains a block of missing observations. Instead
of estimating the parameters, we construct two different discriminant functions from the
complete data and incomplete data, respectively, and then a linear combination of these
two linear discriminant functions is used to obtain the classification rule.

Let us partition the p x 1 observation X as follows.

Y
x= 2]
where Y is a k x 1 vector and Z is a (p — k) x 1 vector (1 < k < p}. Suppose random
samples of sizes m;, containing no missing values,

7 z{

(4)
x4 _ [ 3(“1) J , 1=1,2; =1,2,...,m;,
Fp—kix1
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Eyy(kxk) Eyzkx(p—k)
| B x :
ZY(p—k)xk LZ(p—k)x{p—k)
. , . i
and random samples of sizes n; — m;, which contain only the first k-components Yj(( szl)’

i=12; § = m;+1,...,n;, are available from Nk(pg),ﬁw). We denote by XJ(-i),

are available from
. ”(i)k ,
Np(u(‘),)j) =Np ([ (3’{ D
'u’z(pwk:) %1

i=1,2;7=1,...,m;, the complete observations, and by };-(”), i=1,2;,j=1,...,n the
incomplete observations. Hence the data have the special pattern of missing values where
a block of variables is missing on n; — m; observations, and the remaining observations
are all complete. For m; the data are given as

i ; i ; (i)
Yl(;) Yl(é) . 1/1(1?'2‘. Yl((?n,-+1) . Yl;.-
Yz(; ) Yz(zt) o }/2(2.,- YE((?n,- +1 7 Ya(r?.
. . ) I‘ i N ()
oy W R v, o W
Zﬁ) ZS) e Z{é%,
zy oz - ),
(i) ('): (4) _
Zig oy Zip-rz 0 Zip—iym, i=12

Then the sample means are given by
@ _ L gy
YWW=—3» V" i=12,
1 ™ ; J t

_ (s 1 i .
(2.2) =_- v®, i=12
n;y — My jemitl

1 < )
Z(t)=—"" Z’i -=132.
mijz_; SN

Let
o1 iy ,
(2.3) 7o = ;[min(" + (s —m) V), i=1,2.
(3

We can construct two linear discriminant functions. The first linear diseriminant
function is based on the complete observations, X;S*{;xl), i=1,2;9=12,...,m; We
have

W, = (XM = @y g2l [X _ %()‘((1) +X(2))] ,
where

. 1 & () }7(5) ' .
= 2% :{21@) ;o i=12,

2 my . o )
S'Tx = z Z(XJE;) - X(l})(X:EI) - X(i})’fvm’ Vg = T + Mg — 2.

=1 j=1
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The second linear discriminant function is based on the incomplete observations, %((igx 1)
i=1,2;j=1,2,...,n;. We have

W, = (}7(1] —_ }7(2))131:; y - %(}7(1} + }7(2))] ,

where Y& is given in (2.3), and

Syy = ZZ Y(l Y Y(z 1_/(i))"/”’:@n vy=n1+ny =2
i=1 j=1

Now we combine the two linear discriminant functions and construct the classifica-
tion rule which is a linear combination of W, and W}, namely

(2.4) We=cW,+(1-c)W,, 0<Le<l

We call W, the linear combination classification statistic. An advantage of W, is that it
is easy to use. The observation X is classified into 7 if

W, =W+ (1-)W, > 0;

otherwise it is classified into 7. This classification procedure is called the linear combi-
nation classification procedure. This classification procedure depends on the value of ¢.
The choice of ¢ will be discussed later.

The probability of misclassifying an observation from m; into o is given by

B =Pr{W, < 0| X €m}.
' Similarly the probability of misclassifying an observation from 75 into m is given by
Go =Pr{W,.> 0| X € nz}.

The unconditional error rate, with equal prior probability, is defined as

f= 30+ ).

In order to find the error rate 5, we need to know the distribution of W.. However,
this distribution is extremely complicated. Hence we consider the conditional error rate.
The conditional distribution of W, given X, X 5 ¥ ¥ 8, is obtained as
follows. Let

W, = (}'{(1) _ X(z))'S_lX _ l(jv(l) . }'{(2))15—1(72(1) + jlr(2))
T 2 TL
=aX+b=a'Y+a) 7 +8§,

where

= = — a
d’(lxp) = (X(l) _ X(2))IS$EI: B(px1) = [@(]:f:)lil] ,

_ _%(xm _ X@y gl 4 @),
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Also let
W, = (PO - p@y g1 fy %(?(1) + 7))
_ . _ 1. _ - -
= (Y - Y(ﬂ))fsyyly — 5(y(l) - y(2))'3yy1(y(1) + 73
=dY +e,
where
d=F0_-v@ys !
1 .- . . _
e= _E(Y(l) - Yﬂ))’swl(y(l] + Y(2))_
Then
=c(@'Y +a)’Z+b)+ (1~ ¢)([dY +e)
=car+ (1 - c)d'Y +ca)’ Z + b+ (1 — c)e
=AY+BZ+F=HX+F,
where

A=ca +(1 - c)d,

B=Ca2,

F=cb+ (1 - ce,

- [ Agx1) ]
Bip kyx1

Since W, = H'X + F is a linear combination of the random variable X given X(1),
X@ 8., Y ¥ g, and X is distributed as N,(u(¥, Z), hence W, is distributed
as N(H'p'"} + F, H'SH), i = 1,2. Then the conditional probability of misclassifying an
observation X from m; into w3 by W, is given by

(2.5) 8 =Pr(W,<0| X1 X® g, v ¥® 5 XY €m)
- (—————_HI‘”(” — F) .
HTH
Similarly,
(2.6) B3 =Pr(W, >0 XM X@® g ¥O ¥ 5. XY € m)
s —H @ —F) ® (H’,u("’) + F)
T ( HYH | VHESH )

Hence the conditional error rate, with equal prior probability, is defined as

(2.7) g = %(ﬁi‘ + 83)-
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Using the linear combination classification statistic in (2.4), X is classified to mp if
W. > 0; otherwise it is classified to mp. Given the training samples, the conditional
error rate 3* depends on the value of ¢. The best value of ¢ may be determined so
that the conditional error rate is minimized. However, the minimization process is very
tedious and intractable. Hence we propose to use the following value of c.

Let X© and S be the sample mean and sample covariance matrix of the complete
observation vectors of sizes m;, and ¥ and S.!(f) be the sample mean and sample
covariance matrix of the incomplete observation vectors of sizes n; for each population
i, ¢+ = 1,2 (see data in (2.1) ). Since it is assumed that the two populations have the
same covariance matrix ¥, the sample covariance matrices $(!) and S are pooled to
obtain an unbiased estimate of X,

_(my — 1)8Y + (my — 1)@

S
(m1 + me — 2}

Similarly, an unbiased estimate of Xy, is

n — DS 4 (ny — 1)8P
(‘H,l + fig — 2) )

5, = .

From these sample quantities, we propose to use the operational ¢* which is given by

(2.8) ¢t = =

where

(2.9) D? = (XM - x@yg-1(xM) _ x@),
D: = (]?(1) - ?(2))152;—1(?(1) _ }7(2))_

The rationale of using this value ¢* is given as follows. It is known that the error
rates will depend on the Mahalanobis distance and the information from the samples.
Usually the error rate is small when the Mahalanobis distance is large or the sample
size is large. The operational ¢* in (2.8} can be justified in the sense of the training
sample sizes of n; and m;, 1 = 1,2, and the squared distances of D? and D2 in (2.9).
The values of m; and D?, ¢ = 1,2, for the complete data characterize the performance of
W, in (2.4); while the values of n; and Dg, i = 1,2, for the incomplete data characterize
the performance of Wy in (2.4). When D? is much larger than D?, it shows that the
component Z of the variable X has large discriminant power. We should use W, and ¢*
is made to be large and close to one. Similarly when m; and my are large and near the
values of n; and ny respectively, this indicates that the numbers of observations with
missing values are small in the two samples, so W, is not as efficient as W,. Hence ¢*
is made to be large again. On the contrary, when D? is close to Dg (indicating Z does
not provide additional discriminant power} and when m; and mg are small, ¢* becomes
small, and W, has a larger weight. For the special case of ny = ng, m1 = ma, c* in (2.8)
reduces to



550 HIE-CHOON CHUNG AND CHIEN-PAT HAN

Table 1. Values of parameters in the Monte Carlo study.

D k n=20 n = 50 n = 100
2 1 m=26,10,14,18 m = §,10,14,18,30,46 m = 6, 10, 14, 18,30, 46, 70, 90
AZ = 64,1,4,9,16 A2 = 64,1,4,9,16 AZ = .64,1,4,9,16
5 1 m=10,14,18 m = 10, 14, 18, 30, 46 m = 10,14, 18, 30, 46, 70,90
3 Al=.64,1,4,916 A2=.64,1,4,916 A2 = 64,1,4,9,16
10 1 m=10,14,18 m = 10, 14, 18, 30, 46 m = 10, 14, 18, 30, 46, 70, 90
AZ =14 A2 =14 A2 =14

There may be other choices of the value of ¢, for example, selecting ¢ to minimize the
leave-one-out estimate of 3*. This would involve an intensive search in the interval (0,1).
Another way to determine ¢ is to minimize the asymptotically unbiased estimator given
in McLahlan (1974). This would require the asymptotic expansion of the distribution
of the error rate for W, which is very complicated. In this paper we will use ¢* in (2.8)
because it compares favorable with Anderson’s procedure and it is easy to use. In the
numerical example in Section 5, we will also consider the procedure of selecting ¢ to
minimize the bootstrap estimate of 5*.

3. Comparison of the Error Rates

In order to compare the different classification procedures we need to evaluate the
error rates. We evaluate the performance of the linear combination classification proce-
dure in (2.4) and compare its conditional error rate 8* in (2.7) with the conditional error
rate obtained by substituting the parameter estimates into the usual linear discriminant
function. The parameter estimates are found by Anderson (1957), Hocking and Smith
(1968), and the EM algorithm (Dempster et al. (1977)). Since the distributions of the
discriminant functions for the different procedures are intractable, we use a Monte Carlo
study to simulate the error rates. It can be shown that the linear combination classifica-
tion statistic is invariant under nonsingular linear transformations when the data contain
missing observation. In view of the invariance property, we may let, without loss of gen-
erality, u() =0, p(? = [8,,0,...,A,,...,0), and T = I. Using the canonical form, we
have the Mahalanobis distance A2 = (u") — @) () — @) = pG U@ = A2 4 A2,

So Ay, = /AZ ~ A2 Let R = A2/A2, where 0 < R < 1. Thus when we fix A2, the
& ¥ 2 @ Fit

parameter R changes as &3 varies. For fixed A2, the error rates of the linear combina-
tion classification procedure W, in (2.4), Anderson’s procedure, the EM algorithm, and
Hocking and Smith procedure will be simulated as R changes from 0 to 1. Table 1 gives
the combinations of the choices of &, m and A2 in the simulation experiments.

The comparisons of the error rates are given in Table 2 and Table 3 for some
combinations of p, k, n, m, A2 and R. The number of simulations is 1000. We can
see that the three error rates obtained by Anderson’s procedure, the EM algorithm and
Hocking and Smith (H-S) procedure are almost the same for any combination of p, k,
™, M, Aﬁ, and R. Let us now define the difference of error rates between Anderson’s
procedure and the linear combination classification procedure as

DER = [average of conditional error ratey” in (1.3) obtained by Anderson’s procedure]
— [average of conditional error rate 3*in (2.7)].
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Table 2. Comparison of error rates.

p=8 k=1, n=50,m=46

A2 R W. (8. D) Anderson and EM* (8. D.) H-8 (8. D.) DER

1.0 0.0 0.3152 (0.0100) (.3139 (0.0070) 0.3139 (0.0070) —0.013
0.2 0.3174 (0.0118) 0.3139 (0.0070} 0.3139 (0.0071}) —0.0035
0.4 0.3184 (0.0109) 0.3140 (0.0070} 0.3140 (0.0070}) —0.0044
0.6  0.3177 (0.0085) 0.3141 (0.0070) 0.3141 (0.0070)  —0.0036
0.8 0.3151 (0.0057) 0.3143 (0.0070) 0.3143 (0.0070) —0.0008
1.0 0.3109 {0.0031} 0.3144 {0.0071) 0.3144 (0.0071) 0.0035

40 00 0.1629 (0.0044) 0.1627 (0.0041) 0.1627 (0.0042)  —0.0002
0.2 0.1649 {0.0072) 0.1626 (0.0041) 0.1626 (0.0041) —~0.0024
0.4 0.1672 {0.008T) 0.1624 (0.0040) 0.1624 (0.0039) —0.0048
0.6 0.1679 (0.007T) 0.1623 (0.0039) 0.1623 (0.0039) —0.0056
0.8  0.1657 (0.0051) 0.1624 (0.0040) 0.1624 (0.0040) —0.0033
1.0 0.1606 {0.0022) 0.1627 (0.0047) 0.1627 (0.0047) 0.0021

5561

* For each combination, the error rates and the standard deviations of Anderson and EM
algorithm are the same, respectively.

Table 3. Comparison of error rates.

p=05 k=1,n=20, m= 10

A2 R We (8. D) Anderson and EM* (8. D.)  H-8 (8. D.) DER

1.0 0.0 0.3827 {0.0463) 0.3795 (0.0459) 0.3797 (0.0459) —0.0032
0.2 0.3804 (0.0429) 0.3803 (0.0444) 0.3799 (0.0442)  —0.0001
0.4 0.3757 (0.0413) 0.3804 (0.0428) 0.3794 (0.0424)  —0.0047
0.6 0.3692 (0.0404) 0.3801 (0.0408) 0.3786 (0.0403)  0.0109
0.8 0.3615 (0.0399) 0.3799 {0.0387) 0.3779 (0.0382)  0.0184
1.0 0.3526 (0.0405) 0.3795 (0.0374) 0.3770 (0.0370)  0.0269

40 0.0 0.2181 (0.0411) 0.2166 (0.0399) 0.2168 {0.0399) —0.0015
0.2 0.2168 (0.0398) 0.2169 (0.0402) 0.2163 (0.0398)  0.0001
0.4 0.2108 (0.0348) 0.2168 (0.0399) 0.2155 (0.0392)  0.0060
0.6 0.2028 (0.0306) 0.2168 (0.0394) 0.2150 (0.0386)  0.0140
0.8 0.1935 (0.0284) 0.2172 (0.0388) 0.2148 (0.0375)  0.0237
1.0  0.1839 (0.0275) 0.2188 (0.0391) 0.2160 (0.0382)  0.0349

* For each combination, the error rates and the standard deviations of Anderson and EM
algorithm are the sams, respettively.

From Table 2 and Table 3, we can see that there is a point where the sign of DER
changes when R goes from 0 to 1. Let us call this point cut-off point B*. Then R* divides
the parameter space (0 < R < 1) into two regions with 0 < R < R* and R* < R < L.
The linear combination classification procedure is better than Anderson’s procedure, the
EM algorithm and Hocking and Smith procedure if I is greater than R*. We found that
R* depends on the combination of p, k, n, m, and A2, For example, R* appears to be
very small for p = 5, k = 1, n = 20, m = 10, A2 = 4 in Table 3, but very large for
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Table 4. Cut-off point R*.
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p= 5, k=1 m
A2 n 10 18 30 46 ° 70 90
0.64 20 028 029 0.29 - - - -
50 0.16 026 029 037 0.38 - -
160 012 018 0.25 037 045 052 0.53
1.0 20 022 0.28 031 - - - -
50 0.17 0.24 031 042 048 - -
100 0.14 018 030 045 054 063 0863
4.0 20 021 0.28 040 - - - -
50 022 039 048 065 0.70 - -
100 031 050 059 075 081 0.85 0.87
0.0 20 (.22 031 046 - - - -
50 0.23 049 061 069 0.79 - -
100 G483 064 072 082 085 0.89 089
16.0 20 017 0.38 046 - - - -
50 037 055 064 077 0.82 - -
100 048 066 073 0.83 038 0951 031
Table 5. Bootstrap and leave-one-out estimates for 3.
p k A2 = m R ar Boot (8. D.) Leave (8. D.)
2 1 20 10 0.2 0.3443 0.3317 (0.1188) 0.3331 {0.1255)
0.9 0.3238 0.3313 (0.1092) 0.3230 (0.1081)
2 1 1 20 18 0.2 0.3205 (.3246 (0.0844) 0.3204 (0.0839)
0.8 0.3200 0.3215(0.0792) 0.3148 (0.0806}
2 1 1 50 10 0.2 0.3483 0.3370 (0.1231) 0.3407 (0.1253)
09 0.318) 0.3234 (0.1068) 0.3161 (0.1017)
5 1 1 20 10 0.2 0.3765 03353 (0.1162) 0.3844 (0.1309)
0.9 0.3537 0.3378 (0.1188) 0.3618 (0.1221)
5 3 1 20 10 0.2 03810 0.3331 (0.1189) 0.3704 (D.1285)
0.9 0.3501 0.3315 (0.1190) 0.3424 (0.1137)
5 3 1 20 18 0.2 03600 0.3396 (0.0849) 0.3450 (0.0888)
0.9 0.3458 0.3370 (0.0681) 0.3265 (0.0840)
2 1 4 20 18 0.2 0.1726 0.1673 (0.0646) 0.1661 (0.0640)
0.9 01670 0.1662 (0.0623) 0.1620 (0.0617)
2 1 4 50 46 0.2 0.1849 0.1660 (0.0389) 0.1651 (0.0385)
0.9 0.1638 0.1630 (0.0387) 0.1614 (0.0389)
5 1 4 20 18 0.2 0.1937 0.1809 (0.0683) 0.18%4 (0.0695)
0.9 0.1773 0.1746 (0.0665) 0.1733 (0.0644}
5 3 4 20 18 0.2 0.1964 0.1821 (0.0665) 0.1879 (0.0665)
00 0.1843 0.1781 (0.0679) 0.1710 (0.0656)
5 3 4 20 10 0.2 0.2211 01859 {(0.0981) 0.2163 {0.1027)
0.9 0.1954 0.1806 (0.0925) 0.1805 {0.0872)

p=2,k=1,n =050, m=46, A2 =1 in Table 2. Table 4 gives the cut-off points of
R*. From the simulations, we obtain the following properties of the linear combination
classification procedure.
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(a)} For fixed p, &, n, and A2, the value of R* increases as m increases.

(b} For fixed p, n, m, and A2, the value of R* increases as k increases.

From the properties {(a) and (b), we conclude that the linear combination classifi-
cation is better than Anderson’s procedure, the EM algorithm, and Hocking and Smith
procedure for given p, n, and Ai as the proportion of missing observation gets larger.

4.  Estimation of Error Rates

The performance of a classification procedure is measured by its error rate. Since
error rate depends on unknown parameters, we must estimate it by samples. We will
consider the estimates of the conditional error rate 4* in {2.7) for the linear combination
classification procedure. The algorithm of McLachlan (1980) can be extended to obtain
the bootstrap estimate of the bias correction when the training samples contain missing
value. Also the leave-one-out estimate of the error rate will be obtained. A Monte Carlo
study is conducted to obtain the bootstrap and the leave-one-out estimate of 7% for some
combinations of n = 20(m = 10, 18), 50(m = 10,46), p = 2, 5(k = 1,3), A2 = 1,4 in
Table 1 with & = 0.2, 0.9. The number of simulations is 1000, and 300 bootstrap samples
are generated for each simulation.

Table 5 shows the properties of the bootstrap and leave-one-out estimates for 3* in
(2.7). We summarize our findings from the Monte Carlo study as follows:

1) When n and m are moderately larger than p, ie., p =2, n =20, m = 10 and
18, both estimates appear to be nearly unbiased.

2) When n and m are sufficiently larger than p, i.e., p = 2, n = 50, m = 46, both
estimates are improved compared to the case in 1).

3) When n and m are not moderately larger than p, ie, p=5k=1,3, n =
20, m = 10, the estimates for the leave-one-out method generally appear to be nearly
unbiased but not for the bootstrap, specially for R = 0.2. This happens since information
for the discrimination depends on the variables in which data contain missing values.

4) The standard deviations for both estimates are almost the same for each com-
bination.

The conditional error rate can be estimated by substituting the estimates 5, p@®
for £, p¥ in (2.5) and (2.6). Le a® = [Y(¥), Z('}(] in (2.2) and (2.3) be the estimate

) i) (i)
of 1. For the covariance matrices, let £ = {i’(’gc 2;?3‘3} be the estimate from the
zyc zze

complete observations of sizes m;. Also let }:"}S)i be the estimate from the incomplete
observations of sizes n; — m; using only the Y observations in (2.1), ¢ = 1,2. Then we
suggest the combined estimates,

M (i) @ )
56 = EW“+ n; T ?!’_"“ for @ 1=1,2
250 20

Now the pocled estimate of the covariance matrices is given by

SR S 5 ORI )
iy + na 1+ no
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Table 6. Population 1: Success.

a1 T2 T3 x4 x5  The variables are:
2.97 420 800 600 497 x; = Undergraduate GPA
3.80 330 710 3R0 563 xz = GRE Verbal
250 270 700 340 510 3 = GRE Quantitative
2,50 400 710 600 563 x4 = GRE Anslytic
3.30 280 800 450 543 x5 = TOEFL Score
2,60 310 660 425 507

2.70 360 620 590 537

3.10 220 530 340 543

260 350 770 560 580

3.20 360 THO 440 577

3.65 440 700 830

3.56 640 520 610

3.00 480 550 560

318 $b0 630 630

3.84 450 660 630

3.18 410 410 340

3.43 460 610 560

3.52 580 580 610

3.08 450 540 570

3.70 420 630 660

5. Numerical Example

Application of the bootstrap method to estimate the error rate, 8* in (2.7) is il-
lustrated by using unpublished real data sets. They are given by the Admissions Office
at the University of Texas at Arlington. The data sets contain two populations. One
population is the Success Group that the students receive their master’s degree. The
other population is the Failure Group that they do not complete their master’s degree.
For each population, there are 10 foreign students and 10 United States students. Each
foreign student has 5 variables which are x; = undergraduate GPA, z2 = GRE verbal,
3 = GRE quantitative, x4 = GRE analytic, and x5 = TOEFL score. For each United
States student, one variable, x5 = TOEFL score is missing. The data sets are shown in
Table 6 and Table 7.

Using this data set, we obtain the discriminant function

W, = cW; + (1 - c}W,,

where
W, =a X +b,
@ = [-1.9957 - 0.0170 — 0.0004 0.0034 0.0242], b= —2.5252,
W,=dX +e,
d =[0.5302 —0.0042 —0.0023 0.2406], e =0.2846,
¢ =0.7532.

For this example, we generate 300 bootstrap samples to estimate 3*. The result of
using ¢* = 0.7532 is that the bootstrap estimate of 3* is 0.3435. We also consider the
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Table 7. Population 2: Failure,

*1 T r3 T4 z5  The variables are:
375 250 730 460 513 =z = Undergraduate GPA
3.11 320 760 610 560 3z = GRE Verbal
3.00 360 720 525 540 x3 = GRE Quantitative
260 370 TBO 500 500 x4 = GRE Analytic
3.50 300 630 383 507 =5 = TOEFL Score
3.50 390 580 370 587
3.10 380 770 500 520
2.30 370 640 200 520
285 340 800 540 517
3.50 460 7HO0 B60 59T
3.16 630 540 600
293 350 690 620
3.20 480 610 480
276 630 410 530
3.00 3550 450 500
3.28 510 690 730
3.11 640 720 520
3.42 440 . 580 620
3.00 350 430 480
2.67 480 700 670

procedure of selecting ¢ to minimize the bootstrap estimate of 3*. We search ¢ in the
interval [0.05(0.05)0.95]. The best value occurs at ¢ = 0.60 with a bootstrap estimate of
3* 0.2933. The error rate is less than that of ¢ but not hy much.

6. Conclusion

Discriminant analysis is a multivariate technique concerned with classifying a p x 1
observation X to one of several distinet populations. If the training samples do not con-
tain missing values, the Anderson’s classification statistic is used to classify the observa-
tion. In this paper, we consider situation that the training samples contain incomplete
observation vectors which have a special pattern of missing data,; i.e., all missing values
oceur on the same variables. There are several methods 1o deal with missing value in
discriminant analysis. One method is to estimate the unknown parameters first, and
then the estimates of them are substituted into the usual discriminant functions for clas-
sification. We call these methods substitution methods for the incomplete data. A new
classification procedure in this situation is proposed. The proposed discriminant function
is a linear combination of two well defined Fisher’s linear discriminant functions. It does
not require the estimation of the missing values. The performance of this classification
rule is compared to the substitution methods. We found that the linear combination
classification procedure is better than the substitution methods as the proportion of
missing observations gets larger. A numerical example is given and it is shown that the

- linear combination classification procedure is easy to use.
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