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Abstract. Jackknife and bootstrap bias corrections are based on a differencing ar-
gument which does not necessarily respect the sign of the true parameter value. De-
pending on sampling variability they can over-correct, producing a final estimator
that is negative when one knows on physical grounds that it should be positive. To
overcome this problem we suggest a simple, alternative bootstrap approach, based
on biased-bootstrap methods, Our technigue has similar properties to the standard
uniform-bootstrap method in cases where the latter does not endanger sign, but it
respects sign in a canonical way when the standard method disregards it.

Key words and phrases: Bias reduction, biased bootstrap, bootstrap, jackknife, twic-
ing, weighted bootstrap.

1. Introduction

Methods for estimating bias were among the first applications of the bootstrap,
appearing for example in Efron’s (1979) seminal paper. They enjoy a close relationship
to bias-correction techniques based on the jackknife, developed by Quenouille and Tukey
thirty years prior to bootstrap methods. For example, the formula for a bias-reduced
bootstrap estimator is similar to that for Tukey’s ({1977}, p. 526) approach based on
twicing. An account of properties of bootstrap and jackknife estimators is given by Efron
and Tibshirani {(1993), Chapter 10).

Twicing, and related jackknifed or bootstrapped bias-reduced estimators, are
founded on cancelling out the dominant part of bias by subtracting an estimate of the
mean of an estimator from twice its uncorrected value. If the estimator is highly vari-
able, as can happen in small samples or in other cases where the relative error of the
mean estimate is high, then this subtraction can produce a bias-reduced estimator which
does not respect the sign that the true parameter value is known to have. For example,
if a true mean is 0 then the standard bootstrap bias-reduced estimator of the square
of the mean will be negative about 68% of the time. More generally, bootstrap bias-
reduction can produce an estimator which violates the range of the parameter value.
Efron’s (1990) improved bias-reduced bootstrap estimator suffers from the same prob-
lems. The improvement that it offers is in terms of efficiency of the numerical algorithm
used to compute it, and in fact it equals the standard bias-reduced bootstrap estimator
if, when computing either, we conduct an infinite number of Monte Carlo resampling
operations. Neither are transformations particularly helpful in reducing sign and range
problems, since an unbiased estimator of a transformed parameter loses that virtue when
back-transformed.

In this note we suggest a simple remedy for the sign and range problem, based
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on the biased-bootstrap arguments of Hall and Presnell (1999). We shall focus atten-
tion on sign, which we feel is the most important case. Our approach guarantees that
the bootstrap bias-reduced estimator shares the sign of the true parameter when the
sign is known. It achieves this end by adjusting the bootstrap distribution on which
the uncorrected estimator was based, rather than by adding a correction to that esti-
mator. When the conventional, uniform-bootstrap estimator has the correct sign, its
biased-bootstrap counterpart takes a similar value, and indeed has virtually identical
large-sample properties in such cases. However, when the sign of the uniform-bootstrap
estimator is incorrect, or only marginally correct, the biased-bootstrap estimator com-
pensates by taking a value (with the correct sign) that is typically closer to the true
parameter.

As in Efron (1990), our methods and theoretical arguments are developed for the
case where the statistic of interest may be defined as a known function of a second
statistic; it is the function that conveys the sign that we wish to preserve. Since we allow
the argument of the known function to be vector-valued, this approach includes a wide
range of settings, including statistics that are included in the general smooth function
model considered by, for example, Hall ((1992), p. 52). Section 2 introduces our method
and discusses its numerical properties. Section 3 describes its theoretical performance,
and Section 4 sketches proofs of results in Section 3.

2.  Methodology

2.1 Uniform-bootstrap methods

Let 6, a vector-valued statistic of length k, denote the uniform-bootstrap estimator of
a quantity 8, based on data X = {X3,..., X, }. Suppose we wish to estimate ¥° = 1{f"},
where 6° is the true value of € and ¥ is a known, smooth function from R* to R. The
bootstrap estimator is ¥ = 4(6), but is generally slightly biased. The standard uniform-
bootstrap bias-reduced estimator is

21 & =2 - E{y(6") | X},

where §* denotes the value of # computed from a resample X* = {X},..., X} drawn
by sampling randomly and uniformly (that is, randomly with replacement) from &' See
for example Hall ((1992), p. 8ff), Efron and Tibshirani ({1993), p. 138) and Shao and
Tu ((1995), p. 14f). The bias of ¥ is generally O(n—2), compared with O{rn~') in the
case of . However, this approach does not necessarily respect the sign of the function
. For example, if ¢/(u) = u®, where 8 is a population mean, then ¢/ < 0 is equivalent
to (nt/2X/8)2 < 1. Thus when #° = 0, the probability that 3% < 0 converges to the
probability that a chi-squared random variable with one degree of freedom is less than
1; this limit equals 0.68.

2.2 Biased-bootstrap bias correction

Given a multinomial distribution p = (py,...,ps) on the data X = {X1,.... X},
_let 6" denote the version of § computed from a resample drawn by sampling at random
from & according to the empirical distribution F,, that places mass p; at X; for1 <¢ <n.

Let ép denote the biased-bootstrap estimator of #, or equivalently, the value that 8 would
assume if the true distribution were F‘p. (For example, if # were the population mean
then 9}, would equal ~, p; X;.) Then, a biased-bootstrap bias-reduced estimator of ¥V is

given by w(ép) — B(p}, where
(2.2) Bp) = E,{vw(6") | X} - v(9)
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and FE, denotes expectation in the biased-bootstrap distribution ﬁ‘p. In the event that
B3(p) = 0 we obtain simply the estimator w(ép), which of course shares the sign of 1. This
suggests the following method. Let punir = (r™1,...,n"!) be the uniform distribution
on X, and choose p = P to minimise the distance (see Subsection 2.3) between p and
Punif subject to B(p) = 0, >, p; = 1 and each p; > 0. Then, our biased-bootstrap,
bias-reduced estimator of ¥ is

(2.3) i =1(0),

where 85 denotes the biased-bootstrap estimator of § when p = p.

Most importantly, if the function ¢ is always of the one sign then @5 shares that
sign, and in fact 4 is guaranteed to lie within the range of 4. Moreover, 4 generally
has asymptotic bias of order n~2, compared with order n~" for #; and each successive
application of biased-bootstrap bias reduction reduces this order by the factor n=1.
Also, as in the case of conventional bootstrap bias reduction illustrated at (2.1), the
asymptotic variance of 9 equals that of 1(8) in regular cases, and so the biased-bootstrap
bias reduction method does not appreciably alter variance. Section 4 will address these

properties in detail.

2.3 Distance measures

Appropriate distance functions include Cressie-Read {1984) power divergence dis-
tances. See Read and Cressie (1988) for a book-length discussion of power divergence.
Specialised to the case of a multinomial distribution on n points, and for any given
—00 < p < 00, the functional

(2.4) D,(p) =2{p(1 - p)}~* {n - i(m)"}

may be regarded as a measure of the distance (or divergence, since it is asymmetric)
between p and pynir. We define Dy and D by taking limits. Both are Kullback-Leibler
distance measures, but it is conventional in problems of this type (see e.g. Owen (1988))
to take Dp, given by

Dy(p) = -2 Z log(np;)

(or any functional proportional to it), to be the measure of Kullback-Leibler distance in
this setting.

2.4  Numerical properties

In problems where the basic statistic 8 can be written as a smooth function of an r-
variate mean, computation may be undertaken using the method of estimating equations
developed by Qin and Lawless (1994, 1995) for the case of empirical likelihood. If p = 0
then no modifications of Qin and Lawless’ approach are required. In particular, Qin
and Lawless’ (1994) formula (3.2) for p; is valid; for reference purposes we reproduce it
here in their notation: p; = n=1{1 + tTg(z;,0)} ™!, where t is an r-vector of Lagrange
multipliers and ¢ is an r-variate function. When 0 < p < 1 or p = 1, this should be
altered to p; = {e +tTg(x;,8)} 17 or p; = exp{c + tTg(x;,8)}, respectively, where
the additional constant ¢, as well as ¢, is chosen so that the constraints 3. p; g(z;, 8) = 0
and 3, pi = 1 are satisfied.
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Table 1. Panel (a) shows the percentages of tirea that the biesed-bootstrap bias-reduced
estimator failed to exist, and panel (b) gives the percentage of times that the uniform-hootstrap
bias-reduced estimator was negative,

(a) (b)

1/2

1 c=nl/?,
n 0 1 2
25 67.3 474 16.9
50 679 4863 17.2

100 69.2 47.9 14.8

c=n
n 0 1 2
2 6.7 33 11
50 35 2.2 0.7
100 1.7 06 0O

o QO ol
o D Ol

In the case of biased-bootstrap bias reduction, one of the estimating equations would
generally enforce the constraint 3(p) = 0. We then must optimise over the free parame-
ters, either by solving simultaneously for ¢, ¢, and 8 using a Newton-Raphson approach,
or through a two-stage optimisation, solving for ¢ and ¢ (again Newton-Raphson is gen-
erally used here) for fixed values of § and then minimising D, (p) over the free values of 4.
As discussed in Section 5 of Qin and Lawless (1994), the first approach involves finding
a saddle point of a function of ¢, ¢, and # and may require particular care. For samples
where the traditional uniform-bootstrap bias-reduced estimator does not respect sign, it
is often the case that the value of § prescribed by the biased-bootstrap is quite far from
Dunif- In such cases the simultaneous-optimisation approach may fail to converge when
started from the uniform bootstrap estimates of # (and ¢ = 0). For particular samples
this problem can be solved by using alternative starting values, chosen either by trial
and error or by some more guided approach, but this may not be practical for simulation
work. We have thus employed the two-stage approach in the simulation study reported
here.

We consider the case of bias-correcting the square of the sample mean when the
population mean is close to zero. In this case the constraint 3(p) = 0 is equivalent to
(n— 1) pX:)?+ 3 piX? = nX2. Such a p exists if and only if the intersection of the
convex hull of the points {(X;, X?):i=1,...,n} with the set {{z,y): (n — )22 +3% =
X2} is nonempty. From this it follows that ¢ exists in the case of the sample X if and
only if either all the X;’s have the same sign, or

min{—X; : X; < 0} x min{X; : X; >0} < nX?.

We also confine attention to the case p = 0. Simulation results for values of p > 0,
specifically p = 0.5, showed no practically meaningful change in performance from those
reported here, although a very small increase in bias could be detected.

We simulated from the N{u = en~1/2,1) distribution for sample sizes n = 25, 50
and 100, and ¢ =0, 1, 2 and 5. Panel (a) of Table 1 reports the percentages of times that
the bias-bootstrap bias-reduced estimator g@ failed to exist. (Each entry in our tables
is computed as the average of 1000 simulated values.) In each case where ¥ did not
exist, we replaced it by w(é) = X? when computing Monte Carlo approximations to bias
and mean squared error. Panel (b) of the table gives the percentages of times that the
uniform-bootstrap bias-reduced estimator 9% = X?—n~182 (where §2 = n~ 1 3_(X,— X)?
denotes the sample variance) was negative. Negativity is seen to be a significant problem
when the true mean is close to zero.

Tables 2 and 3 give Monte Carlo approximations to the biases and root mean squared
errors of four different estimators of 9 = 1(6°): the unmodified estimator ¥(8) = X?,
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Table 2. Biases (shown as nx the value of the Monte Carlo approximation to bias) for the
four estimators ¥(8) = X2, 9, ¥moq and 1, respectively.

c n X? U-Boot Modif B-Boot
25  0.99 0.03 0.69 0.50

1 50 0.03 0.06 0.72 0.53
100 0.95 —0.03 0.65 (+.46

1 25 (.92 —0.04 0.43 (.28
50 0.98 0.00 0.46 0.30

100 0.93 —0.06 0.42 0.26

2 25 0.84 —.11 0.06 —0.00
50 0.93 —0.05 0.13 0.06

100 0.90 —0.08 0.07 0.01

5 25 0.63 -0.33 —3.33 -0.33
50 0.Y8 020 —-0.20 -0.23

100 0.83 —0.15 —0.15 —0.15

Table 3. Root mean squared errors (shown as nx the value of the Monte Carlo approximation
to reot mean squared error} for the four estimators (@) = X2, 1, 4imoq and ¥, respectively.

e n X?  U-Boot Modif B-Boot
25 1.68 1.38 1.27 1.23
50 1.83 1.51 1.42 1.38
100 1.65 1.36 1.24 1.20
1 25 2.61 2.35 2.11 2.15
50 2.58 2.39 2.16 2.21
100 2.54 2.37 2.12 2.17
2 25 4.20 4.13 3.96 4.02
50 4.27 417 3.99 4.06
100 4,22 4.12 3.97 4.03
5 25 9.96 9.95 9.95 9.95
50 10.13 10.10 10,10 10.10
100 D.87 9.84 0.84 9.84

the uniform-bootstrap bias-reduced estimator ¥ = X2 — 7182, the modified estimator
Ymod Which equals ¢ if the latter is p051twe and equals 1,[)(9 otherw1se and the biased-
bootstrap bias-reduced estimator ’d). Within each row of the tables these estimates
are highly correlated, since all four estimators were computed for the same set of 1000
simulated samples. Thus within-row differences are estimated with very high accuracy.
In Table 3, all of the within-row differences in estimated root mean square error are highly
statistically significant except in the last three rows, corresponding to ¢ = 5, where all
differences might reasonably be attributed to simulation error. Similar remarks hold
for the estimates of bias in Table 2. Here the apparent differences in bias are generally
much larger than can be attributed to simulation error, although in several cases, and
in particular when ¢ = 5, the estimated biases of the various bias-corrected estimators
are themselves not statistically significantly different from 0.

Table 2 shows that of all the estimators that are guaranteed to be positive, 1‘5 has
uniformly least bias. Tt is beaten by ¢ in the cases ¢ = 0, 1, but there we know from
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Table 1 (b) that v suffers seriously from negativity problems. The biased-bootstrap
estimator is always preferable when ¢ = 2, surpassing the uniform-bootstrap estimator
¥ in terms of both bias and positivity. The two approaches are comparable in terms of
bias when ¢ = 5.

Table 3 gives Monte Carlo approximations to root mean squared errors for the four
estimators addressed in Table 2. The biased-bootstrap estimator ¢ is seen to improve
on both ¢(8) and ¥ in these terms. It is a little inferior 10 ¥med, although we know from
Table 2 that it suffers less from bias than the latter. In cases where negativity is less
of a problem (e.g. ¢ = 5 in this simulation study), all four estimators perform virtually
identically.

3. Theoretical properties

We consider the case where § = X =n™! 3"; X is the mean of an r-variate sample
X, and 1 is a smooth function from r-dimensional Euclidean space to the real line.
Examples include the case where ¢ is a function of a ratio of two univariate means
(r = 2), of a univariate variance {(r = 2) or of a correlation coefficient (r = 5). We claim
that in this setting, the biased bootstrap provides the same order of correction as the

usual bootstrap.
To appreciate why, let 1 = E(X) denote the mean of the sampling distribution,
where X is a generic X;: let XU) be the j-th component of X; and put

Wjyogo () = (87 02V - ALl Yop ().

An elementary Taylor expansion argument shows that, provided the expected value of
the remainder term may be bounded appropriately, the bootstrap estimator 1 = 1(X)
has expected value E{¢(X)} = ¢(u®) + in~ 6 +O(n~2), where £ = 3, T, cov(X ),
XU2Dygp; o (). A bias-reduced estimator of 1(u°) should provide a correction for the
term n7'¢ in this formula. The usual bootstrap bias-reduced estimator ¥, defined at
(2.1), does this through having the property

. _ 1 _ _ _
(3.1) §=9(X) - 507 + 0o + Opfn7),
where the random variable Y,, satisfies
(3.2) E(Y,)=0 and E(Y?)=0().

See for example Hall ({1992), p. 8ff). Theorem 3.1 below states that the same is true for
the biased bootstrap estimator, 3, defined at (2.3).

Next we give our regularity conditions. Write ||z|| for the Euclidean norm of a vector
z. We assume that E(||X]||?) < oo, that all fourth derivatives of ¢ are uniformly bounded
in some open neighbourhood of 10, and that the asymptotic variance of n!/2y(X), ie.

0% =33 cov(X9), XU )y, (1, (1°),
1 g2

is nonzero. We call these conditions (A).
We specify the biased bootstrap estimator as follows. Let C' > 1 be any constant,
and let II denote the set of vectors p such that >, p; = 1l and 0 < p; < Cn! for all
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i. Let D, be the distance function defined at (2.4), and let IT = f1(p) denote the set
of p € II that give a local minimum of D,(p), subject to B(p)} = 0 where 3 is defined
at {2.2). Define p = p = H(p) to be the element of IT that minimises || X — X!, if 1 is
nonempty, and put = Pyair otherwise. Let 1 at (2.3) be defined using this p.

THEOREM 3.1. Assume conditions (A), and let 0 < p < 1. Then, (a) with proba-
bility tending to 1, 11 is nonempty, and (b) (3.1) continues to hald, for a random variable

Y,, satisfying (3.2), if ¥ on the left-hand side is replaced by 9.

One corollary of Theorem 3.1 is that, like the umform-bootstrap estimator ¢
¥(X), the biased-bootstrap, bias-reduced estimator 1 is asymptotically normally dis-
tributed with mean (") and variance n~1¢2, For general p € [0, 1], the versions of ¥},
for ¢ and ¢ may be taken to be identical, as we shall show in Section 4.

The case where ¥¥ is the square of a population mean is admitted by conditions
(A), except when the true value of the mean is zero, since ¢? = 0 in that instance. In
fact, the theorem does not hold there; if it did then the biased-bootstrap, bias-reduced
estimator ¥ would share the shortcomlngs of its uniform-bootstrap counterpart. Our
next result addresses this case.

We assume that the sample is univariate, and let §2 denote its variance. Suppose
E(X)} =0 and the index p of the distance function I, satisfies 0 < p < 1. Given y > 0,
define Ag, /\1, /\2 (functions of y) by E{D()I(), ).1, Ag)} =1, E{XD(AO,A],AQJ} = 0 and
E{{X?—y)D(Xg, A1, 22)} = 0, where D(Xg, Ay, Ag) = { Ao+ A X + A3(X2 — )}~/ (-0,
Put d(y) = E{D{Xo, A1, A2)?} if p # 0, and d(y) = —E{log D(Xo, A1, A2)} if p = 0; and
given 0 < y < E(X?), let u = 21(y) denote the point (assumed unique) at which the
supremum of d{u) over 0 < u < y is achieved. (Since d(0) = oo then z1(y} > G.) Put

#(y) =y — 21(y).

THEOREM 3.2. Suppose (u) = w?, p% = B(X) =0,0< p < 1, and E(X*) < o
Then for alle > 0,

(3.3) Y= X2 —n718% £ 0,(n7?),
conditional on the event nX? — 52 > ¢; and

(3.4) @ =n"12(nX?) + op(n?),
conditional on the event nX? — 82 « —

In the context of Theorem 3.2 the uniform-bootstrap, biased-rednced estimator of
¥(p?) is exactly P = X2 —n~152% In view of (3.3) the biased-bootstrap, bias-reduced
estimator ¢ agrees with ¥, up to smaller order terms, when Y is not troubled by sign
problems. However, (3.4) shows that ¢ departs significantly from 1) when the latter has
the wrong sign. It is generally the case that z(y) = 0 whenever y < E(X?}, and there,
(3.4) may be replaced simply by 1 = op(n!). Hence, the biased-bootstrap correction
not only enhances qualitative performance, by respecting sign, but can also improve the
convergence rate in those cases where 3 is negative. This was true for example in the
simulation study reported in Section 2.4.

We could have stated (3.3) in the form (3.4), since conditional on nX? — 82 > ¢,
z1(nX?) = po = o2 with probability tending to 1, and so 2(nX?) =nX? - 5% + 0,(1).
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We chose the example of the square of the mean for its simplicity. One may readily
develop versions of Theorem 3.2 in other cases, for example when 1/ is a univariate,
continuous, positive function with an isolated zero at p®. One may also treat the case
where the population mean varies with n, for example in the form n~1/2¢ where —o0 <
¢ < oo. It may be proved in this general setting that the biased-bootstrap approach
can give enhanced convergence rates when the umniform-bootstrap is troubled by sign
problems, and performs similarly otherwise.

4. Technical arguments

4.1 OQutline proof of Theorem 3.1
Denote components of X and X; by superscripts in parentheses. Given C; > 0, let

P = P(C,Cy) be the set of vectors p such that 3.pi=1,0<p; £ Cn~! for each i, and
| X, — Xi| < Cin~!. Define

'l‘bjl"‘jr (I:) = (ar/a:c.ﬂ. e B:E.?r)ill)(x)i
i (p) = D(XP - X)L (x P - ROy,

P @) = 3 (X = XY (X~ X,
Fpege () = 21X~ XY o (X7 — X,

To@) =D Freie (BVs2oms (X
jl jr
M, (p) = max {7, |, M (p) = max{Ma(p), Ma(p)}

Given ¢ > 0, let {u) denote the smallest integer not strictly less than u. By Taylor
expansion,

3
(A1) E{p(XY) | X} =9(X,) + () a0 T(p) + OpfnMa(o))
j=2
= 9Ky} + 307 Ta(p) + Op (™2 M (p)}

uniformly in p € P. Since E(JX|*) < 0o and each p; is bounded by Cn~* then M(p) =
Op(1) uniformly in p € P. And since additionally || X, — X|| is bounded by Cin~" then

Tib.hjz(X ) w.'qu (X) + O ( ) 7-.11.12 (p) - 0'31.72 (P) + op(n ) and
$(Ey) = ¥(X) + 3 (Xp ~ X)D95(X) + Opfn™),

all uniformly in p € P. Combining the results from {4.1) down we deduce that, with
B(p) = Ep{¢(X") | X} - ¥(X) and

Qp) = Z(X X)% (X)) + 5 n‘lZZam (P)j15 (X,

Ju g2
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we have

(4.2) sup |8(p) — Q(p)} = Op(n™?).

peEP

Note that Q(p) is linear in p.
Given Cy > 0, let {Z,} denote a sequence of random variables such that, for all n,
|Zn| < Cz. Define &j1j2 = ";jl.jz (punif):

=3 enntn B)0nX),  £=3"365,50%55:(X) = Talpunic)-

1 2 J1 Jz

Using the linearity of Q we may prove that the maximum of 3, log p; subjectto } ,p; =1
and Q(p) = n~2Z, occurs uniquely when p = § = (f1,...,Pa), say, which admits
the formula i = n {1 + Ay + M20Q(p)/3p:} /7P when 0 < p < 1, and j; =
n~lexp{l + A1; + A128Q(p)/0p;} when p = 1, where in each case the constants X;; are
defined by the constraints 37, 5 = 1 and Q(p) = n"2Z,. (The expressions for #; follow
from a Lagrange multiplier argument.) Thus, for 0 < p < 1 we have, by Taylor expansion,
Pi=n"H{1+4+An + Agg(?@(p)/@pi + -+ -}, where the constants Ag; are determined by the
constraints, and the “ --” remainder term represents contributions to §; of powers of Az;
higher than the first. Arguing in this manner we may prove that

(43)  fi=nt1- 2o 306 - X)0y(X) + Opfn (1 + nxz-il?')}},
3

where the remainder at (4.3) is of the stated order uniformly in  and in random sequences
{Z.} such that [Z,| < C; for each n.

Let p = (B1,...,Pn) denote any local maximiser of ) . logp; subject to p € P and
B(p) = 0. By considering n~22, to equal —Q(p); and noting that for this Z,, in view of
(4.2},

11m limsup P(|Z,| > C2) =

—0C n—oo

we may, by choosing Ca = Ca(e) sufficiently large, deduce that for any given € > 0 the
expansion (4.3) holds for p as well as p, for each n, with probability greater than 1 — ¢
(and with the same interpretation of the remainder as at {4.3)}. Therefore,

(4.4) X; X——n‘2§&_2ZX — X)X — X))y, (X) + 0,(n7%),
3

(43) () = $(X) ~ 5n7E+ Opln 7).

From {4.4) we see that

_ 1 oo
[ X5 — X ={1+op(1)}§n 2tg2

> (X = X)X - X)(j)%'(X')H

k]

— 1+ op(l)}%n‘lfa_z

ZE{(X = (X = )Py ()| -
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Hence, there exists a constant Cz > 0 such that P(||X; — X|| < C3) — 1 as n — oo.
Therefore, since we define p to be the local maximum of } -, log p; that isin1I {(and subject
to constraints) such that X is nearest to X, then provided we choose the constant C}

(in the definition of P(C,C})) greater than Cs, we shall have p = p with probability
tending to 1 as n — co. Part (a) of Theorem 3.1 follows from this fact. By (4.5),

(46) b= $(Ep) = 9(K) - g0+ Oy(n7?).

Since E([|X|*) < oo then by Taylor expansion, we may write { = £+n~1/2Y, + Op(rn™")
where the random variable Y, satisfies (3.2). Part (b) of Theorem 3.1 follows from this
property and (4.6).

Note too that by Taylor expansion,

EB{p(X) | X} = p(X)+ 3> B{(X* - X)(X" - X)U92) | X}, (X)
J1 Je
+0,(n"?)
_ 1 ~
= (X)) + En—lg + Oy(n7?),
where X* denotes the mean of a uniform-bootstrap resample. Hence, the uniform-

bootstrap bias-reduced estimator ¥, given by (2.1), also admits the expansion (4.6).
This proves that Y;, at (3.1) may be taken identical in the cases where the left-hand side

is 1) or 1.
4.2  Outline proof of Theorem 3.2
For the sake of brevity we consider only the case p = 0, corresponding to Kullback-

Leibler loss. {There, the Lagrange multiplier Ay appearing in the argument of D(Ag, A1,
Az) may be taken equal to 1.) Define ji; = n=! Y, X7, and observe that

n

(4.7) E (X" | X} =n"1> pX?+(1-n"H)X2

i=1
Let € > 0 be given, and consider first the case where nX? > ji;. Using a Lagrange
multiplier argument we may show that the vector p = p that maximises 3", log p; subject
to Y, p = 1 and B(p) = 0 is given by

pi=n" L4257t - X)X — 1) + Op{n T 1+ 1 XY,
uniformly in i, where t = sgn(X)}(X? — n™1/12)/2. Hence,
X=X +ipt(t - X)ig —tX)+ Op(n~™") =t + Op(n™h),

which implies that

q}} = f;2 + Op(n—3/2) — X2 _ n_lﬁ'z + Op(n_3/2) _ sz _ n-182 +Op(n_3/2),

as had to be shown.
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Now suppose n.X2 < ji; —e. We begin by describing an algorithm that is equivalent
to biased-bootstrap bias reduction in this setting. Let x and y denote candidates for the
mean and mean square, respectively, of the biased-bootstrap distribution, and define

pi = pi@, ) = o {1+ M (X —2) + (X7 -9)} Y

where A1, Az are chosen as functions of x and y so that
L n
Y (X —z)ps =Y (X7 —y)m = 0.
=1 i=1

(These values of A, A2 are of course stochastic, and so differ from those introduced just
prior to the statement of Theorem 3.2. The latter will be denoted here by A%, 29.) Noting
(4.7), express y as a function of z by n™'y+ (1 —n"1)2® = X2, Le. y = nX? - (n—1)z°.
This defines A, Az, p; as functions of z alone. Now choose r = # to maximise ), log p;,
or equivalently, to minimise &{z, y(z)}, where

&(z,5) = 1S log{L + i (2, 9)(Xi — @) + Aala, 9)(X? — 9)).

=1

Then the biased-bootstrap estimator is ¥ = 42, and it may be proved that # — 0 in
probability.

We approximate A;, Ag Using a non-empirical version of this construction, as follows.
Let X have the distribution of a generic X;, let AS = A(x,y) and A3 = AJ(z,y) be the
functions determined by the equations

E(X —a){1 + 20X - 2) + A(X? - )} '] =0,
E(X? —g){1+ 20X - 2) + M(X? - )}~ =0,

and put
a(z,y) = Ellog{l + A}(z, y)(X — z) + X (=, u)(X* —9}}].

Then, for any 0 < € < iu; there exists e; > 0 such that &(z,y) = afz,y) + 0p(1)
uniformly in pairs (z,y) such that |z| < €; and ¢; < y < g — €. Moreover, ; may be
chosen so that «(z,y) is a uniformly continuous function of its argument on this set, and
S0

&{#,nX? - (n — 1)#?} = a(0,nX? — n2?) + 0,(1).

It follows from this identity, and the fact that the supremum of (0, u) over 0 < u < nX?
is achieved at z;(nX?), that if n3% — 2(nX?) does not converge in probability to zero
then we can produce & (stochastic) candidate # for z such that

&2, nX? - (n - 1)i*} > &{#,nX? - (n - 1)3%},

the latter inequality holding with probability bounded away from 0 along a subsequence.
This would contradict the definition of & as the minimiser of &{z,y(x)}, and so nd?® —

z(nX?) — 0 in probability.
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