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Abstract. We consider estimating density functions which have support on [0, o¢)
using some gamma probability densities as kernels to replace the fixed and symmetric
kernel used in the standard kernel density estimator. The gamma kernels are non-
negative and have naturally varying shape. The gamma kernel estimators are free of
boundary bias, non-negative and achieve the optimal rate of convergence for the mean
integrated squared error. The variance of the gamma kernel estimators at a distance
z away from the origin is O(n_‘“‘ Sl %) indicating a smaller variance as = increases.
Finite sample comparisons with other boundary bias free kernel estimators are made
via simulation to evaluate the performance of the gamma kernel estimators.

Key words and phrases: Boundary bias, gamma kernels, local linear estimators, vari-
able kernels.

1. Introduction

This paper considers estimation of a probability density function that has bounded
support on [0,00). It is well known in nonparametric kernel density estimation that
the bias of the standard kernel density estimator is of a larger order near the boundary
than that in the interior. This bias phenomena is called boundary bias or edge effect.
There are methods available for removing boundary bias such as data reflection {Schuster
(1985)), boundary kernels (Miiller (1991, 1993) and Miiller and Wang (1994})), generat-
ing pseudodata (Cowling and Hall (1996)), hybrid method (Hall and Wehrly, (1991)),
empirical transformation (Marron and Ruppert (1994)), the local linear estimator (Leje-
une and Sarda (1992) and Jones (1993})), data binning and a local polynomial fitting on
the bin counts (Cheng ef al. {1997)) and others.

Recently, Brown and Chen (1999} and Chen (1999, 2000) have proposed using some
beta density functions as kernels to estimate curves whose supports are compact inter-
vals. In this paper the idea of beta kernel smoothing is extended to estimating densities
whose supports are bounded from one end only. Two classes of gamma density functions
are considered as kernels to formulate two density estimators. The gamma kernel esti-
mators are free of boundary bias, always non-negative and achieve the optimal rate of
convergence in the mean integrated square error within the class of non-negative kernel
density estimators. The gamma kernel estimators have a unique feature not shared by
the beta kernel estimators in that the variance reduces as the position where the smooth-
ing is made moves away from the boundary. This feature is attractive in estimation of
densities that have sparse areas.

* Now at Department of Statistics and Applied Probability, National University of Singapore, Sin-
gapore 117543, Singapore.
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The paper is structured as follows. Two gamma, kernel estimators are introduced
and their bias is assessed in Section 2. The variance properties are studied in Section 3.
In Section 4, the mean integrated squared errors and the optimal smoothing bandwidths
are derived. A data set is analyzed as an example in Section 5. Section 6 presents results
from a simulation study.

2. .Gamma kernel estimators and their bias

Let X1,..., X, be arandom sample from a distribution with an unknown probability
density function f which is defined on [0,00). We assume throughout the paper that f

has a continuous second derivative, and that both f~ f J(m)das and [ {zf (z)}?dz are
finite, The standard kernel density estimator for f is

(2.1) f@)=(h) D> K{h™(z - X))}

where K and k are the kernel function and the smoothing bandwidth respectively. Com-
prehensive reviews of the kernel smoothing method are available in Silverman (1986) and
Wand and Jones (1995). The kernel function K is usually symmetric and is regarded as
less important than the smoothing bandwidth. However, a fixed symmetric kernel is not.
appropriate for fitting densities with bounded supports as it causes boundary bias. For
the situation we are interested in, where the support of f is [0,0c), the expected value
of f(x) at 2 = 0 is only half of the real density value.

The cause of boundary bias is due to that the fixed symmetric kernel which allocates
weight outside the density support when smoothing is made near the boundary. A
remedy is to use kernels that never assign weight outside the support. In the context of
nonparametric regression, Chen (2000) proposes using the density of Beta{z/b+1,(1 —
x)/b+ 1} distribution as the kernels, where b is a smoothing bandwidth, to replace the
fixed kernel in the Gasser-Miiller estimator. In the case of Xi,..., X, being confined
within an interval, Chen (1999) studies the properties of density estimators using the
beta kernels. The beta kernels provide a flexible family of kernel functions with varying
shape and the amount of smoothing within the interval.

When the underlying density f is defined in [0, 00), the beta kernels should be
replaced by gamma kernels as the gamma density functions have flexible shapes and
locations within [0,00). Let K, be the density function of a Gamma(p,q) random
variable. The first class of gamma kernels considered are

pE/ba—t/b
Kaor1p(t) = be/b T (/b + 1)

where b is a smoothing parameter satisfying the condition that 6 — 0 and nb — oo as
n —+ o0, The first gamma kernel estimator is

@) =n" Y Ko pan(X).

=1

It is similar to the standard kernel estimator (2.1), only replaces the fixed symmetric
kernel K with the gamma kernels, Notice that

B{fi(z)} = ]D " Kot () )y = E{F(&:))
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where £, is the gamma(z/b+1,b) random variable. From the standard theory on gamma,
distribution, p, = E{£;) = + b and Var(§;) = zb+ b%. By Taylor expansion,

(22) E(§(6)) = fle) + 35/ () Var(&s) + o(0)
= fla)+b {f’ (w) + %zf"(a:)} + o(b).

As the bias is O(b) near the origin and in the interior, the density estimator is not
subject to boundary bias.

The involvement of f in the bias is less desirable, which is due to the fact that z is
not the mean of the gamma kernel K .1 5; rather, it is the mode. It should be noted
that & is the mean of K, 5, but K, is unbounded near z = 0. A compromise would
be to use K, for = in the interior and K411 at 2 = 0. Tt needs a bridge to connect
them smoothly. A simple choice is to use the kernels K, ()5 where

z/b if x> 2b

pvlz) = %(a:/b)z +1 if z€[0,2b).

This leads to the second gamma kernel estimator:

fal@) = n7t Y Ky p(Xi):

I=1

Using the same method as in (2.2), it may be shown that

%Jlf”(ﬂf)b + o(b) if z>2b
E(abf (2) +oft) T @€ [0,2b)

(2.3) Bias{fa(z)} =

where &,(z) = (1 - z){ps(x) — x/b}/{1 + bps(2) — 2}. Now J is removed from the bias
in the interior, and is only present in a small area near the origin but is compensated by
the disappearance of f . As fooo{:cf”(a:)}gda: < o0, zf (x) converges to zero as T — oc.
So, the bias will be smaller as z increases. Relative to the local linear and the boundary
kernel estimators, the bias of the gamma, kernel estimators may be larger as z is large;
however this is compensated by a reduced variance as shown in the next section. The
integrated squared bias is

@24)  IB{f()) = fo " Bias* {fy(@)}dr = 117 /0 (e ()} 2dz + olb?)

which does not involve f  in the leading term.

Figure 1 displays the kernels K, 541 and K, (4 5 for some selected z-values. There
are two important features about the gamma kernels. One is that all the gamma kernels
are non-negative which implies that the gamma kernel estimators are non-negative. The
other is that the shape of the kernels changes according to the value of z. This varying
kernel shape changes the amount of smoothing applied by the gamma kernel estimators
as the variance of K 541 is 2b + b?, and that of K, ;) has a similar form.
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Fig. 1. Gamma kernels K sp41,6(t) (in solid lines) and K, (1) »(t) (in dotted lines) for b= 0.2.

3. Variance

The variance of f(z) is
(3.1} Var{f1(2)} = n7! Var{Ky/p11,6(X0)} = n  E{ Ky pi16(X0)} + O(n™h).
Let n, be a gamma(2z/b + 1,b) random variable. Then,
B{K./s1(X:)} = Bo(@) E{f ()}
where

b10(2z/b + 1)

(3.2) By(z) = 22 /bHi[2(5 /b + 1)

Let R(z) = v2me™ %22tV 2 /T(2 + 1) for z > 0. Expressing the gamma function appeared
in (3.2) in terms of R, we have

b/ 2x~1/2R2(z /b
(33 By(x) = (/)
2T R(22/b)
According to Lemma 3 of Brown and Chen (1999), R(z) is a monotonic increasing

function which converges to 1 as z — oo and R(z) < 1 for any z > 0. Thus, R*(z/b)/
R(22/b) < 1 and

1/2..—1/2
< b2y

(3.4) By(z) < NG

indicating that By is bounded from above by the term on the right hand side. Also
implied from (3.3) is that for b small enough

1
mb_l/gm_l/z if :l/b — O3,
2+ 1)
21+25I‘2(R+ 1)

By(z) ~
b1 i x/b— ok
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for a non-negative constant &. This gives

—l—n"lb'lﬂz_l/zf(z:) it z/b— o0;

Varlf) ~ 4 Vo

mr—z(mn lb lf(il?] if I/b — K.
The variance of fg is similar, except that the multiplier in front of n~16~! in the case of
z/b — & has a slightly different form.

Later derivation shows that the optimal b = O(n~=2/5} = O(h?) where h is the opti-
mal bandwidth used by the local linear and the boundary kernel estimators. This means
that the asymptotic variance of f;(z) is O{(nh2) '} in the boundary area and is a larger
order than that of the other kernel estimators which have increased variance coefficients
instead. However, it can be a entirely different story in finite sample situations. Let
the variance coefficient function be the multiplier of (nh)~" f(z) or (nb'/2)~1 f(z) in the
leading term of the variance expansion. So, that for fi denoted as Vyam1(2; 6) is just
vbBy(x); and that for the local linear smoother using the Biweight kernel, denoted as
Vigs(x; h), is given in Jones (1993). To make the amount of smoothing in the same scale,
we let & = v/b. It can be shown by ploting the two variance coefficient functions, that
when & > 0.01 Vigmi(z;b) < Vi (m; \/5) for all z € [0,00). It is only when b < 0.01
Vgam1{z;b) starts to be larger near zero, reflecting a larger asymptotic variance near the
boundary, but smaller as x moves away from the boundary area. The exact sample size
corresponding to b = 0.01 depends on the underlying density f. The above observations
on the variance coefficients have been confirmed by the simulation reported in Section 6.

A unique feature for the gamma estimators is the variance coeflicient decreases as
z increases as Vogmi(x;h) ~ é—lﬁx_” 2. This is in contrast to other kernel estimators
whose variance coefficients remind constant outside the boundary area; and is because
the gamma kernels has a larger support {0, o0} than that of a compact kernel and con-
sequently has a larger effective sample size. This larger effective sample size is desirable
for estimating densities having sparse areas as more data points can be pooled to smooth
in areas with fewer observations. The reduced variance when x is large is balanced by
an increased bias as shown in the previous section. The direct involvement of the factor
z disappears in the optimal mean square errors. To appreciate this, note that the mean
square error of fa(z) for 2/6 — oo is

MSE{JEQ(CC)} = %{.’Ef”(:f:)}gbz -+ ﬁn161/2$_1/2f(1‘) + O{b2 + (nb)_lﬁ}.

It can be shown that the optimal mean square error is
9 1 e 2/5,.—4/5
3.5 —_— " -

which is the same as that of the standard kernel density estimator using the Gaussian
kernel. So, the gamma kernels in [0, o¢) are in a sense equivalent to the Gaussian kernel
in (—o0, 00).
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4, Global Properties
The increase in the variance near the boundary has negligible impact on the inte-

grated variance. To appreciate this, define § = b'~¢ where 0 < ¢ < 1 and notice that for
i=1]1or 2,

(4.1) fo " Var{f{z)}dz — ]ﬂ " fﬁ " Var{ fi(z)}do

oo
1 —1/2,_—17-1/2 —1p—e
= — I b o)dr+O(n~*h
| ws fle)ds + 087

__ 1 _1/2/00 -1/2 —13-1/2
_2ﬁn b A 712 f(2)dx + o(n™ b7")

by choosing ¢ properly and noting that f° z71/2f(z)dz is finite.
Combining (2.2), (2.4) and (4.1),

00 2
(42)  MISE(f) = b /.5 {z:f’(m)+%mf”(a:)} iz

1 o
+ —n"lb_lﬁf V2 f(gVd + o(n 107 V2 + b
NG A f(z) ( )
and
oo o0
(43)  MISE(f) = 3 /0 {zf"(2)}dx + ;ﬁn*lb—m fo eV f(z)dx
+o(n~1p 2 £ p?).

The optimal bandwidths which minimize the leading terms in (4.2) and (4.3) are

_ . 2/5
b = [ﬁ Jo~ e f(x)dx}
-

) 5 12/5
42/5 {f;“ {;cf’{:s) + 5:1:)’"(::)} dm:|

~2/5  and

n

2/5
[ ‘lf'zf(w)d:v]
n2/%,
[z f(2)y2dz) >/®

So, the optimal bandwidths are O{n~%5) as compared O(n~1/%} for the other kernel
estimators. Substituting the above optimal bandwidths, the optimal mean integrated

squared errors are

1 00 4/5 oo o 1
[— eV f(z )da:] [ {zf"(z)} da:] Y5,
4]
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Fig. 2. Estimated density curves using the gamma, the local linear and the boundary kernel
estimator for the suicide data. The bandwidths used in panel (b) are given by LSCV, and those
used in (a) are half of those used in (b).

Thus, both f1 and fg achieve the optimal rate of convergence for the mean integrated
squared error for using non-negative kernels.
Tt may be shown that for any density function f, if both fooo{ f{x)}2dx and

S {f" (x)}2dx are finite, then

fow {f’(z) " ;acf"(:c)}2 dz > fom {;mf”(:c)}zda:.

This means that MISE*(f;) > MISE*(f,) and b} > b5. Therefore, f; should have a
better global performance and use a smaller bandwidth than f.

5. An example

We apply the gamma kernel estimators on the suicide data given in Silverman
((1986), p. 8.), which consists of 86 observations on the treatment lengths (in days)
of patients in a suicide study. Miiller and Zhou (1991) employed variable bandwidth
boundary kernel estimation to the data by applying different amount of smoothing at
different location. Clearly the underlying density function has support on [0,0c). The
standard kernel estimator will suffer from boundary bias as there are relatively large
number observations near x = 0. We apply the gamma kernel estimators on the data set
along with the local linear estimator and the boundary kernel estimator using kernels
proposed in Miiller and Wang (1994). We do not consider the Jones-Foster estimator
as the local linear estimates are well above zero near the boundary x = 0 due to many
observations there.

The least squares cross-validation (LSCV) was used to choose the bandwidths. All
the data points with equal weights were used in computing the LSCV score functions for
a grid of bandwidth values. The LSCV score functions for the two gamma estimators
had distinet minimums at by, — 19.4 and by, = 27.7 respectively. However, those
of the local linear and the boundary kernel estimators had a very wide flat valley for
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Fig. 3. Integrated square bias and variance, and the mean integrated square errors for
gamma(2,1) in (a} end (b) and gamma(3,1) in (c¢) and (d) densities. In (a) and (c) the
integrated square bias are below the integrated variance.

h € [70,250] and were minimized at hy., = 195 and hgey = 171 respectively which
seemed to be large. This certainly confirmed the existed concern for the efficiency of
LSCV. Tt was based on this concern, in additional to the bandwidths prescribed by the
LSCV, we also used bandwidths values half of those prescribed by the LSCV. We see
in Fig. 2 that the estimates using LSCV bandwidths in panel (b) seem to oversmoocth
whereas that given in panel (a) seem to be quite reasonable. The bumps near z = 300
and 600 were picked up by the density estimates in (a). There were no much difference
among the estimates except near the origins where the second gamma estimator had a
slight shoulder near the origin, and the two non-gamma estimators were slightly more
responsive to the two bumps in panel (a) as they used compact kernels.

6. Simulation results

Five estimators were considered in the simulation study: the two gamma kernel
estimators, the local linear estimator of Jones (1993), the non-negative estimator of
Jones and Foster (1996) and the boundary kernel estimators of Miiller and Wang (1994).
Random samples were generated from gamma(2,1) and gamma(3,1) distributions using
the routine given in Press et al. (1992). The size of the random sample ranged from 40
to 310, and the number of simulation was 1000.

For each simulated sample and each estimator considered, the smoothing bandwidth
was chosen by directly minimizing the integrated squared error

ISE® / (F(2) - f(2)}2da

as the densities virtually having zero values outside [0,9]. The minimization of the in-
tegrated squared error with respect to the smoothing bandwidth was carried out by the
golden search algorithm given in Press ef al. (1992). By substituting the optimal band-
widths, the average integrated squared bias, the integrated variance and the integrated
squared errors were calculated as measures of performance for each of the estimators.
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Fig. 4. Point-wise bias and variance for estimating the density of Gamma(3, 1) for n = 160.

Figure 3 presents the average integrated square bias and variance, and the average
integrated square errors for the estimators considered. ‘To make the figure less crowded
and considering that f, has smaller mean integrated square error than f1 as revealed in
Section 4, we will not report the results of the first gamma kernel estimator f1 However,
the simulation showed that f; performed similar to the Jones-Foster estimator. We
observe in Fig. 3 that the bias, the variance and the integrated squared errors for the
four estimators were all decreasing and seem to converge as the sample size increased.
Even though the overall differences in the three measures of performance among the
estimators were not large, there were some noticeable differences. Firstly, fa had the best
performance for almost all the cases considered except for gamma(2,1) when n = 40.
The second best performer was the local linear estimator followed by the Jones-Foster
estimator. The local linear had much smaller bias and slightly smaller variance than its
non-negative modification. It was surprising to see the boundary kernel estimator had
the largest average integrated bias, variance and square errors for almost all the cases
considered. The average bandwidth used by the estimator was larger than the Jocal
linear and the Jones-Foster estimators in all the case considered.

In Fig. 4 we present the point-wise bias, variance and mean square errors of the four
estimators for z € |0, 9| for the gamma(3, 1) density and n = 160. We found the gamma
kerne] estimator had smaller variance than the other estimators when x > 3, confirming
the theory that the variance is O{n~16"1/2z 1/2), This smaller variance was earned
at the expense of the bias, as revealed in (a) and (c) of Fig. 4 where the corresponding
hiases were larger. However, the price was worthwhile as the gamma kernel estimator had
smaller mean square errors when £ > 3. When z < 3 there was no clear winner among
the estimators. The mean square error of f was very reasonable compared with the other
estimators. The negative bias of the local linear and the boundary kernel estimators near
z = 0 indicates it takes negative values. It is interesting to see the gamma estimator did
not have significantly larger variances at © = 0. In fact the variance was much smaller
than the non-negative local linear and the boundary kernel estimators near x = 0. This
reassures the findings in Section 3.
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