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Abstract. Let (X/, ¥:)' be a set of observations form a stationary c-mixing process
and #(z) be the conditional o-th quantile of ¥ given X = 2. Several authors consid-
ered nonparametric estimation of #(z) in the i.i.d. setting. Assuming the smoothness
of 8(x), we estimate it by local polynomial fitting and prove the asymptotic nermality
and the uniform convergence.
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1. Introduction

Let (X1, Y1), (X5, Y2), ..., (X, Y.) be a set of observations from a stationary a-
mixing process, where Y; are real valued and X; are d-dimensional. For a fixed 0 <
a < 1, let 8(z) denote the conditional a-th quantile of Y; given X; = 2. We deal
with the nonparametric estimation of #(z) based on local polynomial fitting. Several
authors considered the same problem in the i.i.d. setting, for example, Bhattacharya and
Gangopadhyay (1990), Jones and Hall (1990}, Mehra et al. (1991), Chaudhuri (1991e,
19915}, Fan et al (1994), Welsh (1996), Xiang (1996). See also the references therein.
Local polynomial estimators are examined in Chaudhuri (19914, 19915), Fan et al. (1994),
and Welsh (1996). It is well known that local polynomial fitting by the method of
weighted least squares gives estimators with some desirable properties. See Fan and
Gijbels (1996) about this.

For stationary c-mixing processes, Truong and Stone (1992) considered estimation
of the conditional median function by local median, which corresponds to p = 1 and
K{(z) = I{jz| < 1} here. They derived the rates of convergence. We define the estimators
of 6(z) and the derivatives based on local polynomial fitting of any order following Jones
and Hall (1990) and Chaudhuri (1991a). Chaudhuri (19914} defined the estimators by
local polynomial fitting under the loss function

(1.1) Hy(t) =t + (20 — 1)t

Then we investigate the asymptotic properties by the method of Babu (1989), derive the
Bahadur representations, show the asymptotic normality, and evaluate the remainder
terms closely.

Estimators based on the method of least squares have many optimal properties and
it is easy to study the asymptotic properties. However, they do not perform well when
the error distribution is heavy-tailed. They are also sensitive to outliers. On the other
hand the method of least absolute deviations produces estimators which are robust to
heavy-tailed errors and outliers. In addition regression quantiles give a good description
of data. For example, see Chaudhuri et al. {1997).
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For dependent observations, a lot of authors considered nonparametric estimation
of the conditional mean function. Particularly Masry (1996a, 19965) and Masry and Fan
(1997) dealt with c-mixing processes by local polynomial fitting and proved the consis-
tency and asymptotic normality. Although estimators of the conditional mean function
are useful for data description, prediction, and examination of the effect of eplanatory
variables, they might have the drawbacks that we referred to above. Our estimators of
the onditional quantile functions, especially the conditional median function, are useful
for the same purposes and robust to heavy-tailed distributions and outliers. In spite
of the usefulness and robustness, the rates of convergnce are derived only for p = 1.
Therefore it is improtant to investigate the properties from a theorstical point of view.
Note that the exponential inequality for a-mixing processes of Rio (1995) and the related
results of Liebscher (1996) are useful in this article.

In Section 2 we introduce several notations to define the estimator, and then state
the theorems on the local Bahadur representation and the asymptotic normality. Those
theorems are proved in Section 3. Then we present the theorems on the global properties
with respect to x and outline the proofs in Section 4.

2. Local Bahadur representation and asymptotic normality

Let {(X!,Y;)'} be a stationary a-mixing process with mixing coefficients ay. See
Hall and Heyde (1980) for the definition and the basic properties. At first we introduce
several notations and assumptions. C; are generic positive constants throughout this
paper and the subscripts have no specific meaning. We define the sign function by

sign(v) = 1{v > 0),0(v =0}, and — 1l{v<0).

S; denotes the o-field which is generated by {X;, X;_1,...,Yi_1,Yi—2,...}. The condi-
tional distribution functions are defined as follows:

Fl,y)=PY;<y|Xi=2) and G(z,u)=Ple; <ul|X;=z)= F(r,u+6(x}),

where 8{z) is the conditional a-th quantile and ¢; = ¥; — 8(Xj).
Here we estimate #(x) for a fixed x. In Section 4 we consider the global properties
of the estimator defined below.

AsSUMPTION 1. #(x) is p times continuously differentiable in some neighborhood
of 2. The Taylor expansion up to the (p — 1)-th order is written as

(2.1} f(v) = Z BEh M (w — 2)* = (v) = Po(8%,v — x) — ra(v),

AEA

where A = {(A1,...,Ag) | A; are nonnegative integers and Y A < p}, Al =2 A, vt =
[TvM(A € Aand v € R%). Let |A| be the cardinal number of A, We arrange b~/ (v—z)?
and % in the ascending order with respect to A and denote them by v —z € RM and
5% € RIAl respectively. Note that both 8% and v — z depend on h. Considering the
Taylor expansion up to the p-th order, we can define (m’,v,:;:r’)’ and (3%,4*) in
the same way as v — z and 3%. Then the Taylor expansion can be written as

flv)y=v— T A%+ vfm’vw + oflv — z|?).
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AssuMPTION 2. Forany iy < -+ <y,

P{X;, —z,...,X;,, — =} is linearly independent.) = 1.

It is easily shown that Assumption 2 does not depend on h. When we take d = 2
and p = 2 with 4 = 1, iy = 2, i3 = 3, and X; = (X1, X;2), the linear independence
holds if and only if

1 1 1 1 1 1
2| Xy1—x Xoy—r Xai—x
pe | SUmEL SHEEL AMEEL ) e\ Xy -y Koy — 21 Xap— o | #0.
Xizozy — Xop—wy - Xop—zp y— X1z —x2 Xop— 22 Xz — 22

Since all the first order derivatives of the determinant with respect to x are zero, it
does not depend on x. This argument easily extends to the general cases. Therefore
Assumption 2 is equivalent to

P({X;, —z,...,X;, — z} is linearly independent for any x.) =1
for any @) < -+ <ia).

AsSUMPTION 3. G{u,v) has the density g(u,v) in some neighborhood of (z,0) and
g{u, v) satisfies in the neighborhood

lg(u,v) — 9(,0)| € C1|v|“*(C2 > 1/2) and  C3 < g(u,0) < Cy.

ASSUMPTION 4. K(v) is a bounded nonnegative kernel function with the compact
support {|v| < 1} ¢ R%. The bandwidth h is put to Cyn /(2?74 and the dependence
on 12 is suppressed.

K(-/h) is denoted by Kn(-).

ASSUMPTION 5.

C1hdI|M < E{I{h(Xl — ﬂf)Xl -zX - x’g(Xl,O)} < Czhd.[‘M
E{Kp(Xi — 2)Kn(X; —x)} < Csh®*t  for i # .

AssuMPTION 6. The conditional distribution of ¥; given &; has no atom with
probability 1.

Remark 2.1. Assumption 6 holds when
(2.2) Y = 9(Si) + o {Si)mi,

where n; and &; are independent and »; has the continuous distribution. Assumption 6
can be replaced with the primitive one: (3.5) # 0 a.s. for any i, < iz < --- < fjaj41.

ASSUMPTION 7.

Ol < E{KE (X - 0) X1 — o X1 — € } < Cah®Iy).
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AssumpTION 8. P(Y; <y | X)) = P(Y; <y | &) for any y and i with probabil-
ity 1.

Remark 2.2. Assumption 8 holds if &; in (2.2) are replaced with X;.

We give an estimator of 8(z) by estimating 3*. Consider the minimization problem

> En(Xi — 2)Ho(Y; — Py(8,X; — z)) — min,

=1

Take one of the solutions as ﬁ‘” Then 6(z) is estimated by the first element of ,é”
The derivatives of 8(x) up to the (p — 1)-th order can be estimated by multiplying the
corresponding elements of G by Cy\h~*, where €y depends on A

When Assumption 8 holds, we have the same results as in the iid. setting.

THEOREM 2.1. Suppose Assumptions 1-6 and 8 hold and that oy, < Cik™7 and
r>d+T7+4d/p. Then

i=1

(2.3) B°-p4% = (2E {Zn: KnlXi —2)X; — 2 X; — x’g(X,-,o)})

% i Kn(X; — 2)X; — z{(sign(e;} + 2 — 1) + 2(x — G(Xi, 7 (X3)))}
i=1

+ O(h3p/2(log )4 a.s.

Without Assumption 8, the result deteriorates to

THEOREM 2.2. Suppose Assumptions 1-6 hold and that o, < C1&77 and for some
pl2<n<p,r>{(d+p)/(2n—p)V(d+2+2d/p) Vv [{dlp—7n)+2(2p+d)}/n—1]. Then

n -1
(24) B"-p° = (2E {Z Kn(Xi—2)X; -2 X; — a:'g(Xg,G)})
=1

k()
x Y Kn(X: — 2)X; — z{(sign(e;) + 2 — 1) + 2{a — G(X;, = (X))}
i=1
+ Ok} a.s.
We defer the proofs to the next section and state the uniform versions of the theo-
rems in Section 4. As to the asymptotic distribution of 3* — 3%, we have the following

corollary to Theorems 2.1 and 2.2.

COROLLARY 2.1. Suppose Assumptions 1-7 hold and that ap < Chk™" and r >
d+2+2d/p. Then

(A, Cnd ) V2R (B7 - 57) — A7 Bu} D Nia(0,1)
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where

1 k =
An=WE{;Kh(Xi_I)X‘E—IXi_mg(Xi’O)}’

1 ™" e — T
B, = WE {; KplXi —2)X; —a2X; —x g(Xi,D)} h P,
o _a(l—a)E - KX X X% — 2 d

(A71C, A1) is the symmetric root matriz of A 1CL ALY
h~P~* consists of constant multiples of the p-th order derivatives of 8(x).

Remark 2.3. With further assumptions, for example, the smoothness of the density
of X;, A, By, and C,, converge to some constants.

3. Proofs

We almost follow Babu (1989). In this section we can take o = 1/2 and z = 0
without loss of generality. We sometimes write Kp;, G;{v), and ry for K3 (X;), G(X;,v),
and rq(X;), respectively for notational convenience.

LEMMA 3.1. Suppose that ap < C1k™"(r > d+ 2+ 2d/p) and that Assumptions 1,
4, and 5 hold. Then for any positive a, if B is sufficiently large,
B.1) | D Kni(1¥i = Pu(8% X5)| = |Vi — Pa(B, X))
i=1

— E{Kn;([Y: — Pu(8°, X3)| — 1Y: — Pu(B, Xa) )}

<aB?logn, wuniformly on {8)|3— 5% = Bh*(log n)'?} a.s.
PrOOF. We write Py ; for P,(3, X;). Noting
Y;' - Pﬁ,i =€; — Pg_'grl,.i =Ty and }’1 — Pﬂuﬂ- =€ —T

we get

Pg_go it

|Y; — Pau | = |Yi — Pss| = / {1-2I{e; < v})dv.

Ti

Then we can represent the summand of (3.1) as
Pﬁ_60_¢+rt Pﬁ—ﬁ“,a’,+ri
Zz' =K}n‘/ (1—21{61' S'U})d’t?—E Khi/ (1—2.[{61' gv})d'v .
Ti T

We prove the lemma using Theorem 2.1 and Lemma 2.3 of Liebscher (1996). From
Assumption 5 we can evaluate R*(n), Roo, and R3{n) of Liebscher (1996) as

R*(n) < C1B*n " hlogn, Ry < C2BhP(logn)Y?, and Ri(n) < C3B*n~'logn.
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From Lemma 2.3 there, we can choose the parameters of the theorem as

2

B2m
D(n,m) < C4 logn, S(n}< CsBR(logn)!/?,

e = B%alogn, a,nd N =n%  for some Cj < p/(2p + d).
Therefore we can prove the lemma by dividing {8 | |8 — 8°| = Bh?(logn)'/?} into

AP IOgn)lf )d—l)_ O

sufficiently small cells. The number of the cells is O{(7— =Tiogn

In Lemma 3.2 we prove the consistency of 3°. The convexity of Kp(X; — z)Ha(")
plays an important role in the proof,

LEMMA 3.2 Suppose that Assumption 3 holds in addition to the assumptions of

Lemma 3.1. Then i
3%~ 8% = O(hp(logn)lﬁ) a.s.

Proor. From the convexity of the objective function and Lemma 3.1, all we have
to do is to show that for some a > 0, there exists a sufficiently large B > 0 such that

(3.2) > E{Kn()Y: - Pa(B°, Xu)| — |Yi — Pa(8, Xi)|)} < —aB?logn

i=1
on {318 — ° = Bh*(log n)'/?}. The left hand side of (3.2) is rewritten as

ZH:E{KM/ ’6”"(1—2(;,-(1;))(11;}
QZE{KM/ poetT:

< -C ZE{KM(ﬁ — A X X8 - 8%)9(X:,0)} + O(B(logn)'/?)

g(Xi, Bifu)'vdu}

< —CyB?logn + O(B(logn)/?).
Then the proof is complete. O

For the results in Section 4, we present the following lemma in the general form.

LEMMA 3.3. Suppose that Assumptions 2 and 6 hold. Then

ZK;, i — D)X — ) sign(Y; — Po(85, X, —2))| € C1 forany €8 as,

where § is any compact subset on which Assumption 5 holds uniformly.

ProOF. All the directional derivatives of the objective function at 3 = 4% must be
non-negative. This irnplies that

3" Kb (X, — 2)* sign(V; — Pa(3°, X — 2))
i=1

(3.3)

< ZnIKMI{Y; = Po(B, X — 2) AT N(X; - @)
i=1
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We show the right hand side of (3.3) is bounded by a constant. We have only to prove
the event

4

n1 X‘il — X
(3.4) =] e
_—
YiiAHl X";\Ai+1 -z
for some z happens with probability 0. The determinant of the (JA| + 1) x (|A| + 1)
matrix
( Yi Yiaro )
X,'l—..": 'XT:IAHI_‘T

can be written as
(35) (_l)lAlhl (Xh:-- .- :X‘i‘M )-Y;,‘A‘_é.l + hZ(Xil IR JX1|A|+1 ’ }’Ti] IR 5Yi\1\|)1

where hy(-) is the determinant of Assumption 2 and hs(-) does not depend on z. Then
the lemma follows from Assumption 6. O

In the next two lemmas we evaluate
n
> Kinh P X sign(Y; - Pu(8, X))
i=1

=3 Knh P X}sign(c; — Pu(8 - 5% X;) — ro( X))
i=1

on {88 — 8° < BhP(logn}'/?}. Define A3 (8) by

A {(B) = Kb~ X} {sign(e; — Pu( — 8%, X;) — ro(Xy)) — sign(e; — ro( X))
+2(G(X,, Pu(B — 8% X3) + ro(X3)) — G(Xi, ro(X)))}-

LEMMA 3.4. Let ap be bounded by C1k™" and Assumptions 1, 3, 4, and 5. For
p/2 < <p, we put g = 2(p + d}/(2p — 21 + d). Suppose that d . ai_z‘/q < oo when
g > 2 and Assumption 8 holds when q¢ = 2. Then for any v, > 0 and 0 < v < n/(2p+d),
if B is sufficiently large,

o

8848 2 Bmaogn)(q“)/(zq)) < Cpln 4t TIm)
i=1

uniformly on {8 | |8 — 5| < BhP(logn)/?}

Proor. We choose the parameters of Theorem 2.1 of Liebscher as

Din,m) < CaB¥Imp?2rtdia(logn)t/e §(n) < Cy,
e = Bh(logn) et W@ and N =n2.

Lemma 2.2 there is employed for D(n,m). The details are omitted. O
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LEMMA 3.5. Besides the assumptions of lemma 3.4 we assume that {d(p — ) +
2(2p + d)}n~! = 1 < r. Then if B is sufficiently large,

$°A%.8)

i=1

< Bh™"(log n) (g+1)/{2q}

uniformly on {8 | |6 — 8° < Bh*(logn)'/?} a.s.

Proor. We put v, = A% "(logn)et)/20) When |a — 8| < va, we can choose
'y and 5 such that
1A5.:(8) — AR i(a)| < Cikni{I{As:} — P(Ap; | Xi) +2P(Ag; | Xi}}
where Ag; = {|e; — Pu(8 — 3%, X;) - ro(X;)| < Covy,}. We have to evaluate

(36) ) Zn: Kh-iP(A‘B,i ! Xi) and
i=1
(3.7) ZKM{I{AB.::} — P(Az: | Xi)}

We have from Assumption 3
(3.6) < Cavanh® = C3h ™" (logn)t1)/(20),
We evaluate (3.7) by applying Theorem 2.1 of Liebscher with
D(n,m) < Cam{h®v,}*/9,  8(n) < Cs,
e = Bh "(logn)tV/C0  and N =n% for some Cg < n/(2p-+d).
Then the lemma is verified by using Lemma 3.4 and dividing {8 | |3 - 8"} < BA®

(logn)'/?} into sufficiently small cells whose number is O(R¥"~7}). O

PrOOF OF THEOREM 2.1 AND 2.2, We can take an 7' which satisfies the assump-
tions and is smaller than n when p/2 < n < p. Hereafter we write 5 for #.
From Lemmas 3.3-3.5,

(3.8) iKm'Xi sign(e; — 7o(X;))

i=1

= Qi K Xi(G(Xi, Pa(8° — B) + 70(X,)) — G(Xi,70(X:)))

i=1
+ O{h Mlogn)tet1)/ 2y,

By the Taylor expansion of the first order and the argument similar to the density
estimation, we have

(3.9 Y KuXiG(Xe, Pa(B° — B) + ro(Xi)) — G(Xi, mo(X4)))

=1

= Z KniX:X,9(X;,0)(3° — B8) + O(h™"(log n){et1)/ (24}
i=1

=F {Zn:Khifi_f;g(Xi, 0}} (8° — B8) + O(h"(logn)ler 1)/ (2a)y,

i=1
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We can verify in the same way as Lemmas 3.4 and 3.5 that
n —
(3.10) Z Kpi X ;sign(e; — ro(X;))
=1

= > KnXfsign(e:) + (1 - 2G(X4, 70(X:)))}

i=1

+ O™ "(log n)(q+1)/(2q))_
Then the proof is completed by combining (3.8)—(3.10).

Proor oF CoroLLary 2.1. It is similar to that of Theorem 3 of Masry and Fan
(1997). The details are omitted. 0

4. Uniform convergence and uniform bahadur representation

We consider the properties of 3% on some fixed compact set S. Assnmptions 1, 3, 4
and 5 are strengthened and Assumption 9 is added for this purpose. Then we have the
same results as in Section 2. Strengthened Assumption 1 is called Assumption 1' and so
on.

Assumptions 1’ and 5° will be clear. (x,0) is replaced with {(¢,0) | « € S} in
Assumption 3.

AssumpTiON 4. K(v) = W(v)[{lv] <1} and W{v) is bounded, nonnegative, and
Lipschitz continuous. A = Cyn~ Y/ (2ptd),

ASSUMPTION 9. X; has a bounded density.

Assumption 9 is added to evaluate I'{h — &, < |X; — 2| < h + 8.} in Lemmas 4.1
and 4.2.

THEOREM 4.1. Suppose that Assumplions 1', 2, 3-5", 6, 8, and 9 hold and that
ap < Crk7"(r > (5dp + Tp + 6d)/p). Then (2.3) with E{} removed holds uniformly on
S.

THEOREM 4.2. Suppose that Assumptions 1°, 2, 3'-5°, 6, and 9 hold and that oy <
Cik™(r > (d+p}/(2n —p) V ((3dp + 4p + 3d — dn)/n — 1) v (3dp + 2p + 3d)/p} for
p/2 < n < p. Then (2.4) with E{} removed holds uniformly on 5.

The following theorem corresponds to Lemma 3.2.

THEOREM 4.3. Suppose that Assumptions 17, 2, 4, 5, and 9 hold and that oz <
Cik™"{(r > (3dp+ 2p+ 3d)/p). Then

|3% — 8% = O(RP{logn)/?)  uniformly on 8§ a.s.

We only outline the proofs of the theorems hecause they are similar to those in the
previous section. Lemma 4.1 corresponds to Lemma 3.1.



468 TOSHIO HONDA

LEmMma 4.1, Suppose thot Assumptions 17, 4°, 5’ and 9 hold and that ap < C1k™7
{(r > (3dp+ 2p + 3d)/p). Then for any positive a, if B is sufficiently large,

n

> Kn(Xs = 2)([Y = Pu(87, Xi — 2)] - [Y; — Pa(B, X, = 2)])

i=1

(4.1)

- E:{‘K'h()(”'l —.’L')(lY‘ - Ph(ﬁw,Xi - :E)l - |Y; - Ph(67Xt - I)])}
< aB?logn,
uniformly inz € S and 3 ¢ {818 — 5% = Bh*(logn)'/2} a.s.

PrROOF. We can verify the lemma by the standard argument for proving the uni-
form convergence of the kernel density estimator or regression estimator. We only outline
the proof. For a fixed z € §, the evaluation of (4.1) is done in Lemma 3.1. Next we deal
with

(4.2) Kp(Xi — z)(|Yi = Pu(B, X — z)| — |Yi — Pu(B, Xi — 2)|)
— Kp(Xi —g)(|Yi — Po (B, Xi — )| = Vi = Pula, Xis — 9)])

when |z — y| < 6,, |8 — 0% = BhP(logn)¥/2, and o — 8¥| = BhP(logn)'/2. Note that
|3® — 3¥] < €18, and there exists a 8 s.t. |3 — a| < Cy6, for any «.

We have only to consider two cases.
|Xi —zl < hand |[X; —y| < h:

Since
[(Kn(Xi — 2} — Kn(X; —9))([Yi — Pu(6%, X; — 2) = |¥; — Pal(8, Xi — 2)|)]
< Cob BRP logn) V2 I{|X; — x| < h}
and
|Kn(X; — ) {(1Y: — Pu(B°, X, — 2)| - |Yi — Pu(B, Xi — z)])

= (¥ - Ph(ﬁanz’ =yl = [Yi = Pr{o, Xi — y) )}
< Cyb b7 T{|1X; — x| < A},
[(4.2)] < C4Bé ™ I{|X; — 2 < R}

|X;—z| <hand |X; —y| > h,or |X;—z| > hand | X; —y| < h
[(4.2)] € CsBhP(logn) 2 I{h — 6, < |X; — x| < b+ 8,}.

Therefore we can prove the uniformity by dividing § into small cells with the diameter
&, = O((nh®=1)~1) and using the argument analogous to Lemmas 3.1, 3.2 and 3.5. Then
we must have -~

an A{l4r) P(d—l)/(2p+d)nd(2p+1}/(2p+d) < 00,

n=1

where 1 AT\ < p/(2p + d)) is from the exponential inequality and n#{d—1)/(Zp+d)
and nd(2p+11/(2r+d} yre from the division of {|3—3%| = BhP(logn)!/?} and 8, repectively.
The assumption on " follows from this. O

Theorem 4.3 can be shown in the same way as Lemma 3.2, So omitted. Lemma 4.2
corresponds to Lemma 3.5.
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LEMMA 4.2. Forp/2 <n < p, we put g = 2(p+ d)/{(2p — 2n + d}. Suppose that
Assumptions 1°,3', 4, 5', and 9 hold and that ap, < C k™" (r > (3dp+4dp+3d—dn)/n—1).
If ¢ = 2, we have to impose Assumption 8. Otherwise v > (d+ p)/(2n — p). Then of B
is sufficiently large,

< Bh—vi(logn)(q-f-l}/(?fi)

D A%:(8)
=1
uniformly inx € S and g € {8118 — 8%| < Bh*{logn)/?} a.s.

PROOF. The probability of the event {| 3 7", A (8)} > Bh™"(log n)let/(2a)} jg
evaluated in Lemma 3.4, We consider

(43) D 1834(8) — A% (@)

when |2 — y| < 6,, |8 — 8% < BhP(logn)/?, and |a — 8% < BhP(logn)'/?. For some
Cy, [8* — Y| < C46, and there exists a 3 s.t. |3 — o < C6, for any a. Then we have

(4.4) Pala, X 9)— Fa(B X, 2) < G52

PuB, X, ) — Pa(8", Xi — 2)] < O3

By (4.4) and Assumption 4’ we have

(4.5) 1A%,(8) — A% {a)l
bn

< CaI{| Xy — x| < h} o

+I{|€i ~ P 35, X —z) —rp (X)) £ Ca%}

+I{|6,j —?"m(Xi)J 505%} +Cﬁf{h—6n S ‘X,, —il?l 5 h+6n}

Putting &, = O((nh?1)~1), we can prove the lemma by dividing § and {8 | |3 — 87| <
Bh?(logn)!/?} into small cells and applying the argument analogous to Lemmas 3.1, 3.2
and 3.5. Then we must have

o0

3 M) o= Rt D2 0/ 204 ) g,

n==1

where n! MU () < 5/(2p + d)) is from the exponential inequality and nP(¢—1/@p+d)
and nd2P+10)/Cp+d) are from the division of {|8—3%| < BhP(logn)'/?} and S, repectively.
One of the assumptions on o® follows from this. O

Theorems 4.1 and 4.2 can be proved in the same way as Theorems 2.1 and 2.2. The
details are omitted.
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