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Abstract. New characterizations for the exponential distribution are given in terms
of record values and the probabilities of finite sums of independent and identically
distributed nonnegative random variables provided that the underlying distribution
is either new better than used or new worse than used.
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1. Introduction

The characterization properties for the exponential distribution has been studied by
many authors. Let X1.,, Xom, ..., X5.m be order statistics of n independent, identically
distributed (i.i.d.) nonnegative random variables (r.v.’s) X7, Xa,..., X, with common
continuous distribution function (d.f) F. A well known important property is stated as
follows: the random variables X and nX,., are identically distributed for all n > 1 iff
Fig a d.f. of the exponential law. For more details of known extensions of this result one
can see monographs by Galambos and Kotz (1978), Azlarov and Volodin (1986) among
many others. Various characterizations of the exponential distribution are given by the
distributional properties of linear functions of order statistics and record values. Since
there is a lot of research on this topic, it is difficult to list all of the results appeared
in the literature. However, a good list of review of the characterization theorems for
exponential distribution can be found in Arnold and Huang (1995).

The important class of life distributions is the class of new better than used (NBU)
distributions defined as F{z + y) < F(x)F(y) where F(z) = 1 — F(z), = and y are
nonnegative real numbers. F is said to be new worse than used (NWU) if the inequality
is reversed. Note that the exponential distribution is the only distribution having the
equality F(z +y) = F(x)F(y), > 0, y > 0. We will say that F belongs to the class
Ky, if F' ig either NBU or NWT.

In many papers exponential distribution has been characterized in the class of dis-
tributions &y. For further details, one can see Krishnaji (1971), Ahsanullah (1977),
Ramachandran (1979}, Shimizu (1979), Huang (1981), Xu and Yang (1995).

The object of this paper is to prove some characterizations of the exponential dis-
tribution through properties of X7 + X3 + -+ + X, and X, ;;, where X1, Xo,..., Xy,
Xn+1 are nonnegative i.i.d. r.v.’s with continuous d.f. F. We also give some character-
izations for the exponential distribution through the properties of Xy () and Xym+1,
n-th record value of the sequence of i.i.d. r.v.’s and the next observation which comes
after n-th record, accordingly.
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2. Characterizations

Let X be a nonnegative continuous random variable with distribution function F,
and o be some finite positive number. We will say that F belongs to the class &y, if for
all > 0, y > 0 either

(2.1) Fla(z +y) 2 (F@)*(F))* or  Fla(r+y)) < (F(2)*(FE)*

where F(z) =1 — F(x).
If a =1 then F is either NBU or NWU,

LEMMA 2.1. Let G(z), z > 0 be monotonic and nonnegative, G(0) =1, a > 0.
Suppose for gll 1 > 0, 22 > 0

(22) Gla(z1 + 22)) = (G(21))*(C(z2))*.

Then, if G(z) is not identically zero or one, for all x > 0, G(z) = e** with some real
number A. Here XA > 0 if G(x) is increasing and A < 0 if G(z) is decreasing.

Proor. This lemma is an obvious reformulation of Caunchy’s equation. In fact
taking in (2.2) x2 = 0 and using G(0) = 1 one has G(az;) = G*(z) for any x; > 0. Let
H{z) = G*(x). Then (2.2) becomes

H{zy +x2) = G(z1 + 22) = Glaf{z1 + 22)) = G*(21)}G%(x2) = H(21)H(22),
so H(x) as well as G(z) is exponential.

Let X1, Xs,..., X, Xy41,... be a sequence of independent and identically dis-
tributed random variables with distribution function ¥, and let a be some positive real
number. Consider the sequence of r.v.’s £;{a), £2(a), ... defined as follows:

T
1 i Xpp<ad X

i=1

€nla) = ., n=1,2....

0 otherwise

THEOREM 2.1. Let X be a nonnegative r.v. having ¢ continuous d.f. F satisfying
inf {z : F(z) > 0} = 0. Then the following statements are equivalent.
(a) X has an exponential distribution with density

1 .
(2.3) fe(w)—{ae"p (‘%) faez0 5oy

0 otherwise

(b) for somen > 1 Ef,(a) =1 and F belongs to class .

-1 _
{a+1)"

PROOF. Let F(z)=1—exp(—3%), z > 0, # > 0. Consider

(24) E{n(a) =P{Xn+1 < G(Xl +X2+---+Xn)}
o Xn-H é é Xn
= P{ 0 <a ( 9 + g + -+ ?)}

=Pl{Yop <aYi+ Yo+ +1,)},
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where Y7, Ya,...,Y,, Yoy are Lid. r.v.’s with d.f. Fy(x). It is well known that Y7 +
Y2+ .-+ Y, has a gamma distribution with probability density function (p.d.f.)

1 n—1_-=z :
e — >
gl,n(l:) = { (n o 1)I5U e -, if >0

0 eitherwise.

Then we can write

O
(2.5) P{Yppn<ai+Yo+---+¥,)} = / P{Yny1 < at} g o(t)dt
0

1

= W/ (1 — e_at)evttnildt
— Yo

1

BT

Writing (2.5) in (2.4) we obtain E¢,(a) =1 — (—(-H_IT),, Therefore (a) = (b).
Now let F € &, and Fé,{a) =1 - (FllF for some n > 1. One can write

(2.6) P{Xpy1 <a(X1+---+ X))
=/0. /O /0 Fla(z) + -+ 2,))dF(x1) - dF(z,)

1 1 1
- / F(a(F~ (1) + F~}za) + - + F () dis - day,
0 Jo 0
1
=1

C{a+1)m

where F~1(t) = inf{x : F(z) > t} is the inverse function of F. On the other hand for
Y1, Ys,... Yy, Yaiq, using (2.5) and (2.6) we have

27 PYapn<ae+Ya+ - +Ya)}
1,1 1

=/ / / (1 —emeZia ~ =y day - day,
o Jo 0

1 .1 1
:/O /0 /0 (1—_(1_2‘1)“(1_:32)&”'(1_3n)a)d$1dﬂ’:2---d$n,

From (2.6) and (2.7) one obtain

1 1
(2.8) /0-'-/0[F(G(F‘l(fm)+---+F‘1(wn)})~(1—(1—m1)"---(1_$n)“)1

Xdry - -dz, =0

Since F € %, from {2.1) by mathematical induction one obtain for all z; > 0, 2o >
0,...;zp20,n>1

Flafmi 4o+ +2,)) 21~ (1 - F{z Dl — Fza)?- - (1 = Fz,))*  or

(29) Fla(ri + 2o+ -+ 2,)) <1 = (1 = Fz1))*(1 — F{z2))*--- (1 - F(zn))*
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(2.9) implies

910 Fla(F Y z) 4+ -+ F H{z)) = (or )L = (L —21)*--- (1 — z,)%,
(2.10) z; €10,1], i=1,2,...,n.

Taking (2.10) into consideration in {2.8) one obtains

Fla(F Yao) + -+ F Y (za))) = 1= (L= z0)*- {1~ z)",
ne0l], i=1,2..,n

which is equivalent to
Flalzi+z2+-+2,)) =1— (1 = Flz1))?(1 ~ F{z2))*--- (1 — Fza))*
x; €0,00), i=1L12,...,n

and from Lemma 2.1, F(z) is an exponential distribution function.

Remark 2.1. (Counter example) The assumption F € & is needed in (b). Let
a = 1. Then Theorem 2.1 says that F is the exponential distribution function if and

only if for some n > 1

i 1
(2.11) P{Xn+1 <;Xz-} =15

and F belongs to the class &;. Here is an example when F ¢ 3, and (2.11) holds.
Now let X, X3, X3 be iid. r.v.’s with distribution function

0 if z<0
F(:c)={\/5 if 0<z<1.
1 if z>1
Probability density function is equal to
0 if x¢(0,1]

f@) = ﬁ if re(01]"

Consider the i.i.d. random variables X| = X1 +¢, X} = Xo+ ¢, X§ = X3+ ¢, where
¢ is the solution of the equation

T+ 2mey/e — 3me = 3.

It is clear that 0 < ¢ < 1. Let F) be the distribution function of X{. Then Fi(x) =
F{z—¢). It is clear that F; ¢ 3. But one can show that

1
P(X; < X[+ X3} =1- 5.
In fact, consider

P{Xé<X{+Xé}:P{X3+C<X1+C+X2+C}:1—P{X1+X2<X3M-C}
1-c 1

=1—/0 F*(wmc)dF($)=1m/_c =F 0,
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where F*(t) = P {X; + Xy < t}. Let f*(t) = ZF"(t). It is true that

ff:a:—tf(tdt f f(:c—tv ?ﬁz/:ﬂ}__—zf(z)dz
0, ¢ (0,2]

-/w ! d O<z <l
=J 0 2‘\/’.’17—22\/5 % I

1
1 1
———dz, 1<z<2
\/35—12\/3322\/53 =r=

(0, z ¢ (0,2]
w

=<Z’ O<zx<l
—Jlarcsm(g—l), 1<x<2
L 2 T

and
(0, <0
g:c U I |
F (=9 e 2 :

—f a.rcsin(——l)dt, 1<z<2
2 Jo t
1 r>2

It is clear that

l1-¢ 1-¢ 2
1 _
/ F*(t)dt—ff t P 2_7r/' (2% —c)zdz
¢ 2Jt+e 4 Jq vit+e Vire=z 8 J g z
=g T geve 3¢

Therefore we have

P{X3<X1+X;}_1-(%+%c\/a_ﬂ)=1_“+2“1\f*3ﬂc
3 1
=1 = =1
12 ! 22

Remark 2.2. Let X be a nonnegative continuous random variable with d.f. . We
say that I" has an increasing failure rate average (IFRA} if forallz > 0and 0 < a <1

(2.12) F(z) < (Flaz))V/=~.

Note that the exponential distribution is the only life distribution that attains equality
n (2.12) for all z > 0.

Let Flofz + 1)) > (FLo)(Fp) 0 < a <
Flat) > (F(E)*(F($)* = (F(£))?* which implies F{A
Therefore F is IFRA

Taking = y = § we have

5
(Bz2) = (F(z))?,0<B8<1,2z2>0.
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3. Characterizations by record values

Let X1, X3,...,X,,... be a sequence of independent and identically distributed
random variables with continuous distribution function F. Define a sequence of record
times U(n), n = 1 as follows: U{1} =1, U(n) = min {j i>Un-1),X; > XU(n_i)},
n > 1. Let Xy(ny be upper record values, n = 1,2,.... For more details on the theory
of order statistics and records one can see Galambos (1987), Resuik {1987), Nagaraja
(1988), Nevzorov {1988), David (1991), Ahsanullah (1995), among others.

Let Xyny+1, Xun)+2,-.- be the next observations that come after Xyny. It is
not difficult to prove that Xy(n), Xvm)+1, Xv(nj+2, . . -, are mutually independent and
Xur(n)++ has the same distribution F for any & = 1,2,.... Let us define the following
r.v.’s for a given n:

(i) = { AL TP TP
0 it Xymy: 2 Xom)

As a consequence of Theorem 2.1 we have the following.

THEOREM 3.1. Let X be o nonnegative r.v. having continuous d.f. F' satisfying
inf{z: F(x) > 0} = 0. Then the following statements are eguivalent
(a) X has an exponenticl distribution with density as given in (2.3)
(b) for somen > 1
Ba(1) = Ena(1)

and F is either NBU or NWU.

Proor. It is not difficult to see that if F is continuous d.f. then (see Bairamov

(1997))
1
P{Xpmy1 < Xymy}=1-— o

By assumption of the theorem, F € <; and

1
P{Xn+1<X1+X2+---+Xn}:1—2—n

and from Theorem 2.1, F is exponential.

Tata (1969) proved that if Y1, Y3,...,Y,,... are independent and identically dis-
tributed random variables with the d.f. Fp(z) = 1 — exp{—z), x > 0 then the r.v.’s
Zy=Y1,2; =Yy~ Y1, -1 Zn = Yi(n) — Yy (n—1) are independent and

P{Z, <z} =Fylz), (n=12..).
It is also true that for i.i.d. random variables if the differences Xyy¢n) — Xym-1y, n 2 2

are independent, then the population is exponential (see also Galambos (1987) p. 361).
This theorem implies the following representation

YU(n}gYI +Ys+---+Y,, =n=12...

where £ denotes equality in distribution.



454 ISMIHAN G. BAIRAMQOV

THEOREM 3.2. Let Xy, Xo,...,Xp,... be the sequence of i.i.d. r.v.’s with abso-
lutely continuous d.f. F' satisfying inf{z : F(z) > 0} = 0. Then the following properties

are equivalent
(a) X1 has an exponential distribution with density as given in (2.3)
(b) For somen > 1

X1+X2+"-+XngXU(n) and Feg.

Proor. It is clear that (a) = (b). Now we will prove other implication.
Let X1+ X2+ + Xn £ Xpy(y and F € ;. Consider

(3.1) P{R(Yi+ Yo+ - 4+ Y,) <t} = P{Yi + Yo 4 -+ Y, < Fy H{t)}

1 —ll‘l(l-‘f.)
= m/ e Tx"
T A

=(n—A11ﬁ/: [lnlix]nﬂdx.

(3.2) PIXi+Xo+ -+ Xn €u} = P{ Xy Su}

1 —1n(1-F(u)) I
e ——(n — 1)! ./0 e xX d.’L‘.

We have

Taking F(u) =t, u = F~(¢) in (3.2) we obtain

1 —In{1~¢)
(3.3) P{Xy+Xg+- -+ Xp < FYt)} = — e Ea L.
(=11 Jy

From (3.1) and (3.3} we have

(3.4) P{F(X; +Xo4 -+ X,) <t} =P{R(Y1+Ya+ -+ Y,) <t},
t e [0,1].

Then one can show that
1

(3.5) P{Xnt1 <X1+X2+---+Xn}=P{Yn+1<Y1+Y2+---+Yn}=1—2—n-

In fact, one has
P{Xn+1 <X1+X2+"'+Xn}
=/..‘/F(u1+u2+---+un)dF(u1)---dF(un)

= EF(X; +X2+---+Xn)=/mdP{F(X1+X2+---+Xn)Sw},
P{Y.11 <Y1+Y2+"'+Yn}=/$dP{F0(Y1+Y2+"‘+Yn) <z}

Then by using (3.4) one can obtain (3.5). From Theorem 2.1 F is exponential, which
concludes the proof.
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4. The relation equal in s-sense and its application to the characterization problem

Denote by F. the class of all continuous d.f’s. Let X1, X3,..., X, beiid. r.v.'s with
df F,Fc F.. Let Xi.n, Xo:ns+ .., Xn:n be the order statistics constructed by the sample
X1, Xa,...,Xy. Due to a result referred to as the probability integral transformation
the random variable #(X) has uniform distribution on (0,1) and the random variable
F(Xin), 1 €% < n has a beta distribution with parameters o = i, § =n— 1+ 1 (see
Randles and Wolfe (1979)). That is, the d.f.’s of random variables F'(X) and F(X;.,)
are not depend on F.

Tt is also known that if Xy, X3,..., X, is the sample from continuous distribution
with d.f. ¥ and if f(z1,2z2,...,2,) is some continuous and symmetric function of n
arguments, then the r.v. F(f(X,,X>,..., X)) has the same d.I[. for all ¥ € F, only if
F(X1, Xa, ..., Xp) = X, 1 <1 < n (see Robbins (1944)).

Let F € F,. Consider & = {Fy(x) : Folz) = F(%),6 € ©}, 3 C F. and f(X,
X2, 0, Xp) = Y& aiXin, (ai(l £ i < n) are constants). It is clear that if X,
Xa,..., X, has d.f Fp € G, then

Fy ( az'Xi:n) =F (Z @ X;m) g F (Zazza:n) )
i=1 i=1 i=1

where Z1., < Za < -+ < Zp.n are order statistics constructed by the sample 7,
Zs, ..., 2y with d.f. F. Hence the d.f. of r.v. Fp(f(Xy, Xa,...,Xn)) = Fo(31 1 aiXin)
is independent of &.

As it is shown here for the class & C F,, there exists a function f(z1,22,...,2s) =
3 iy @iy (which is not equal identically to the function ¢;(x1,%2,...,%n) = Z(),
where 2(1) < 2@y < -+ € Z(nyy (@1,2%2,...,20) € R™), such that d.f of r.v. F(f(X,
Xz, ..., X)) (when X1, X5,..., X, have d.f. F) is the same for all F € &. It is also
possible other examples.

DerNITION 4.1. Let X and Z be random variables with continuous d.f. ' and
G, respectively. Let n > 1 be some integer, X, X»,..., X, and Z, Zy,...,Z, be
independent copies of X and Z, respectively. We say “X and Z are equal in s,-sense”
(or F and G are equal in s,-sense) and denote X 22 Z (or F 22 G) if

PFX1+Xo+- - +X,)<2}=P{G(Z1+Zs+--+ Z,) <z}, forall z€R.

It is clear that 2 is an the equivalence relation.

Let us denote by 3% the class of all continuous d.f.’s which are equal to F in s, -sense.
It is clear that if G € Q%, then F € . So F 2 G iff I} = S,

Now let X, Xo,...,Xn, Xnt1, Xoto,.oo, Xngm and X7, X4,..., X}, X, 11,
Xiioro oy Xfym be iid. rv’s with d.f’s F and G respectively. Denote

1 if X, X;
£x(n) = i Xnph <D X nu(n) =

i=i

Ui X, <> X!
i=1 !
0 otherwise 0  otherwise
£E=12...,m

and

Sm(n) = [[ &), Tuln)=]] mxn).
k=1

k=1
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THEOREM 4.1. Let F and G be obsolutely continuous with respect to Lebesque
measure and strictly increasing d.f.’s. Then F € S if and only if

ESy(n) = ETu(n), m=N,N,,.. 'ZNi—l — 0.

PROOF. Let F 2 @. Then

ESn(n) = P{Xm-l < Zn:Xi,an < iXi,---,XMm < ixi}

i=1 i=1 i=1

o (r(5r)) arare
(r(5)) |- foror{r () <<}

ET,(n) = /wmdP {G (i X,’) < :z} )

therefore ESy, (n) = ET,,(n), m =0,1,2,....
Now let ESp(n) = ETm(n), m = Ny, Na, ..., 3. N; ! = co. One can write

(e () 1o (24) |
[rmae{s (Sx) 55} - [ emarfo ($2) <2},

™m = AGJJVQ,.”

=F

and analogously

and

According to Mintz -Szasz theorem (see Akhieser (1961)) the sequence of functions
{z™}, m=MN, Na,..., ¥, N;"! = cc is complete in the space of all continuous on [0, 1]
functions Cig ;). Therefore

11 kL]
P{F(ZX,;) 53}:P{G(ZX{) Sm}, forall z and F2G.
i=1 iz1

Remark 4.1. Consider the exponential distribution function Fy(z) = 1 —e
z > 0,6 >0. From (2.4) we have F, = Fy for all 6 > 0, so O, = S, forall @ > 0,
where F,(x) denotes the exponential d.f. with 8 = 1.

—x/¢
B

LEMMA 4.1. Let Xy, Xa,...,X, be a sequence of i.4.d. r.v.’s with d.f. . Then
X1 +Xo 4+ + X, gXU(n)

if and only if
F = FO':
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where Fo(x)=1—e¢"%, 2 > (.
PROOF. One can write
Xi+Xo+ -+ X, ger{n) >

1 ln{1-F(u})
P{X1+X2+---+Xngu}=mf e~ Tt ldy &
— 1) f,

1 In{1—u)
P{Xi+Xo+ -+ Xn < F )} = mo1) / e”%z" ldx
—15-J0

=P{Y;+ - +Y,<-ln(l-u)} &
P{X1+Xg+  + Xn S F ()} = P{Yi + Yo + -+ Y € Fy ' (w)}.

THEOREM 4.2. Let Xy, Xa,...,X,,... be a sequence of i.i.d. r.v.’s with absolutely
continuous d.f.’s F'. Then

X1+ Xa 4+ Xo 2 Xpim

if and only if

m:Nl,Ng,..., ZN:Z—1:

ProoOF. Since Y7+ Y+ -+ + Y, has a gamma distribution with p.d.f. g1,,(z) one
obtain

n n Tt
P{Ynﬂ <D VaYar2 <) Vi, Yorm < Zn}
=1 i1 i=1

1 o L
= W/(; Y Te V(L —eTY)dy

=ﬁ£l(l—m)m[ln%]n_ldm (n—l fZ( p () [lnﬂnldx
=fﬁ—1—1)!§(_l)i(m) 1y i (e+m1))n

i=

(see Dwight (1961) 863.04). From this fact and Theorem 4.1, ES,,(n) = > (- 1)

(iz._ﬁ));, m =Ny, No,..., >, Nt-"1 = 00 is equivalent to F € O, . The proof is completed
using Lemma 4.1.

THEOREM 4.3. Let X,, n > 1 be o sequence of independent random varicbles with
common absolutely continuous d.f. F(z) (F'(z) = f(z)). Let the variables X; be positive
with probability one. Assume also that the density function f(x) is strictly positive for
x > 0 and the limit

. Flz)
limn

z—+0 I
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exists and is finite. Under these assumptions F(x) is exponential d.f. iff

ES (z):i(—l)i (7)) __1 mfl m=N,N ..., Y N=x.
m s (%+1)2 m+1 = ii ? H 1 - i

Proor. Under assumptions of theorem it is known that X has an exponential

distribution iff Xy + X = Xy(2) (see Kakosyan et al. (1984) p. 126). Theorem 4.2

concludes the proof.
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