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Abstract. Let Fi,..., Fy be the distributions of J independent multiparameter ex-
ponential families, and ps(Fi,..., Fs) denote the affinity between Fi,...,F;. We
consider the problem of estimating ps on the basis of independent random samples
from these distributions. Subject to some mild regularity conditions, we derive the
asymptotic distribution of the maximum likelihood estimator of ps. Applications to
hypothesis testing and discriminant analysis are discussed, and an example is pro-
vided.
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1. Introduction

Let X, and X5 be random variables defined on the set 2. Assume their distribution
functions are F} and F,, and the probability density functions are f; and fa, respectively,
with respect to the common measure m. Matusita (1955, 1966) defined a distance
measure between two distributions Fy and F; to be

1/2
&R, F) = Uﬂ{v Hilz) - sz(z)}zdm(z)] :

He zalso defined the affinity between F7 and I to be
pa(Fr, Fy) = /ﬂ (@) fole)]/2dm(z),

and remarked that £2(Fy, Fo} = 2[1 — po(F1, Fa)]. Note that 0 < po(F1, Fz) < 1, and
pa(Fy, F2) = 1 if and only if F} = F;. Furthermore, there is a one-to-one mapping
between £(Fy, Fy) and po(Fy, F3). Matusita (1967, 1973) generalized the notion of
affinity to an arbitrary number of distributions Fy, ..., F; by defining the affinity,

(1.1) pa(F1,Fa,..., Fy) =L[fl(x)fz(m)--‘fJ(m)]de(:t)-

Matusita (1966) determined an analytical formula for the affinity between two mul-
tivariate normal distributions. He derived the exact distribution of the estimated affinity,
using sample means and variances to estimate the unknown parameters based on inde-
pendent samples from the two populations. He produced a test statistic, based on a
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sample analog of the affinity, for testing equality of the unknown parameters from the
two multivariate normal distributions.

Matusita (1955) used the affinity to determine confidence bands on discrete distri-
butions. Matusita (19675) also used the affinity to test whether or not multiple sets of
observations have the same distribution, and he applied these findings to multivariate
normal data. Matusita (1967a) tested whether or not a set of observations is from one of
several known distributions, and again applied his findings to multivariate normal data.
These results were generalized by Matusita (1971) by allowing the known distributions
to be selected according to prior probabilities.

McLachlan ((1992), pp. 22-26, 220-229) provided a brief literary review of affinity-
based measures. LeCam (1970) and Beran (1977) referred to the affinity between two
distributions as the Hellinger distance. Discrimination among populations containing a
mixture of discrete and continuous data was discussed by Krzanowski (1983, 1984, 1987).

Bar-Hen and Daudin (1998) studied the asymptotic distribution of affinity in relation
to the location model (Olkin and Tate (1961); Krzanowski (1975)). This model is a
mixture of » multivariate normal distributions with different mean vectors but a common
covariance matrix, where the mixing probabilities are multinomial, and all parameters
are unknown. The distribution of affinity for r = 1 was analyzed in detail by Matusita
(1966). When r > 2, this location model is not in the exponential family and is not
examined herein.

In this paper we examine the case of arbitrary multiparameter exponential families,
and measure the affinity when the distributions are the same except for the unknown
parameters. The asymptotic distribution of the estimated affinity when the parameters
are not equal is shown to be univariate normal, and we derive explicit formulas for
the asymptotic variance using the delta method. The estimated affinity is shown to be
invariant under one-to-one transformations of the parameters or random variables. We
use (1.1) when examining the affinity in the exponential family. For example, we may
be interested in measuring the distance between two independent Poisson distributions
with unknown means, which may be unequal in general. When discussing inferences for
hypothesis testing and discriminant analysis involving two distributions in Section 5, we
will set J = 2 in (1.1). A brief discussion regarding practical issues in Section 7 concludes
the paper. Proofs of theorems are provided in the Appendix.

2. Invariance of affinity

Suppose the random variable X is transformed via a one-to-one mapping from X
to g(X), such that g(X) is continuously differential and the Jacobian of g(X) does not
vanish. Then, p; is the same under either X or g(X) as shown below. The same is true
for estimates of py. Observe that

(21) fi(@) = f;(gl=)Bg(z)/0zll, J=1,...,J
where |8¢{x)/dz| is the Jacobian. The invariance result for p; is fa,iﬂy obvious, since
(1.1) and (2.1) imply that
pilFivee E) = [ (@) fa(a)]H dm(a)
Q
< [ (7@~ ala)]  10g(s) ozl dm(a)

B /(n)[fl (9(@)} - L1(g(=))]"/  dm(g(x)).
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For example, if X' has a normal distribution, then exp{X} has a log-normal distribution,
and the affinity is invariant under this transformation. The same reasoning suggests that
estimates of p; (when parameters in Fy,..., F; are unknown) also are invariant under
the transformation from X to g(X).

We now examine reparametrization. Since p; as defined in (1.1) does not depend on
which parametrization of the unknown parameters is chosen, then estimates of ps also
do not depend on the parametrization. Thus, when studying the exponential family, we
can use natural parameters without loss of generality.

PROPOSITION 2.1. DBoth the value of py and the distribution of any estimate of p;
are invariant under the transformation from the random variable X to g(X), and under
any reparametrization of the unknown parameters.

3. Exponential families

We now provide the notation for multiparameter exponential families (cf. Bickel and
Doksum (1977), pp. 71-73) with A unknown parameters, for J distributions. Denote
the natural parameter of F; by 9; = (1]'31, nik), for 4 = 1,...,J, and denote the
natural statistic by T(z) = (T1 (@),...,Tx(2)). The multlvarlate dlstrlbumon function
F; has probability density functlon

K
(3.1) f(mn;) =exp {Z nieTn(z) + q(n;) + S(ﬂ»')} 15{z),

k=1
for j =1,...,J, where s(z) and the indicator function, 15(z), do not depend on 7, and
g(n;) is some functlon Hence, the distributions Fy, ..., Fy are similar in functional form

except for the unknown parameters. The affinity under model (3.1) can be shown to be

J J K
(3.2) py(F1,....F3) = exp J_IZq(nj) /Bexp J“lzanka(z)—Fs(z) dx

F=1k=1

J I
expd I g —q [T my
I=1 =1

Let J* be the number of distributions estimated. Also, let f; denote the maximum
likelihood estimator (MLE} of %, based on N; independent observations z;1,...,Z;n;
from F;, j =1,...,J*. Replacing n; by #;, and F; by ﬁ’j in (3.2), we obtain the MLE of
p. It follows that

J
. )mgH—JIZ[W )] - g lzn, s 730, ),

=1

and the asymptotic distribution of (3.3) will be derived in Section 4, when standardized
by sample size.
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4. Asymptotic distribution

The asymptotic distribution of (3.3) now is stated. The gradient and Hessian of any
real function ¢(y) will be denoted by V{(y) and V2((y), respectively. If  is a function
of 1, then these derivatives for computing the gradient and Hessian of {(y(n)) still are
taken with respect to y.

Consider the following mild regularity conditions.

(Cl) ¥?¢(n) is bounded in a single neighborhood containing n; forallj=1,...,J.

(C2) There exists a continuous function i : $% — R such that forall j =1,...,J%,
fl; = (N7 102 T(xn)), and 5 = h(—Ve(m)) for all

(C3) There exists an N, depending on Ny, ..., Nj., such that N;/N — las N — oo
forallj=1,...,J%

When J* =1 in condition (C3), let N be the sample size. Now define

(4.1} Vi(ny,.-..m5)

e oo ) o)

=1

where

Aln) = [VA(=Va@m))]' [ V2a(m]IVh({—Va(m).

Notice that A{sn) is nonnegative definite since [-V2¢{n)] is the covariance matrix of I°(x).
The expression V;, as defined in (4.1), will appear in asymptotic distributions involving
the estimated affinity.

THEOREM 4.1.  Assume the regularity conditions (C1)-{C3).

(&) Then
ps(Ey,. . Fy) a
JVNlog S22 00 5 N0, Vi, . . .
B S N O Vi, )
as N — oo.
(b) Suppese Fy = --- = Fy, and all third derivative components of ¢(n) are bounded
m a neighborhood ebout ;. Then,
i ) K
(4.2) —2NJlogps(Fy,..., Fy) izékym
k=1

as N — oo, where Y1,...,Yx are mutually independent x%_, random veriables, and the
61,...,0K are the eigenvalues of the nonnegative definite matriz

[~ V2g(n,)]Y 2 A(ny ) [~ V2ain, )]/

Note that the added condition on ¢{n) in Theorem 4.1(b) strengthens condition
{C1). Kotz et al. (1967) derived scries expansions for the distribution function and the
probability density function of the right hand side of (4.2), so this asymptotic distribution
is well understood.
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5. Inferences

In this section we assume that conditions (C1)-(C3) hold with J = 2. The notion of
affinity in exponential models is applied to hypothesis testing and diseriminant analysis.
Assume that the exponential distributions are the same except for the parameter 1.

5.1 Simple vs. simple hypothesis testing

Suppose one is interested in testing the null hypothesis that § = 7, against the
alternative that 5 = 7,, where 5 is the unknown true value of the parameter, and 7, and
7, are fixed. Exponential distributions with parameters 1, #;, and 1, are denoted by F,
Fi, and F;, respectively. For this subsection take J* = 1, such that # is the MLE of 5
based on the IV observations from F. The proposed test statistic is

p2(F, F) _ q(mp) — alm) ty (anl) Ly (M) ’

51 Q) =log2 2ot = T ; s

and the null hypothesis is rejected when Q(n) is sufficiently large. Part (a) of the fol-
lowing theorem shows that Q(%}) is a reasonable test statistic, and part (b} provides the
asymptotic distribution of Q{7).

THEOREM 5.1. Assume the reqularity conditions (C1)-(C3), where J = 2 and
J*=1. Letq, and 1, be fixed.

(a) Then Q(ij) monotonically increases as f) moves along the line (g, — 1) in the
direction of (n, —1n,).

(b) Under Fy,

2VRIQE) — log p(F, Fy)
4 A (0, {Vq(ql) ~ Vg (31—}33) }fA(m) {Vq(m) ~ Vg (’h;_ng‘) })

as N — oo, Alse, under Fy,

2VN[Q(R) + log p(F1, F2)]
4 N (o, {vq(ng) v (”IT“’?) }'A(ng) {Vq(nz) - Vg ("%ﬂ) })

as N — oo.

Theorem 5.1{(a) suggests that if the dimension of the unknown parameter is one,
then @(7}) is a monotone function of #, which is a monotone function of the complete,
sufficient statistic Zf=1 T'(x,). By the Neyman-Pearson Lemma (cf. Bickel and Doksum
(1977), pp. 192-194) we have proved the following result.

PROPOSITION 5.1. For a one-dimensional exponential family with unknouwn po-
rameter 0, the test statistic Q7)) produces the uniformly most powerful test for testing
the null hypothesis that 7 = 1 against the alternobive that n = 1y, where § s the MLE

af 1.
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5.2  Two-sided hypothesis testing

Suppose one wishes to test the null hypothesis that g = #* against the alternative
that 7 # 7", where # is the unknown true value of the parameter. Denote by £ the
exponential distribution with unknown parameter 5, and denote by F* the exponential
distribution with known parameter n*. For this subsection take J* = 1, such that %
is the MLE of i based on the N observations from F. Under the null hypothesis, we
will add the condition that all third derivative components of g(p) are bounded in a
neighborhood about 7*. For testing these hypotheses, (3.3) becomes

po (B, F*)  q(i) + q(n) A+
(52) OB EF) T 2 "”( 2 ) |

This test statistic (5.2) has the following desirable property.

THEOREM 5.2. For a fized null value 17*, the test statistic (5.2) monotonically de-
creases as ) moves away from 7* along the line (§j — n*).

Hypothesis tests may be performed by noting that under the null hypothesis

—

log po(B, F*) = £~ {V°4(0") 1) — 1) + Op(N 57

a8 N — 00. In a similar spirit as Theorem 4.1(b), a Taylor series expansion implies that
(5.3) —8N log ps (F, F*) Zék}’k

as IV — 00, where Y1,...,Yx are independent x# random variables, and 61,...,8x are
the eigenvalues of the nonnegative definite matrix

{A(Ul)}lm{"V2Q(7)1)}{A(’h)}1/2-

Power calculations may be performed by noting that under the alternative hypothesis

pa(F, F*)
(5.4) QJ_logﬁ

4N (0, {Vq(n) - Vg (q_;n*)}’fi(’?) {VQ('?) — Vg (’Lg‘r’:)})

as N — oo, in the same spirit as Theorem 4.1(a).

Theorem 5.2 suggests that the test statistic (5.2}, although valid for two-sided tests,
is not valid for one-sided tests. For example, in the univariate case suppose one is testing
the null hypothesis that # = n* against the alternative that n > n*. If 7 « n*, then
the null hypothesis is likely to be erroneously rejected. The probability of committing a
Type I error would be much larger than the nominal value.
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5.3 Discriminant analysis

Suppose N; observations are taken from exponential distribution F; with unknown
parameter 73, for j = 1,...,J*, where J* = 3. Assume that either Fj is the same as
Fy, ar Fy is the same as F,. In other words, one wishes to determine whether the Ny
observations are from ¥y or F,. Assume that F and F) have equal ¢ priori distributions.

'The classification will be based on affinity. The data will be classified as being from
Fyoif pg(Fl,F3) > po(Fo, Fy), and will be classified as being from Fy if po(F, £3) <
p2(Fy, B3).

The asymptotic probability of misclassification now is derived. Let

P2(F2a FS) Q(ﬁz) - q{f,) i + 13 ; + s
(5.5) U(Fl,Fz,Fs)*log +q _g{ BT
pa(Fr Ea) 2 2 2

‘Thus, the N3 observations from Fj are classified as being from Fy if U < 0, and are
classified as being from F, if U > 0. A straightforward calculation shows that

IGgpz(Fl,Fg), under F]

5.6 U(F1, I, I {
(5:6) (Fi, P2, o) = —log p2(F1, F3), under

as min{ Ny, N3, N3} — oo. Select N as in condition (C3). The asymptotic distribution
of U (Fl,Fz,Fg) is stated here.

THEOREM 5.3. Assume that the regularity conditions (C1)—(C3) hold, where J = 2
and J* = 3. Also, assume that 5, 9,, end n; are unknown. If F3 = Fy, then

20U (F1, Py, Fy) — log pa(£1, BR)|VIN 5 N (0, Va(my )
as N — co. Also, if F3 = Fa, then
2U (R, By, ) + og pa( By, BR)IVN 5 N0, Va(my, 1))
a5 N — 0o,
When the true distribution is #, the probability of misclassification is

(5.7) P(U(Fy, By, B3) > 0| Fy)
= p (2{U(ﬁ’lyﬁ,2:ﬁ3) - 10gp2(F11F2)} _ZIOgPZ(F1$F2))

VValn . n)/N Va(my,m)/N

zp(z>_w)_@(%wz_wb1%>)

for large N, where Z is a standard normal random variable and &(-) is the standard
normal distribution function. Similarly, when the true distribution is Fy, the probability
of misclassification also is approximately the right hand side of (5.7) for large N. There-
fore, unconditional on which distribution, #7 or Fb, is the true one, the probability of
misclassification is approximately the right hand side of (5.7) for large N.

Consider an example involving univariate normal random variables. Let F; denote
a normal distribution with unknown mean n; for 7 = 1,...,3 and known equal variances
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o?. The natural parameter is 7;, and g(n7) = —%/(202). Defining X; to be the sample
mean based on the N; observations from F}, it follows from (5.5) that

- ~ ” _ 1 _ _ _ _
(5.8) AW(F, Fy, F3) = | X5 — E(X1 + X3)| 072 (X - X1).

Anderson ((1984), p. 210, eq. (5)) used the same criterion for determining misclassifica-
tion as in (5.8), except he estimated 52, whereas we assume o2 is known.

Now suppose that %, and %, are known and 1, is unknown for arbitrary exponential
distributions Fy, F5, and F3. Then J* = 1, and a sample of size N is taken from Fj.
The test statistic (5.5) becomes

- p2(F3, Fa) .
(5.9) U(Fy, Fy, F3) = log === = Q(#),),
heme p2(F3, F1) 8

which is statistic (5.1) used for testing simple vs. simple hypotheses. Hence, (5.9) already
has been discussed in Section 5.1.

6. An example

As in Section 5 take J = 2. Consider a gamma random variable X with unknown
scale parameter » and known shape parameter ¢ > 0. The probability density function
of X may be written

fzon) =n°"te™™ T(e), =>0.

The natural parameter is #; the natural statistic is —X; g(n) = clogn; A(y) = —¢/y, and
A(n) = n*/c. Mutually independent samples of size N; are taken from gamma random
variables X; such that there exists an IV as defined in condition {C3), for j=1,...,J*
The MLE of n; is ; = ¢/X;, where X 7 is the sample mean from the j-th population of
size N;. It follows from (3.2) that

(61) (Fi, ) = (2P

We will apply two-sided hypothesis testing and discriminant analysis to these gamma
random variables. The statistic for testing simple vs. simple hypotheses is equivalent
to the Neyman-Pearson test statistic for this one-dimensional case, and therefore is not
discussed further.

6.1 Two-sided hypothesis testing
In this subsection take J* =1, n = #;, and F = F;. To perform hypothesis tests
and power calculations, (5.3) implies that

~ PN
(6:2) ~8Nlog pa(F, F*) = ~8cN log =200 4 53

as /N — oo under the null hypothesis 7 = n*. Under the alternative hypothesis n # 7*,
(5.4) implies that

a
N /N n+n" Al 4 n—n*
2 ]. = —_— —_
ng(FF* - log{(ﬁ+n*)\/;} N(O’C{n+n*})

as N — co. Therefore, the null hypothesis should be rejected for large values of the left
hand side of (6.2), as compared to a xi-table.
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6.2 Discriminant analysis

We now perform discriminant analysis for testing whether F3 = Fy or F3 = Iy,
where the distributions Fy and F» have equal @ priori probabilities and are unknown.
In this subsection take J* = 3 and assume that condition (C3) holds. It follows from
(5.5) and (4.1) that

M2 + i3 n

U(ﬁ‘l,ﬁ‘g,ﬁ‘g) = clc)g{(n1 +7?3) ??_2}
and

2
m— 12

Va(m,n —26(—) .
(tm,m2) Th + 12

It then follows from the right hand side of (5.7) that for large N the probability of
misclassification is approximately

o((pmama (i)

| — n2 ™+ 72

7. Practical issues

The regularity conditions (C1)—(C3) are theoretically the only conditions which need
to hold in order for the theorems herein to be valid. Note that condition (C2) requires
the MLE of the natural parameter to be a function of the natural statistic. However,
if this MLE is not tractable, then the asymptotic distribution of the estimated affinity
cannot be expressed analytically.

For example, the MLE of the shape parameter of a gamma random variable is not
tractable. On the other hand, the MLE of the scale parameter of a gamma random vari-
able with known shape parameter is tractable, as mentioned in Section 6. Furthermore,
the MLE of the natural parameter is tractable for the multivariate normal, log-normal,
Poisson, and Bernoulli distributions, among many others, in which cases one may make
practical inferences similar to those made in Section 6.
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Appendix: Proof of Theorems
LEMMA A.l. Under the regularity conditions (C1)-(C3),

(B, —n;)VN & N(0, An,))

*

as N—oo,j=1,...,J*
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Proor. By a Taylor series expansion,
NJ
i, —n=h Nj_l ZT(%’H) —h(-Vq(n;})
n=1
Ny
n=1

r

N;
N7US° T(zjn) — By T(x;) | Vh(Ey, T(2;) + Op(N )

as N - 00, j=1,...,J*. Since B;T(z) = —Vg(n) and Var, T(z) = —V2¢(n), the result
follows from the Central Limit Theorem. O

PrOOF OF THEOREM 4.1. First we prove part (a). By a Taylor series expansion
of (3.3),

pJ(pl,...,FJ)

log B, )
=J" 12(?}; ;) {Vq(m ( 1Zm)]+20 ({f; — ;Y {7, — ;)

as N — oo. Then, part (a) follows from Lemma A.1. Now we prove part (b). Letp=17,.
By a Taylor series expansion of (3.3},

(A1) —2logpy(Fy,...,Fy)=1J IZ(TIJ Y{~V3¢(m)}ip; —n)

J ! 5
_ (J‘l Zﬁj An) {*qu(n)} (J—l Zﬁj ”17) 4 OP(N—B/Q)

as N — oo, Let I'y be the K x K identity matrix, and let Z,,...,Z; be mutually
independent A(0,Ix). Lemma A.1 and (A.1) imply that

—2NJlogpy(Fi,..., Fr)

J
LN ZH A Y-V HAm)} 22,

=l

J
-J! (ZZ) -V HAm)} (sz)

=1 i=1

J J t
-3 [{—vzq(n1}“2{A(nJ}”2 (zj e Zz;)]

J=1 l=1

J
[{ Vi) H{Am ( —J Zzz)}
=1

= trace{W},
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as N — oo where
J

J
w=>3" {{—V%(ﬂ)}uz{l‘l(ﬂ)}lm (Zj —-J! Zzt”

i=1 i=1
J !
- {{—v%(n)}”?m(n)}w (zj _ g zzl)} .
=1

Since
W ~ Wishart({-V3qm)}/2Am){-V2a(m)}/2,J - 1),

then the characteristic function of the trace of W evaluated at £ can be written
p(t) = Ik — 2it{~V2qm}' 2AMm){— Vg /2|~ =072 = |1y — 2itA|~ -1/,

where A is the diagonal matrix of eigenvalues of {—V2g(n)}1/24(n){-V3¢(n)}'/%. There-
fore, p(t) = [Tr—, (1 — 2it6;)~'=1/2 which is the characteristic function of Y Y,
where Y),...,Yx are mutually independent x%_, random variables, and &i,..., 8k are
the diagonal elements of A. Part (b) then follows. 1

ProOOF OF THEOREM 5.1. First we prove part (a). By a Taylor series expansion
of (5.1},

R 7+ i+ -
2vQ) - Vo (TER) - vg (12 - wrgany (B2,
where 0’ lies on the line connecting (i + 1, )/2 to (7 + %,)/2. Therefore,
(A2) A —n,)'VQE) = (m — ) [V2a(n")(m — 1)

= (ny — my)'[~ Vary T(2)](m —1,) <0,

since Var,: T(x) is positive definite. This proves part (a). Now we prove the first part
of part (b). By another Taylor series expansion,

QM) = Q)+ [VQm)I' (7 —m) + Op(N ™)

1 + " _
= togp(Fy, B2 + 5 [Vatm) - Vo (B2 )| Gr-m) + 0p(N )
as N — oo. Using Lemma A.1 the result follows. The second part of part (b) follows
similarly. O

Proor oF THEOREM 5.2. Fix a value 9*. Taking gradients with respect to 9, we
note that

~

pa(F, F*) A i+ _ -9
2V10gm = Vq(#) — Vg ( 5 ) = [Vz(I(’?t)] (T) ’

where ' lies on the line connecting f) to (f+%*)/2, by a Taylor series expansion. There-
fore, if f) # n*, then

- 7')Viog 2T = (-7 (V) - )

= (- 0") [-Vary T@](h - 7°) <0,



ASYMPTOTIC DISTRIBUTION OF ESTIMATED AFFINITY 437
since Vary: T(z) is positive definite. O

Proor or THEOREM 5.3. By a Taylor series expansion, under the hypothesis that
B=HR,

20U (51, 1o, Fy) = 1og pa(Fi, o)) = (s — )’ [Vq(m) - Vg (ﬂ‘l‘“; ")]
3
)| Vatn) - V(B3 )] + 3 0yt — Y G - )
j=1

as N — oo, Using Lemma A.1 and noting the independence between 4, and 7y, the first
part of the theorem is proved. The second part of the theorem is proved similarly. O
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