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Abstract. The marginal distributions of the number of rises and the number of falls
have been used successfully in various areas of statistics, especially in non-parametric
statistical inference. Carlitz (1972, Duke Math. J. 39, 268-269) showed that the
generating function of the joint distribution for the numbers of rises and falls satisfies
certain complex combinatorial equations, and pointed out that he had been unable
to derive the explicit formula for the joint distribution from these equations. After
more than two decades, this latter problem remains unsolved. In this article, the
joint distribution is obtained via the probabilistic methed of finite Markov chain
imbedding for random permutations. A numerical example is provided to illustrate
the theoretical results and the corresponding computational procedures.

Key words and phreses:  Eulerian and Simon Newcomb numbers, finite Markov chain
imbedding, transition probability matrix.

1. Introduction

Let Sy ={1,...,1,2,...,2,...,n,...,n} be a set of N integers with specification

[s] = [s1,--.,ss], where s; (> 1) is the number of times the integer “¢” occurs in Sy and
s14824 -+ 8n = N. Let H(Sx) = {n(N) = (13(N), ma(N), ..., mw(N)) : Ts(N) € Sy}
be the collection of all possible permutations having specification [s|. Fori =1,...,N—1,

define the rises (increases) R;y, falls (decreases) Dy, and levels L,y for the gaps among
71(V) to wan(N) by index functions:

{1 if 7ri+1(N)>7r,<(N)
Ry =

otherwise,
1 if 7I'5.|.1(N)<TF¢(N)
Din =
otherwise, and
{1 if 7T.5+1(N):T|'1;(N)
Lin = _
otherwise,

and by convention let the front end be a rise and the rear end be a fall (Roy = 1,
and Dyy = 1). Further, we define three random variables Ry = Z?:Ol Rin, Dy =
Eil Din, and Ly = E;i;l[;m as the numbers of rises, falls, and levels in a random
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permutation 7 (V¥V} € H(Sw), respectively, and for every m(N) € H(Sy), they satisfy the
identity

(1.1) Ry +Dy+Ly=N+1.

Let A([s],k), & = 1,...,n, be the number of permutations in H{9y) having exactly
k rises. The numbers A([s], k) are known as the Simon Newcomb numbers (Dillon and
Roselle (1969)). If the specification [s] is [1,...,1], then the A([s], k} are known as the
Eulerian numbers (Carlitz (1964)). The distribution of the number of rises associated
with random permutations w(N) € H(Sn) can be directly defined through the Simon
Newcomb numbers in the following way:

(1.2) P(Ry =k) = A([s], % ﬁ (8;)/NL

Eulerian and Simon Newcomb numbers are probably the two most celebrated numbers
associated with random permutations, and have heen studied extensively in the literature
on combinatorial analysis. The history of their development and application can be found
in books by, for instance, MacMahon (1915), Riordon {1958), and David and Barton
(1962). Today there remains a considerable amount of interest in generalizations and
extensions of Eulerian and Simon Newcomb numbers (for example, Carlitz (1964, 1972,
1974), Tanny (1973), Takacs (1979), Nicolas (1992), Harris and Park (1994), Giladi and
Keller (1994), and Fu et al. (1998)).

Carlitz (1972) studied the generating function of the joint distribution for the num-
bers of rises and falls. He showed that the generating function satisfies a set of complex
implicit combinatorial equations (see Carlitz {1972}, pp. 268-269). In that article, he
also pointed out that an explicit formula for the joint distribution could not be obtained
from his set of combinatorial equations. Further, Carlitz did not provide a numerical
method to evaluate the joint probabilities. After more than two decades, the problem
of finding the joint distribution remains unsolved. In this article, away from the tradi-
tional combinatorial approach, the joint distribution for the numbers of rises and falls
is obtained using the probabilistic method of finite Markov chain imbedding for random
permutations, as recently developed by Fu (1995) and Fu et al. (1998) to study the
marginal distributions of successions, rises and falls. The key idea of this approach is
to view the random vector of interest, (Ry, Dy), as a function (projection) of a simple
finite Markov chain, and then its distribution can be expressed in terms of the transition
probability matrices of the imbedded finite Markov chain.

This manuscript is organized in the following manner. In Section 2, the insertion
procedure, the lemmas, and the finite Markov chain imbedding technique, are introduced.
In Section 3, we study the joint distribution of the numbers of rises and falls. A numerical
example and discussion are given in the concluding section.

2. Notation and preliminary results

Let Sx be a collection of N integers having specification [s| = [s1, ..., 8a|, as defined
in Section 1. For given £, let & be the integer such that

k-1

(2.1) Z 8i <t<zs,

and
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ke—1

(2.2) sk(t)=t— > si.
i=1

Fort=1,2,..., N, we define a sequence of collections generated by Sy: S = {1}, S» =
{1,].},...,5'31 = {1,...,1},...,8; =Stw.1 U{kt},..., and SN :{1,...,1,...,?'2.,...,71}.
In words, the collection S5, contains the first ¢ integers of Sy and has specification
[s]y = [s1,...,8k(t)]. Let,fort=1,2,..., N,

(2.3) H(S;) = all the permutations generated by integers in S
={w(t) = (w1(t),...,m(t)) s m{t) € Sp,i =1,...,t}

From (2.1) and (2.2), for every ¢, either k; = ky_y or k; = ke_y + 1, and {k,}, is a
non-decreasing sequence of integers.

In order to apply the finite Markov chain imbedding technique for random permu-
tations, we adopt the insertion procedure introduced by Fu (1995) and Fu et al. (1998).
The insertion procedure can be described as inserting integers {k;} one by one randomly
into the gaps between integers (including the two end gaps), starting with the first s;
“1”s, followed by 82 “2”s, and continuing the insertion procedure until all the integers
{k.} have been inserted. The permutation 7(t) € H(S;) is a result of inserting the inte-
ger k; into one of the ¢ gaps of permutation #{t —1) € H(S,_1). The sequence of triplets
{(5:,[8]e, H(S:)) : t = 1,..., N} induced by Sy through the insertion procedure plays
an important role in the application of the finite Markov chain imbedding technique.

Let us consider a random permutation = = (1322331). There are eight gaps in the
permutation (including the two end gaps). Given an integer k = 3, the eight gaps of the
random permutation 7 can be classified into four types according to the given integer k
as follows:

(I} gaps of rises, falls, and levels involving the integer k, i.e. gaps 2, 3, 5, 6, and 7,

(IT) gaps of rises not involving the integer k, i.e. gap 1,

(IIT) gaps of falls not involving the integer k, i.e. gap 8,
(IV} gaps of levels not involving the integer &, i.e. gap 4.

Given integers k and ¢, and a random permutation , we define six random variables:
Ry(k,m), Dy(k, ), and Ly{k, 7) as the numbers of gaps of rises, falls, and levels involving
the integer k in m respectively, and R,(k,7), D,(k, ), and L.(k,m) as the numbers of
gaps of rises, falls, and levels not involving the integer & in m, respectively.

Given Sy having specification [s], the sequences {k:}, {s, (t)}, {S:}, {[s]:}, and
{H(S;)} are well defined, and the following lemmas hold.

LEMMA 2.1, For everyl <t < N, the number of rises R,, the number of falls Dy,
and the number of levels L, in a random permutation w(t) € H(S:) satisfy the following
equations:

(i) Re+ Dy 4+ L=t +1,

(ii) 1 < Ry <t —max(sy,82,...,8 () + 1,

(i) 1 < Dy <t —max(s1,s2,...,8(t)) + 1,

(IV) OthSt—kt

Proor. Forevery n(t) € H(S;), there are t+1 gaps. Result (i} follows immediately
from the fact that a gap is either a rise, a fall, or a level. Results (ii) and (iii) are due to
Dillon and Roselle (1969). Result (iv) follows from

0<Ly<(s1—1)+(s2—=1)+ -+ (85, (t) = 1) =t — ky. ]
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LEMMA 2.2, For every w(t) € H(St), it follows that
(1) Rilke,m(t)) + Le(ke, w(t) = sk, (1),

(i) Delke, m(t)) + Lelke, w(t)) = sk, (1),

(iil) Relks, w(t)) = Dylkys, 7(2)).

ProoOF. If s, (t) = 1, there is no level associated with the integer k¢, and then
Li(ke,m(t)) = 0. Since the integer k; is the largest integer among all the integers in
7(t), the gap immediately preceding the integer k; has to be a rise. It follows that
Rk, 7(t)) = 1 and result {i) is obviously true. For sg,{t) > 2, again since k; is the
largest integer in (t), the gap immediately preceding the integer &, is either a rise or
a level. Hence result (i) holds for all s;, > 1. By the same token, for all k¢, the gap
immediately following the integer k; has to be either a level or a fall. This completes the
proof for result (ii}). Result (iii) is a direct consequence of results (i) and (ii). O

Fort =2,...,N, we define the index functions
1 lf kt - kg_],
2.4 I(t) =
(24) ®) {0 ¥ b=k 1+1.

In the following, we show the relationships of the numbers of gaps associated with k;
and the numbers of gaps associated with k;_y.

LEMMA 2.3, Fort=2,3,...,N, and n(t — 1) € H(S;-1),
(1) Ry = Byy(ke—r,m(t — 1)) + Rea(ky—1, w(t — 1)),

D1 = Dy (ky—1,7(t = 1)) + Dy—1(kyp—q, w(t — 1)),
Liy =Ly (k1,76 = 1)) + L1 (kemq, m(t — 1)),

(i) Re—a(ke,m(t — 1)) + Do (ke, (¢ — 1)) + Ly (e, m{t — 1))
= [231‘3—1 (t - 1) - Lt—l(kt—l? ﬂ;(t - 1))]I(t)7

(i) Ry—yke,m(t —1)) = I()Re—y (ko1 m(t — 1)) + (1 — I{£)) Re s
Dy 1k, w(t — 1)) = I()Dyms (kimr,w(t — 1)) + (1 = I(2)) Dy,
Ly 1(k¢,7l'(t— 1)) = I( )Lt 1(?(:5 1,‘:'T(t— 1)) + (1 - I(t))Lt_l.

PrOOF. Result (i) follows directly from the definitions. Result (ii) is a direct
consequence of Lemma 2.2. If I(t) = 0 (i.e. k, = ky—y + 1), then all the rises in m{t — 1)
do not involve the integer k; (random permutation 7 (¢t — 1) contains no integer k;), and
Ry 1(ke,m(t—1)) = By—y. I I{t) = 1 (i.e. k¢ = k1), then the number of gaps of rises
in #(t — 1) involving k; is the same as that involving k.1, and Ry_y(ke, w(t — 1)) =
Ry_1(ky—1,m(t — 1)). Hence the first part of (iii) holds. By the same token, the second
and third parts of result (iii) are also true. O

Let X be a random variable or a random vector defined on H(S~). To apply the
finite Markov chain imbedding technique, we first give the basic definition:

DEFINITION 1. The random variable (or random vector) Xy defined on H(Sx) is
finite Markov chain imbeddable if
(i) there exists a finite Markov chain {Y;} defined on a sequence of finite state
spaces {{} having transition probability matrices {M;}, ¢+ = 1,2,..., N, and initial
probability &, and
(ii) there exists a partition {C, : 2 = 0,1,...,1} on the state space Qy such that
for every z =0,1,...,1,

P(XN :.'1:) :P(YN € Cy | &).
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If the random variable X is finite Markov chain imbeddable, then it follows from
the Chapman-Kolmogorov equation that the exact distribution, moments, and gener-
ating functions can be obtained, respectively, from the following equations (see Fu and
Koutras (1994) for details):

N
(25} P(XN = 'T;) =&p (H Mt) UI(C:I’:): z=0,1,.. -111
t=1

where U(Cy) =3, 0. Ula) and U(a) = (0,...,0,1,0,... ,0) is a unit vector associated
with the element a € Qp,

N
(2.6) E(XEY=¢ (H Mt) V., k=12,
t=1
where Vi = YL z*U(C,), and
N
(27) PX (8) = &U (H Mt) Wsa
t=1
where W, = ZL:O e U(C,).
3. The main result

Our main goal in this section is to find the joint distribution of the random variables
Ry (the number of rises) and Dy (the number of falls) in a random permutation 7(N) €
H(Sw). To achieve this aim, we show that the random variable (or vector) Xy =
(Ry, Dn) is finite Markov chain imbeddable by constructing (i) a finite Markov chain
{Y;} defined on a sequence of state spaces {{},} with transition probability matrices
{M;}, and (ii) a partition {C(":f 4} on {2n such that

P(Xy = (r,d)) = P(Yv € C[ ).
Fort =1,...,N, we define the sequence of state spaces

(31) Qt = {(Rt,Dt,Lt(kt?’ﬂ'(t))) : where Rt,Dt and Lt(kt,‘ﬂ'(t))
are defined in Section 2 and satisfy Lemmas 2.1 to 2.3}.

Similarly, we define the sequence of mappings (random vectors) Y; : H(S;) — 2 as
(3.2) Yi(w(t)) = (Re, Dt, Le(ke,m(t))), forall w(t) € H(S:).

Fort = N, kn = n, and given (r, d) where r and d satisfy Lemma 2.1, we define the
partition {C’g d)} on the state space {1y as

(3.3) O{X,d) = {(r,d,1) : | satisfies Lemmas 2.1 to 2.3}.
THEOREM 3.1.  Let H{Swn) be the collection of all possible random permulations

generated by the integers in Sy with specification [s] = [s1,...,8n]. Then, with respect
to the random insertion procedure,
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(i) the sequence of random vectors {Y, : H(5:) — Q.} defined by (3.2) form a finite
Markov chain having transition probability matrices

(3.4) M, = Piran@es®,  t=1,2,... N,

where, for every pair of (r,d,l) € (41 and (x,y, z) € §1, the transition probabilities are
defined as

(35) p(r,d,t)(m,y,z)(t)
= P(Y:t = (.’L’,y,Z) I K_l = (T’ d” l))
(T8 (2sg, , (E—1) = 1)/t if z=ry=dz=I@)(+1)

(r —I(t)(sg,_,(t — 1) —D)/t, if z=ry=d+1,z=1I(t)!
=< (d—I{t)(sp, B —1)=D)/t, if z=r+lLy=dz=I{)
((t —r —d) — I{t})/t, if r=r+ly=d+1lz=1I(t)

L 0, otherwise,

o

oy

where the index functions I(t) are defined in (2.4), and
(ii} #f &9 = P(Yo = (0,0,0)) = 1 is the initial probability, then the joint distribution
of the random variables Ry and Dy i3 given by

t=1

N
(3.6) P((By,Dy)={(r,d)) =& (H Mt) U'(C'f?f,d))a

where U ’(Cg,d)) is the transpose of U(C(I;i,al))7

U(C(fg’d:]) = Z U(('f', d! l)),

N
{rad)ecl 4,

and U((r,d,1)) = (0,...,0,1,0,...,0) is a row unit vector with 1 at the coordinate asso-
ciated with state (r,d,l) and O otherwise.

ProorF. To prove the result (i), it is sufficient to prove that sequence {Y¥;}, under
the insertion process, has one-step transition matrices M; with probabilities defined in
(35) For W(t - 1) < H(St_]_), let }fg_l (W(t - 1)) = (Rt—th—lth—l(kt—l:nW(t - 1))),
where Ry_y, D,y and Ly_q(k¢—y,7(t — 1)) are defined in Section 2 and satisfy Lemmas
2.1 to 2.3. Assume that the random permutation w{t — 1) has R, | = r rises, D;_1 =4
falls, and L¢_q(ki—1,7(t — 1)) = I levels associated with integer k;_;. In the following,
consider the transition probabilities when the integer k; is inserted into one of the { gaps
of the permutation w(t — 1). For k; = ky—y (i.e. I{t) = 1), there are four possible cases:

(a) If k; is inserted into one of the (2sg,_, (¢t — 1) — {) gaps of rises, falls, and
levels associated with integer k:(= k;—,) (type I gaps) in the permutation 7 (f — 1), then
(r,d,l) — {r,d,{ + 1) and the transition probability is

(37) P(},t - (T, d, 1+ 1) I Yia1 = (T? dal}) = (25k1_1(t - 1) - l)/t

(b) If £, is inserted into one of the (r— (sg,_,{t—1)—1)) gaps of rises not associated
with the integer k; (type II gaps), then (r,d,!) becomes (r,d + 1,{} and the transition
probability is

(388)  PYi=(rd+1,)[Yer = (rdD) = (r— (st D) =Dt
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(¢} If &, is inserted into one of the (d— (sk,_, (t— 1) 1)) gaps of falls not associated
with the integer %, (type I1I gaps), then (r,d, !} becomes (r + 1,d,!) and the transition
probability becomes

(39)  P(Yi=(r+1,d0) | Vi1 =(rdD) = ([d— (se_,(t=1) - D)/

(d) If k; is inserted into one of the (t — r —d — ) gaps of levels not associated
with the integer &; (type IV gaps), then (r,d,l) — (r + 1,d + 1,{) and the transition
probability is

(3.10) P, =@+1,d+ 1,0 |Yeei = (nd, )= (t—r—d =D/t

Similarly, if k; = ky—1 + 1, then I(t) = 0 and the permutation # (£— 1} contains no integer
k¢, Further, it follows that

Rt_l(k?t,ﬂ'(t — 1)) = Dt-—l(kta Tl'(t — 1)) - Lt(kt,’ﬂ'(t - 1)) = 0,

and the permutation «(¢) generated from 7 (t — 1} by insertion of integer k; has no level
associated with the integer k;. Again, there are four cases for the transition probability
of inserting k;:

(a’) Since there are no gaps of rises, falls and levels associated with integer k; (type
I gaps) in w(t — 1), then (r,d,l) — (r,d,0) and the transition probability is zero:

(3.11) P(Y, = (r,d,0) | Yi1 = (r,d, 1)) = 0.

(b") If k; is inserted randomly into one of the r gaps of rises (type II gaps, no
gaps of rises associated with integer k;), then (r,d,l) — (r,d + 1,0) and the transition
probability becomes

(3.12) P(Y, = (nd+1,0) | Yiey = (rd,[)) = r/t.

(¢} If k; is inserted randomly into one of the d gaps (type IIT gaps, no gaps of falls
associated with the integer k), then (r,d,!} — (r+1,d,0) and the transition probability
is

(3.13) P(Y, = (r+1,d,0) | Yoy = (r,d,1) = d/t.

(d") If &, is inserted randomly into one of the (¢t — r — d) gaps of levels (type IV
gaps), then (r,d,!) — (r +1,d + 1,0) and the transition probability becomes

(3.14) P(Y,=(r+1,d+1,0) | Yi_1 = (r,d, 1)) = (t — r — d)/¢.

Combining (3.7} with (3.11), (3.8) with (3.12), (3.9) with (3.13), and (3.10) with
(3.14), yields (3.5). This proves that {¥;} forms a finite Markov chain with transition
probability matrices defined by (3.5).

Given Xy = (r,d), it follows from the definition of the partition {Cg}," d)} on Oy

that, for every (r, d),
P(Xy = (r,d)) = P(Yn € Cf 4 | &)

Hence the random vector Xy = (Rn,Dy) is finite Markov chain imbeddable. Result
(i} is a direct consequence of the Chapman-Kolmogorov equation in matrix form. [J
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Note that the above results proved by the insertion of integers following an increasing
order of Sy can also be proved via an insertion of integers in Sy following a decreasing
order.

It is easy to see from the above proof that, for every state (r,d,l) € ,_1, the
numbers of gaps of the four types (¥, II, I1I, and IV} with respect to the inserting
integer k; are, respectively,

gu{(r,dy 1), k) = I(t)(2sp, , (£ - 1) — ),
gal(r,d, 1), e} = (r — I{t)(sp,, ( - ) =)
ga{(r, d, 1), k) = (d — I(t){sk,_, (t — 1) — 1)),
ga{(r,d, D) k) = ((t~7 —d) - (t)l)-

The transition probabilities for each state (r,d, [} € Q,_1 can then be expressed as

(3.15)

(r,d, I(£)(L + 1)), with probability g1/t

d i ilit t

(3.16) (rd 1) — (r,d+ L, I{t)), WTth probabT 1 y 92/
(r+1,d,1{t)l), with probability g3/t

(r+1,d+1,1I(t)l), with probability g4/t.

Equations (3.15) and (3.16) hence provide a simple sequential procedure to construct
the state spaces {Q4},

Q; = U(,«,d’negﬂ_l{(?", d,I(t)(l + 1)), (T, d+1, I(t)l),
(r+1,d,I(t)), (r + 1,d + 1, I(t)1}},

and the transition probability matrices {M;}. To illustrate this simple procedure, a
detailed numerical example is given in Section 4.

4. Discussion and example

Given Sy, the sequence of integers {k;} is uniquely defined. The insertion procedure
defined by the sequence of integers {k;} and the definitions of R;, Dy, and L.(k¢, 7(2)),
along with Lemmas 2.1 to 2.3 and Equations (3.15) and (3.16), provides a simple al-
gorithm for constructing the state spaces {{%;} and the transition probability matrices
{M;}. To make our main results and their computational aspects more transparent, a
detailed example is given below.

Erample. Consider a set of integers S5 = {1,1,2,3,3} having specification [s] =
[2,1,2]. The partially ordered sequence of integers {kyt = 1,...,5} = {1,1,2,3,3}
is induced by S5 and the index set {t = 1,2,3,4,5}. From Lemmas 2.1, 2.2, and
2.3, the insertion procedure, and (3.15) and (3.16), we obtain the state spaces {}, =
{(R¢, Dy, Ly(ke, m(t)))} and the transition probability matrices My = [p(r.a,0),(z,,2)(t)] 28
follows:

(1,1,00}, Q2={(L, 1, 1)},
(1,2,0),(2,1,0),(2,2,0)},
(1,3,0),(3,1,0),(2,2,0),(2,3,0},(3,2,0)},
(1,3,1),(2,3,0),(2,4,0),(3,1,1),(3,2,0),
(4,2,0),(2,2,1),(3,3,0),(2,3,1),(3,2, 1)},

!1

{
{
{
{

3
4
Q5

and
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M2—Il><1; M3: [1/311/311/3]1X31

[1/4 0 1/2 1/4 0
My=10 1/4 1/2 0 1/4 .
| 0 0 0 1/2 1/24, .
r2/5 2/5 1/5 0 0 0 0 0 0 0
0 0 0 2/5 2/5 1/5 0 0 0 0
Ms=| 0 1/5 0 0 15 0 2/5 1/58 0 0
0 0 1/5 40 0 0 0 2/5 2/ 0
L 0 0 0 0 0 1/5 0 2/5 0 2/5l;,.4,
The partition {C ] 5} on the state space Q5 is then
C(SS,I) ={(3,1,1)}, C"(51,3) ={(1,3, 1)}, 0(52,2) ={(2,2,1)},
c?3,2) ={(3,2,0),(3,2,1}}, 0(52,3) = {{2,3,0},(2,3,1)}, 0(53,3) = {(3,3,0)},

0?4,2) = {(432:0)}7 0(52,4) = {(2$4!0)}

Take the initial probability & = 1. It follows from (3.6) that, for all possible (r,d),

P((Rs, Ds) = (r,d)) = (HMt) (Chny)-

Hence we have

P((3,1))=1/30, P((1,3)) =1/30, P((2,2)) = 2/15,
P{(3,2)) =1/5, P((2,3)) = 1/5, P((3,3)) = 4/15,
P((4,2)) =1/15, P((2,4)) = 1/15.

The above results can be checked directly by writing out all possible (5!/(2[2!) = 30)
random permutations in H(S5) according to the partition {C{‘f} 41 as follows:

Chy ~{m: (11233)},  Cf 4 ~ {m: (33211)},

By gy ~ {m : (11332), (21133), (23311), (33112)},

gy ~ {  (11323), (13312), (31123), (12331), (12133), (23113)},

Chay ~ {r : (33121), (31132), (13321), (32113), (32311), (21331)},

8o ~ {7 : (13132), (13231), (13213), (31312), (31231), (31213), (21313), (23131)},
Cfyoy ~ {m: (13123),(12313)},  Chq ~ {m : (31321),(32131)).

The moments and joint moments of Rs and D can then be calculated by a simple
application of (2.6). For example, the means and expected product of Rz and Dj
can be computed easily via E(:) = &([T,_; M:)V', where V equals (i) V({rC p) =
(1,2,2,3,3,4,2,3,2,3), (i) V(dC}, 5) = (3,3,4,1,2,2,2,3,3,2), and (iii) V(rdC}, ;) =
(3,6,8,3,6,8,4,9,6,6), respectively. Numerically, this vields E(Rs) = 2.6, B(Ds) =
2.6, and E(R;Ds) = 6.6. Similarly, the corresponding variances and covariance are
Var(Rs) = 0.44, Var(Ds) = 0.44, and Cov(R;5, D5) = —0.16.
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In the above example, the state spaces {£2,} and the transition probability matrices
{M,} were constructed sequentially. To demonstrate this procedure, let us consider a set
of integers S7 = {1,1,2, 3,4}, which differs from the set S5 = {1,1,2,3,3} only by its
last integer (“4” instead of “3”}. The first four state spaces (2} and transition probability
matrices M, i = 1,2, 3,4, associated with 52 are the same as ; and M; for Ss, respec-
tively. By (3.15) and (3.16), the state space (% and transition probability matrix Mg
can be constructed by inserting the integer “4” (I(5) = 0) randomly into one of the four
types of gaps for each state (r,d,!) in Q; = {(1,3,0),(3,1,0),(2,2,0),(2,3,0),(3,2,0)}
in the following way:

(i) For state (1,3,0), the numbers of gaps of the four types with respect to the
inserting integer “4” are g; = 0, g2 = 1, g3 = 3, and g4 = 1, respectively. It follows
that (1,3,0} goes to (1,4,0) with probability 1/5, to (2,3,0) with probability 3/5, and to
(2,4,0) with probability 1/5.

(ii) For (3,1,0), the four numbers of gaps are ¢; =0, go = 3, g3 = 1, g4 = 1, and
hence (3,1,0) goes to (3,2,0) with probability 3/5, to (4,1,0) with probability 1/5, and to
(4,2,0) with probability 1/5.

(iii} For (2,2,0), it follows that gy = 0, g2 = 2, g3 = 2, g4 = 1, and then (2,2,0)
goes to (2,3,0) with probability 2/5, to (3,2,0) with probability 2/5, and to (3,3,0) with
probability 1/5.

(iv) For (2,3,0), it follows that g; =0, g2 = 2, g3 = 3, g4 — 0, and then (2,3,0) goes
to (2,4,0) with probability 2/5, and to (3,3,0) with probability 3/5.

(v) For (3,2,0), it follows that ¢; = 0, g2 = 3, g3 = 2, g4 = 0, and hence (3,2,0)
goes to (3,3,0) with probability 3/5, and to (4,2,0) with probability 2/5.

From (i) to (v), this vields the state space

Q; = {(17 4? 0)3 (27 37 0)? (27 47 0)) (3J 2? 0)! (4! 1) U)! (47 27 0)1 (3’ 3? O)}
with transition probability matrix

(1,4,0) (2,3,0) (2,4,0) (3,2,0) (4,1,0) (4,2,0) (3,3,0)

(1,300 [ 1/5 3/5 1/5 0 0 0 0
(3,1,0) 0 0 0 3/5 1/5 1/5 0
M? = (2,2,0) 0 2/5 0 2/5 0 0 1/5
(2,3,0) 0 0 2/5 0 0 0 3/5
(3,2,0) 0 0 0 0 0 2/5 3/5

The aforementioned state space Q5 and transition matrix My were obtained similarly
by applying this procedure with insertion of the integer “3” (I(5) = 1) for every state
in the state space Q4. Simple computer programs for constructing the state spaces and
transition matrices can be easily written, and we leave these details to the interested
reader.

In view of the construction procedure for sequences {{,} and {M,}, it is clear that
the joint distribution of By and Dy depends strongly on the structure of 5. The num-
ber of states in the space Qu tends to infinity with an order less than N2 max(s1,.- ., 8»),
and comparing this with the number of permutations N/ [, (s:!} in H(Sx), which
tends to infinity exponentially fast, our proposed approach is more efficient computa-
tionally.

The main intuitive reason why our results hold can be summarized briefly as fol-
lows. The random vector ¥; = (R;, Dy, Ly(k:, w{t))} contains sufficient information to
guarantee that the sequence {Y;} forms a Markov chain with respect to the insertion
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procedure. Hence the joint distribution of Ry and Dy is a direct consequence of the
projection (R, Dy, Ly) — (R, D) and the Chapman-Kolmogorov equation.
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