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Abstract. Rank tests based on the maximum number of exceeding observations for
several standard nonparametric hypotheses are proposed. An approach to construct-
ing nonparametric rank tests via metrics on the permutation group is used. The test
statistics are based on a metric induced by Chebyshev’s norm.
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1. Distances involved in rank tests

Distances between two sets of permutations are involved in many rank statistics.
Critchlow (1992) proposed a construction based on distances which produces many fa-
miliar rank test statistics. The method allows the creation of families of statistics for
standard nonparametric hypotheses, based on the same distance. The proposed test
statistics are minimum interpoint distance between appropriate sets of permutations.
We enlarge the class of test statistics for five standard nonparametric hypothesis testing
situations with new statistics based on Chebyshev’s metric. We also derive some com-
binatorial and group theoretic properties of Chebyshev’s metric that play a key role in
the computation of the corresponding test statistics. The basic notation follows.

Let X = (X;,...,X,) be a random variable with values in a measurable space
(X,B(X)). The space X is assumed to be a symmetric Borel subset of R™ and B(X')
is the Borel field inherited from R™. For £ = (z1,...,,) where no two coordinates
coincide, let c.(i} be the number of coordinates not greater than z;. The corresponding
statistic ax (i) is called the rank of X;. The vector ax = (ax(l),...,ax(n)} is a
permutation of 1,...,n. We use the notation S, for the space of all permutations of n
integers.

To test any nonparametric hypothesis H versus an alternative A let a € S, be
the rank vector corresponding to the observed sample. Identify two suitable sets of
permutations. The equivalence class [a] consists of all permutations in S, which are
equivalent (for the particular testing problem) to the observed permutation a. The
set £ of extremal permutations consists of all permutations in S, which are least in
agreement with H and most in agreement with A. (See Critchlow ({1992), Subsection
7.1) for a more detailed formulation and motivation of these sets.) Then the proposed
test statistic is the minimum interpoint distance between the sets [o| and E:

d(fa], B) = min d(r,o),
nelal
gER
where d is an arbitrary metric on S,. The test rejects the null hypothesis for small values
of d([a], E).
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Critchlow (1992) has investigated this method for generating rank test statistics
via metrics on the permutation group. He has constructed rank test statistics for two-
sample and multi-sample problems using different metrics on the permutation group.
The method gives some well-known tests induced by Kendall's tau, Spearman’s rho and
Spearman’s footrule and it also gives some new tests by using of the Hamming distance
and the Ulam distance.

Although the construction gives rise to many familiar rank tests statistics, it also
induces many new statistics, whose behaviour is not known. The distribution, mean,
variance, efficiency, etc. therefore have to be obtained on a case by case basis for many
test statistics. Fueda (1993) studies the asymptotic distribution and the efficiency of a
test statistic suggested by Critchlow {1992} for the two-sample problem. Further, Fueda
{1996) introduces a convex sum distance and proves the limiting normality of a class of
test statistics for the two-sample problem derived by Critchlow’s method.

The goal of this paper is to study test statistics d{|/a|, F) induced by Chebyshev’s
metric.

For a, 8 € 8,,, Chebyshev’s metric

M(@,8) = max la) - B()
is the maximum of the absolute values of the differences between the ranks. It is easily
checked that the function M is a right-invariant metric on S, in the sense that M(ao
v, Bov) = M(a, 8) for all ¢, 3, v € S,,. Moreover, M possesses the transposition property.

Let 7;; denote the element of S, which interchanges 7 and j, leaving all other
elements of {1,...,n} fixed.

DEFINITION 1. {Transposition property) The metric d on S, satisfies the trans-
position property if

(1.1} d(e, B) < d(a, §')

for all ¢ and j, where , 8, and 3’ are permutations satisfying af{i) < a{j), 8(i) < B{j),
and B’ = Bo7y;.

ProOPOSITION 1. Chebyshev’s metric satisfies the transposition properiy.

The Proof of Proposition 1 is in the Appendix.

Metrics possessing the transposition property are used for defining monotone rank
statistics for some hypothesis testing problems. Such statistics have a monotone power
function for stochastically ordered slternatives and produce an unbiased test.

For comprehensive accounts of statistical measures on permutations one is referred
to Diaconis (1988) and Critchlow (1985).

2. Nonparametric hypotheses

As Hajek and Sidak (1967) treat the rank statistics, a density p € Hy if and only if

(21) p(mli"'axn)=Hf(xi):

=1

where f{z) is an arbitrary one-dimensional density. Under Hy the observations X; are
assumed to be independent and identically distributed according some density f.
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The hypothesis H; denote the family of n-dimensional densities p such that
n
(2.2) p=[] /),
i=1

where f(z) is an arbitrary symmetric one-dimensional density f(z) = f(—z). Note that
H, C Hy.

Under Hy a randomized test is called a rank test if its critical function @ is a
function of the rank vector . Under Hy the random vector ax = (ax(1),...,ax{n))
is distributed uniformly. The Neyman-Pearson lemma gives the most powerful rank test
of Hy against some simple alternative. (See for instance Hajek and Sidak (1967).) The
exact evaluation of the critical function is rarely possible because the distribution under
the alternative is difficult to compute. One of the few exceptions is the translation of
the uniform distribution (Theorem 2.3).

2.1 A two-sample rank test for one-sided alternative
Let Xi,...,Xm and Y3,...,Y, be random samples with distribution functions F
and G respectively. We wish to test the hypothesis Hy defined by (2.1) that F and G
are identical. The alternative A is that F(z) > G(z), with strict inequality for some z.
Denote the rank of X; among Xi,..., X, ¥1,...,Y, by a(i) and the rank of ¥; by
a(m + ). Thus & € Sp4p. Let Sm x S, be the subgroup of Sp,4. given by:

Sm % 8n = {7 € Sppn 1 7@ <y(G)i=1,...,mj=m+1,....m+n,}.

Thus S, x 8, consists of all rankings which permute the first m items among the first
m ranks, and which permute the remaining n items among the remaining n ranks. The
equivalence class [a], that assigns the same set of ranks to the first population as «, is
the left coset a(S,, x S,).

The extremal set E is the subgroup S,, x 8,. Thus the test statistic for Hp versus
A is given by

(2.3) M{la),E}=  min  M(m,o).
WE{I(Sm. xsn)
ge8m x8n

Let a; < -+« < a,, be the ranks assigned by o to the first population, and ay, 41 < -
< &m4n be the ranks assigned by a to the second population.

THEOREM 2.1. The test statistic for the two-sample problem with a one-sided al-
ternative induced by Chebyshev’s metric is equal to:

(2.4) M(a(Sm x 8y), Sm X Sp) = max {3m -m,m+1-ama}.

PROOF. Since Chebyshev's metric is right-invariant the test statistic (2.3} is equal

to
min  M(r,e),
7 E(Gm X Sn)

where e is the identity permutation e(i) = i for all i.

Define ag € S, by ag(i) = a; fori = 1,...,m + n. Clearly, ag € S x Iy, since ag
assigns the same set of ranks to the first population as @. The transposition property
implies that M(ap, e} = min,cq(s,, xs.) M (7, e).
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The next theorem states the exact distribution of the M-test statistic.

THEOREM 2.2. Let M = max{a,, —m,m+1—a,,+1} be the M-test statistic. Then
under Hy

P(M =0) = (m’“”)‘l;

(2.5) P(M =k) ("““”) (% 2)3}:1‘:—_2 for 1<k < min(m,n);

-1
P(M = k:(m+n) (Hl_le)’ for min{m,n) < k < max(m,n},

where { = min(m,n).

PrOOF. Formulas (2.5) follow by applying well-known combinatorial rules. The
event {M = k} is decomposed into events {a,, = m + k,a,41 = j} with j=m+1—
k,...,m,and {am = jams1 =m+1 -k} with j =m + 1,...,m + n. Lemma 1 below
gives the total number of ways these events can occur.

Table 1. The number of points in the lower tail P{M < k} < 0.01 of the distribution of Af
under Hp.

a\m 34567 B 9 1011121314 15 16 17 1819 20 21 22 23 24 25

3 *

4 **

5 *01

6 *112

7 01223

8 01233 4

9 12334 4 5

10 12344 5 5 6

11 12345 5 6 T 7

12 12345 6 6 7 8 8

I3 13455 6 v 7 89 9

14 23456 6 T 8 § 9 1010

i5 23456 7 8 8 9 9101111

16 23456 7 8 9 9 1010111212

17 23567 7 8 9 10101111121313

18 24567 8 8 9101111121213 1414

19 24578 8 9101011121213 14141515
20 2467 8 9 101011111213 1314151516 16
21 35679 91011111212131414151616 1717

22 35789 101111121313131415151617171818

23 35781011111213131414 14151616 17 18 18 1919

24 35791011121313 1414151516 161717 18 19 1920 20
25 36891112131314151516 16 16 17 17 18 18 192020 21 21
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Table 2. The number of points in the lower tail P{M < k} < 0.05 of the distribution of M

u

g

(2.6)

2.7)

nder Hg.

nym 34 5 6 7 8 91011121314151617 18192021 22 23 24 25

3 0

[
-
= D e Rl W W W R R R = = D

P B 00~ DD R e W W R R R e

9

w0000 T O DG B R W W W

9

L= o = T = B = L =, B S

9

OO -] T o v

9

=T B B B I = T = I
© W e X 3 -

7

8 8
8§ 9 9
9 91010

9 10101111
9 1011111212

9 10101011121213 13
101011111112131314 14

1011 11 12121212 13 14 14 15 15

1011 111212131313 14 14 15 15 16 16
1011 12 13 13 13 14 14 14 15 15 16 16 17 17

101112131314141515151516 16 17 17 18 18
1012 131314141515 16 16 16 16 17 17 18 18 18 19
11121314 1515 16 16 16 17 17 17 17 18 18 19 19 20 20

24 T1011131415151616 171718 1818 18 19 1919 20 20 21 21
25 7101213141516 17 17 18 18 18 19 19 19 19 20 20 20 21 21 22 22

LEMMA 1. The number of permutations & € S;qn for whicha, =k and a,nqy =1

#{am = ka am4+1 = l}

0

m!in!

mlnl (k B

I —
m—1

if k<morl>m+1

if k=morl=m+1

1) if m+n>k>morm>12>1

The proof of the lemma is in the Appendix.
Tables of the number of points in the lower tail P{M < k} < « of the distribution
of M under Hy are given forn=1,...,25; m=1,...,n; a = 0.01,0.05.

Transilation of the uniform distribution. Let X4,..., X, and Y],..., Y, be random
samples with uniform distributions. We test Hy against

QA(wla vee ’$m+ﬂ)

L,
0,

if O<z, ., Zm < LA Zinq1y-o oy Zman <1+ 4,

otherwise,

0< A<,
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{2.7) means that the second sample is shifted to the right with respect to the first sample.

THEOREM 2.3. The most powerful rank test of Hy against the alternative ga de-
pends on o through a,, = max{a(1),...,ax(m)} end ap 41 = min{a(m+1),...,a(m+n}}
ondy and is given by

41 —an 8m+1—1

i+7 m+n—i—j 1
Qalax = a) = Z:: Z AMI(] . Ayt Jigj,l(ern—i—j)!'

Proor. (2.7) entails

QA(aXza)z / dz,. .., dzmn

0<z1 <o L2 n <1+ A
A<Za_rn+1 1Z8m <1

1
(a'm+1 —Di{m+n —an)!

Am+4+1—1 m+n—am
f ] e T+ A= za,) d2a, s 82a,,

ACzp 1 <L Za, <1
_ 1 m+nza'" m+n— g A
(Bmt1 —DYm +n—am)! < i

a -1 m+n—am—i
// 2t 1 - 2,,,) 2ai1r-- A2,

ﬂ(Zam+1 <"'<Zam<1

Mt R— 8 Ai

-3

< Memr — L(m+n—ami — 1)

1
ZAm41— 1 MAN—apy, 41 —§
A a::+1 (1 zﬂm+1) e dza-m+1

—am : =1
_ et Al i m+n— i Aymtn—i-j
i=0 ’ =0 J

M+ By Bmt1—1

L L 1
i+7 o m+n—i-—-j
; Z A (1-4) iGlm +tn—i—j)

Jj=0

It follows that Qa{ex = a) depends on « through (an,,am+1) only, and is a de-
creasing of a,, and an increasing function of a,, ;. Thus, if (4, 8m+1) corresponds to
o and (ag,, a5, 1) to o such that (al, > am,al, .1 < 8ymy1), then, for 0 <A <1,

Qalax =) > Qalax = o),

where equality is reached if and only if a,, = a,, a7, | = am+1.

The statistic M = max{a,, —m,m+ 1 am 1} generates the locally most powerful
rank test for Hp against a shift A of the uniform distribution over (0,1) for A close to
1, thatisfor 1l —2 < A< L.
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3. Extension to other nonparametric hypotheses

The test statistics induced by Chebyshev’s metric for other hypothesis testing sit-
uations are now considered briefly. For each testing situation, the sets [a] and F are
as given in Critchlow (1992), Section 6). For the two-sample rank test with a two-sided
alternative we test Hy against A : {F(z) > G(z}} U{G{z} > F(z)} with strict inequality
for some z.

The equivalence class [o] is the same as in the one-sided alternative case. The
extremal set E consists of all permutations which rank all of the X; before all of the ¥3,
as well all permutations which rank all of the ¥; before all of the X;. In other words,
E = 83 ©(Sm x 8,), where S; © (S;, x 8,) is defined by {7 € Sppyn: 3G € S2 1 7(5) <
v(§)Vi € Ng1y,J € Ngizp}, and Ny = {1,...,m}, Ny ={m+1,...,m+n}.

THEOREM 3.1. The test statistic for the two-sample problem with a two-sided al-
ternative induced by Chebyshev’s metric is given by:

M(a{Sm x 5y), 5 © (Sm x Sn))
= min{max{a, —m,m+1 —an4 },max{an;n —n,n+1—a}},

where 8, = max{a(l),...,a(m)}, am+1 = minf{a(m + 1),...,0(m + n)}, am4n =
max{a(m +1},...,a(m + n)}, and a1 = min{a(1),...,a(m)}.

The proof of Theorem 3.1 is a special case of Theorem 3.3,

A multi-sample rank test for ordered alternatives. Let Xq,...,Xn,, Xnit41:---»
Xnytngr ooy Xnyteetn, 141s-- - Xn be 7 > 2 random samples with samples sizes nq,
ng,..., 0y, (3.n; = n) and distribution functions Fi,...,F,, respectively. The null
hypothesis Hy is: Fi{z) = --- = F.(z), and the alternative A is: Fy(z} > --- > Fy(z),
where each inequality is strict for some x.

Denote the rank of X; among Xi,...,X, by ai) (i =1,...,n). Thus o € ;.

Let Ny,..., N, be a partition of {1, ...,n} such that V| contains the first n; integers,
N3 contains next ng integers, and so on.

Let S,,. ..., 5, be the subgroups of §, given by

Sy ={m € Sy :m(d) =i, Vi g Ny}

(3.1) Sny = {7 € Sp 1 (i) = i,Vi & N}

Sn, ={m €8, :w(i) =4,Vig N}

Then the subgroup § = 5, x---x 8y, consists of all permutations in S, which permute
the first m; ranks among the first ny integers, the next mg ranks among the next ng
integers, and so on. The equivalence class [a], that assigns the same set of ranks to each
population as c, is the left coset a5,

The extremal set E consists of all permutations from the subgroup S.

The test statistic for Hy versus A is given by

d(le], B) = min d(r,0).
oES
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Notation. Let a; < --- < a,, be the ranks assigned by « to the first population;

An,+1 < '+ < Bp 4, be the ranks assigned by o to the second population, ete. So
By 4ot +1 < - - < 8y are the ranks assigned by @ to the last population.

Theorem 3.2 The test statistic for the multi-sample problem with ordered alterna-
tives induced by Chebyshev’s metric is given by:

M((IS, S) = 112?2(r[max{kj +1- Bp 418k, — kj.,,l}],

where k; =57 In,i=1,...,r+ 1.

The proof of Theorem 3.2 relies on the same arguments as Theorem 2.1 and is
omitted.

For the multi-sample problem with unordered alternatives the null hypothesis is the
same as for the ordered alternatives case, but the alternative is A = Ugeg, A1,3, where
Ay g Fgay(z) > - 2 Fgyz) for B € S,

The extremal set E is £ = S, ® S, where § = §,,, X --- x 8,,.. The dot product
5. 8 is defined by ’

{yeSp,:38€ S :9(t1) < - < (i )V(i1,... i) € Ny X --- X Ngery s
where the sets Ny,..., N, are defined as in ordered alternatives case.

Notation. For j = 1,...,7r let aj; < --- < an,; be the ranks assigned by a to
population j.

THEOREM 3.3. The fest statistic for the multi-sample problem with unordered al-
ternatives induced by Chebyshev’s metric is given by:

j—1
a14(j) — (1 + Z nﬂ(k))

k=1

1)

M(aS, S, ® 8) = min max [max{
Ae8, 1<<r

i

Test for symmeiry. Let X1,..., X, be m independent random variables where X;
has density f;. The null hypothesis H; given by (2.2) is that all the variables have the
same density f symmetric about 0. The alternative A is that f; = f{z + A) for all 4, f
symmetric about 0.

Create a new population of n = 2m+1 observations: X1,...,Xm, 0, =X1,...,—Xpm.
The ordering of these n items defines a permutation o € .5,,.

Let Ny ={1,...,m}, N = {m + 1}, N3 = {m + 2,...,n}. The equivalence class
[¢] consists of all permutations which assign to X1,...,X,, the same set of ranks as a,
and the same set of ranks to —X1,...,—X,, as o. [a] is a left coset a(Sm x 51 x 8 ) of
the subgroup Sm x 81 % Sy = {1y € Sn 1 y(N;) = N;Vi = 1,2,3}.

i1
By B(5) (nﬂ(j) + Z”ﬁ(k))

k=1

The Proof of Theorem 3.3 is in the Appendix.
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The extremal set E is the subgroup Sy, x S1 X Sp,. Thus E consists of all permu-
tations which assign the first m ranks to X1,..., X,,, the middle rank to 0, and the last
m ranks to —Xq, ..., —Xm.

The test statistic is M (a(Sm X S1 X Smm), Sm X S1 X Sp). 1t is algebraically equiv-
alent to a particular case of the statistic for the multi-sample problem with a one-sided
alternative, although the hypotheses tested are different.

Notation. Let a; < --- < a,, be an enumeration of the set ay, = a{l,...,m},
let ame1 = m+ 1 = a{m + 1), and let a,,42 < -+ < a, be an enumeration of the set
ay, =a{m+2,...,n}.

THEOREM 3.4. The test statistic for the one-sample location problem with a one-
sided alternative induced by Chebyshev’s metric is given by:

M{a(Sp x 81 %X Sm), Sm X 81 X Sp) = am — M.

The Proof of Theorem 3.4 is in the Appendix.

4, Two-sample tests based on exceeding observations

In this section, we return to the two-sample problem, and the M-test is consid-
ered briefly in relation to other tests based on exceeding observations. The notation is
adapted from Hajek and Sidak (1967). Given two samples X1,..., Xy, and Y3,..., Y,
with densities f; and fs, respectively, we test the hypothesis H against the alternative
of shift in location fi(z) = f(z — A), fo(z) = f(z), where A > 0, or A < 0 (one-sided
alternatives}, or A # 0 (two-sided alternative).

Let A and B’ denote the number of observations among Xi,..., Xy, larger than
mMaxXi<j<n Y; or smaller than minj<;j<n ¥;, and let A’ and B denote the number of
observations among Y),..., Y, larger than max;<;<m, X; or smaller than min;<;<m X;.

According this notation the M-test defined by Theorem 2.1,

M =max{apmyn -m +n,n+1-2a1},

with am4, the maximum rank among Y),...,Y, and a; the minimum rank among
Xq,..., X, is equal to
M = max{m — A,n - B}.

The E-test introduced by Hajek and Sidak (1967) is based on the statistic
E = min(A, B) — min(4', B').

It can be used against both two-sided and one-sided alternatives. Sidak (1977) gives
tables of the one-sided significance level P{E > k} for2< k <6, for 3 <m <n < 25.
The simpler statistic min(A, B) can be used against the one-sided alternative A > 0.
This statistic generates the locally most powerful rank test for testing Hy against a shift
A of the uniform distribution over (0,1} for A close to 0. For equal sample sizes the
statistic min(A, B) is equivalent to the M-test.

The Haga test (Haga (1960)) is based on the statistic T = A+ B—- A" — B It
also can be used against both two-sided and one-sided alternatives. Against the one-
sided alternative the simpler statistic A + B shares with the M-test the property that
it generates the locally most powerful test for Hy against a shift A of the uniform
distribution over (0, 1) for A close to 1.

The simplest statistic based on A has been suggested by Rosenbaum (1957). Sidak
and Vondracek (1957) proposed the statistic A+ B’
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Appendix

ProOF OF PROPOSITION 1. (Transposition property) Let , 4 and 8’ € 5, be
permutations such that (i) < a(f), 8{i) < 3(j) and 3’ = Bo 7.
M(a, ') and M{e, ) can be represented in the form:

M(a,8) = max {|a(i) - 80, la) - S0 s oh) - 30}
M(a, ) = max {a@) - 860 ) - 90). s lalh) - S0}

First of all, suppose i € {1,...,n} maximizes |ce{-)—B(-}|, i.e. M (e, 8} = |a(s)—5(i)|-

If a(i} < B(i), then Jo(i) - ()] < |a(i) ~ B(j)| = |a(i) - #'(¢)] < M{a ﬂ’)

Similarly, if 8(i) < a(i), then [a{i} - 8()| < |a(j)—B8()| = la(i)-F ()| £ M{c, ).

Next, suppose j € {1,...,n} maximizes a(-) — 3(-)|, i.e. M{a, 3) = |a{g} — A7}/

If B(3) > al3), then |a(s) - B()| < |ali) — 8| = la(s) — #G)] < M(a, &), and
similarly, i A(j) < a(j), thenlads) — B(7)| < o) — B(0) = lafi) - B (0)] < M(e 5).

Finally, if & € {1,...,n}, k # i,j maximizes |a(-) — A(:)|, it follows directly that
M, 8) < M(e, ).

Proor oF LEMMA 1. Formulas (2.6) follow by analyzing the possibilities in two-
sample box model. Let k and ! (1 < k,{ < m + n) be fixed numbers.

1. Obviously #{a, = k,amt1 =1} =0fork<morl >m+ L

2. Let k = m and I = mn + 1. This case corresponds to number of permutations
which permute the first m objects among the first 7 ranks, and the remaining n objects
among the remaining n ranks. The number of these permutations is m!nl.

3.Letk >m+1and! < m and fix a,, = k and a1 = I. The event {a,, =
k,am4+1 = I} occurs if and only if integers 1,...,1 — 1 are assigned ranks aj,...,8,_1;
integers k + 2,...,m + n are assigned ranks a;,41,...,a8m+s; the remaining £ —{ -1
integers are assigned to any of the remaining k —I — 1 ranks arbitrarily; which is possible
in ((17:, %}}: i s i), (k —1-1)! ways.

Leaving k and ! to be in any position a;,...,8mn and am41,-. . , 4min, Tespectively,
we obtain the last case of the lemma.

ProoF oF THEOREM 3.3. 5=28,, x---x 8, . Since [a] = oS and

E=8068={ye8,:38€ 8, : (i) < --- < v(ir)
V(it, .. ir} € Ngay X - X Nginy }y

the test statistic is thus a minimum of test statistics of the type of Theorem 3.2, over
_the r! possible ordered alternatives.

For 8 € Sy let A1 : Fauy{z) 2 -+ > Fpy{z) be the corresponding ordered
alternative. Then

Eg=egS={1€85, : 7(Nag)) < < 7(Ngin)}}
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is the set of all extremal permutations for 4; a.
The minimum distance between the sets [¢] and Eg can be calculated from the
equation (see Critchlow (1986), Lemma A.3)

min M(x,y)= min M(r, ),

T€ad rExe; 'S
8 26
yeegS vES,
where 53 denotes the subgroup S, pay Xoee X Sn sery

For 8 ¢ &,, analogously to Theorem 3.2, we calculate

i-1
min M(m,7) = Do | Jax | |ais() - (‘ + Z”B(k))

yEeas

k=1

i-1
e (1 +> "ﬁ(k))

max | max
1€5&r et

i-1
‘aﬂﬂ(g)ﬁ(.ﬁ) - (ﬂﬁu) + Z ”ﬂ(k))

k=1

1

/|

Therefore

M(5,55® (Sn, x -+ x 5y, )} = min min M(r,7)
vEeas

H

i-1
a18(5) — (1 +3 ”ﬁ(k))

= min max |max
BES, 1<5<r i~

-1
Bng;)B(7} (nﬁm + Z ﬂﬁ(k))

i

Proor oF THEOREM 3.1. Theorem 3.1 is a special case of Theorem 3.3 for ¢ = 2.

k=1

PROGF OF THEOREM 3.4 For the one-sample location problem with a one-sided
alternative, the test statistic is a special case of the test statistics fromm Theorem 3.2.
Thus for r = 3, ny = m, ny = 1 and ns = m, we have

M(a(Sp, % 81 % 8n),5m x 81 X S5)
= max{|l — a1, [am — M|, Im + 1 — 81l
lam+1 —m — 1, jm + 2 — amq2, lam — 7|}

Using the fact that for the one-sample location problem a,.1—; =7 + 1 — a;, it follows
that the last maximum is a,, — m.
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