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Abstract. The limiting distribution of the normalized periodegram ordinate is used
to test for unit roots in the first-order autoregressive model Zoy = aZa—i i +BZa -1 —
@B3Zs—1,4-1 + €. Moreover, for the sequence an = e*/™, 3, = /" of local Pitman-
type alternatives, the limiting distribution of the normalized periodogram ordinate
is shown to be a linear combination of two independent chi-square random variables
whose coeflicients depend on ¢ and d. This result is used to tabulate the asymptotic
powetr of a test for various values of ¢ and d. A comparison is made between the
periodogram test and a spatial domain test.
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1. Introduction and main results

Testing for a unit root in a first-order autoregressive time series model has received
considerable attention beginning with the work by Dickey and Fuller (1979, 1981). More-
over, Bobkoski (1983), Phillips (1987}, and Chan and Wei (1987) have investigated the
near unit root problem. Most of the tests proposed are based on the time domain per-
spective since the spectral density of the process fails to exists in the unit root case.
Recently, Akdi (1995) used the frequency domain approach to propose a test in terms
of the periodogram ordinate of the process. The periodogram ordinate can be obtained
using standard software such as SAS even though the spectral density fails to exist in
the unit root case.

Consider the process {Z,; : 0 < s,t} satisfying the spatial model

(1'1) Ly = l-'jfzs—l.t + ,st‘tfl - a)@ZS—l,t—l + €s1,

An asymptotic test for unit roots based on the spatial periodogram ordinate of a modified
Z-process is defined and investigated. The asymptotic power of the test is derived under
local Pitman-type alternatives of the form o, = e*/", 8,, = e#/™, and shown to approach
one as ¢ < 0 and d < 0 decrease. Indeed, the limiting distribution of the normalized
periodogram ordinate under the Pitman alternatives is shown to be a linear combination
of two independent chi-square distributions whose coefficients depend on ¢ and d.

Basu and Reinsel (1994) illustrate the feasibility of model (1.1} being nearly nonsta-
tionary with an example showing that one of the best fits to wheat-yield data is obtained
by using a linear regression model with error structure at site (¢, 7} having the form of
model (1.1). They indicate that the residual values obtained from an ordinary least
squares fit exhibit a trend behavior which suggest that nonstationarity exists and, in-
deed, their estimated value of 3 is .947 (a near unit root). Moreover, Cullis and Gleeson
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((1991), p. 1450, (4)} include the above model with o = 8 = 1 in the class of models
used to represent the error structure for the linear regression model used to analyze field
data.

In order to investigate the asymptotic power of a test at the above mentioned se-
quence of local Pitman-type alternatives the following model

(1.2) Zot(n) = onZs_1,0(n) + BnZap_1(n}) — anﬁnzs—l,t—l(n) + €1,
l<s,t<n,is needed as well as conditions (A.2)-(A.4} listed below.
(Al) a=
(A2) oy, = ec/ n B, =e¥™ where c and d are NoNZero constants (unknown)
(A.3) {es} are i.i.d., mean zero, variance ¢2 and each has a finite fourth moment
(Ad) Zy(n)=0 when either s <0ort <0

(A.5) {Gn} and {B.} are any selected initial estimators for which a,—1 = Op (n~1)
and B, —1 = Op(n~!) are valid under the assumptions of model (1.1) and (A.1), as well
as under model (1.2} and (A.2).

Remark 1.1. Condition (A.4) is inserted primarily to simplify the exposition and

can be relaxed considerably since only asymptotic results are considered here. Moreover,
it can be shown that the following initial estimators obey (A.5):

dn:ZZ(Zij 1,;,! 1)( i—1,7 — ‘B 13~ 1)/22(2- % " I:j—1)2

i=1 j=1 i=1 J 1
B = ZZ(Z;’,‘ = Zi1 )0 Zijo1 — Zic1,5-1) / ZZ ig=1 — Zi—1,j— 1)
i=1 j=1 i=1 j=1

Indeed, &, —1 = Op(n™%/?) and B, — 1 = Op(n~3/?) when o = 3 = 1.

Fix positive integers & and £ and denote 12 = [0, 1]x[0,1]. The periodogram ordinate
is defined for the modified process

Yi(n) = Zse(n) - rm(n) 1<s,t<n, n>l,

as this leads to a chi-square limiting distribution when the null hypothesis is valid.
For ease of exposition, Z(n) and Y,(n) are denoted simply by Z,; and Y,;. Define
0, = 2rk, 8; = 2'.rr£:1 W = %, Wy = i and denote the Fourler coefficients of the Y-
process hy e = —; zs =1 COS{wr8 + wet) Yy and bppe = '—g' ZS e SiN(Ws + wet) Y.
The periodogram ordmate of the Y-process is defined by

2
n
In{wy, we) = ?(aﬁke + B2 ke)-

Let A1 > Az denote the eigenvalues of the asymptotic variance of ﬁ(anu, bnke)
under the assumption that o, = €™ and 8, = e#™. Observe that A\; and A depend
on the choices of ¢ and d.

The main results can now be stated.

THEOREM 1.1. Let Vi and V, denote two independent chi-square random variables
each hoving one degree of freedom.
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(i) Assume that the Z-process obeys model (1.1}, (A.1) and (A.3)—(A.4). Then

grir L (Wi we) LA stz X3 (chi-square with 2 df).
(i) Suppose that the Z-process salisfies model (1.2) and (A.2)-(A4). Then

Tni?-ffn(wkaws) = MV + V.

Remark 1.2. In the AR(1) time series case, Akdi (1995} proved a version of The-
orem 1.1 (i) above but did not consider (ii). However, (ii) is also valid in the time
series case when constants are appropriately adjusted. The present paper deals with the
modified version suggested by Professor Dickey in the time series case. All our results
relate to the modified process. Choosing & = £ = 1, the test considered here rejects
Hy : o = B = 1 when the normalized periodogram ordinate is sufficiently small. In both
the time series and the spatial case, the asymptotic power of the test is one at a fixed
alternative with magnitude less than one; however, it is more difficult to obtain large
asymptotic power under a sequence of Pitman alternatives.

Given the initial estimators of (@, 3) in (A.5), let 8, = (Gn, Bn), n > 1 denote a
sequence of “Gauss-Newton estimators” (defined later) of (a, 3) under the assumption of
model (1.1). The following asymptotic result is the basis for defining the spatial domain

test ¥y, =: n%/2(6, — (1,1)) for testing Hy: e = 8= 1.

THEOREM 1.2. (i) Assume that model (1.1), (A1) and (A.3)-(A.5) are satisfied.
Then ¥, 2 N(0,T), where T = diag(2, 2).

(i) Suppose that model (1.2) obeys (A.2)—(A.5). Then |¢, D 0, i = 1,2, where
Pn = (%1,%2)-

2. Proof of Theorems

Fixed t € I? = [0,1] % [0,1]. The four quadrants of I? which have ¢ as their origin
are designated by @, (>, >), Q2(<,>), Qa(<, <) and @4(>, <). Define D; to be the set
of all real-valued functions f on I2 for which lim,_,; f{s) exists when s belongs to a single
quadrant and lim,,; f(s} = f{t) when s € Q,. Following Bickel and Wichura (1971},
there is a metric on I}, which induces Skorohod’s well-known topology when ¢ = 1 and
makes D, separable, complete and whose Borel g-field coincides with that generated by
the coordinate mappings. Convergence in Ds will be relative to the above mentioned
metric.

Let W (u,v) denote a Wiener process (Brownian sheet) on I?; that is, a mean zero
Gaussian process with cov(W {(u,v), W{(s,t)) = (uAs)-{vAt). Define al, = [ cos(fru+
B0 )W (u, v)dudy + ﬁW(l, 1) and b3, = Jpzsin(Bru + 8gv)W (u, v)dudv. The following
three lemmas are used to verify Theorem 1.1. Let I denote the 2 x 2 identity matrix.

LEMMA 2.1. Under the assumptions of Theorem 1.1 (i), %%(ankz,bnkf) 5

(ags bhg), where the latter has distribution N(0,£%) with £% = z—=3opm s,

PROOF. Observe that since the Z-process obeys model (1.1), (A.1} and (A.4),
Yoo = 3, Z;=1 €ij ~ %Y g 21 €5 Define U,(u,v) = cos(wilnu] + welne]) -
L Z,E’:;] nyll eij—MHﬂl cos{wi [nul+wi[nv]) 5L 3o Y €if = Ru(u,v)—Sn(u,v),
(u,v} € I%. Since Rn(u,v) A cos(fru + Bv)W(u,v) = R(u,v) and Sp(u,v) LA
uvcos(Bxu + Bpv)W(1,1) = S(u,v) in Dy, it follows that {R,} and {S,} are each tight
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and thus {U,,} is tight in Dy. Then U, LR-Sin D, provided the finite-dimensional
distributions of {U,} converge weakly to those of R — S.
Fix {u,v) € I? and ohserve that

fmad] o]

Un(u,v) = cos(wginu] + we[nv)) (1 [ - [mJ]) 1 ZZE"J
i=1 j=1
- [n—u];l-.i-[n—vlcos(uk [nu) +wg[nv]) Z Ze”
i=[nu]+1 j=1
- b ot + [D-—%%EZ
n? R e i=1 j=inv]+1

=idnt — Tna — Laa.

Observe that I,y 2 (1—uv) - cos(fxu + 8ev)W (w, v), Inz = uv cos(fxu+8v) - (W(1,1) -
W(u,1)) and I3 A cos(fru + Bpv)(W(u,1) — W(xu,v)) in R. Since {1}, {In2}
and {Ia} are independent sequences and W(u,v), W(1,1) — W(u,1) and W(u,1} -
W (u,v) are independent random variables, it follows that Uy, (u, v) A cos(fru+ v (1 -
w)Wu,v) —uv(W(1,1) - W, 1)) —uww(W(u, 1) — Wy, v))] = cos(@rr + 0ev)W (u, v) —
wv cos(Ppu + Bev)W(1,1) = R{u,v) — $(u,v) in R. Hence U, > R — & in Ds.

Define the continuous function T : Dy — R by T'(f} = [ f(u,v)dudv. It fol-
lows from the continuous mapping theorem (Billingsley (1968), p. 31) that T'(U,) s
Jr2 cos(Bku + 8e0)W (u, v)dudy ~ W (1, 1) [}, uv cos(Bru + Bev)dudy = [}, cos(Bru + 0v) -
W (u,v)dudv + 73-W(1,1). However, T(U,) = 23=L4< and thus 2254 5 o, in Dy. The
above argument can be extended to show that %’fi -+ %T% LA a2, + Azbl, in R and
thus =L (anke, bnre) > (al,,b9,) in RZ.

It was found using the software Mathematica that var [, cos(fru + 6ev) -

W (u,v}dudv = --—-43—k—g-fg, var [;sin(fru + Gpv)W(u,v)dudy = ?2?13?'5’2“ and
cov( f;z cos(Bru + Bev)W (u, v)dudv, [,. sin(Bxu + Opv)W (u,v)dudv) = 0 and hence the
entries of L0 are easily verified. O

Recall that W(u,v), (u,v) € I?, denotes a two-parameter Wiener process. Define
the random elements W, and J in D; by

ANRETD]

(2.1) W, (u,v) = Z Z alr-i =g
i=1 j=1
and
(2.2) Juv) =Ww,v)+c | Wz, v)e®Dedy

(0]

+d W(u, y)e@ gy

[0

+ cd/ Wz, y)et e~ vMgrdy,
[0,%] % [0,v]

The J-process is a mean zero Gaussian process with cov{J(u,v),J(s,t)) =

(wtade_glumale, o (vHe)d_ lu—tld . .
[£ o7 ]-[¢ = ]; that is, J has the same covariance structure as the prod-
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uct of two-independent one-parameter Ornstein-Uhlenbeck processes (Breiman (1968),
p. 349).

LEMMA 2.2. Assume that conditions (A.2)~(A.3) are satisfied. Then =W, 57
in Dy, where W, and J are defined in (2.1)-(2.2).

Remark 2.1. Lemma 2.2 is an extension of the corresponding result for the first-
order autoregressive time series process satisfying.Y; = «,Y;-1 + ¢ with a, = /™,
This time series has been investigated by Bobkoski (1983), Chan and Wei (1987), and
Phillips (1987) and it is known that the normalized Y-process, when embedded in Dy =
DI0,1], converges weakly to the one-parameter Ornstein-Uhlenbeck process determined
by Ji{u) = W(u) + cf[(]’u] el*DeW(z)dz, 0 < u < 1. Moreover, suppose that X; =

BnXi_1 + b, with 8, = %™, is another first-order autoregressive process and assume
that {e;} and {6;} are independent, each i.i.d. with mean zero and finite second moment.
Define Z,; = X,Y; and observe that the product model can be expressed as Zgs =
anZs—l,t + ﬁnzs,tul - anﬁnzs-l,t—l + esét with

olo2, if (s1,t1) = (s2,t2)

cov{€s, Ot ,€5.08, = {
Q, otherwise.

It follows that the product model has the same covariance structures as model (1.2)
when o207 = 0?; however, the limiting distributions of the corresponding normalized
Zn-processes may differ. Indeed, according to Lemma 2.2 the normalized Z,-process for
model (1.2) converges weakly to a Gaussian process. However, if {¢;} and {6} are each
Gaussian, then the limiting distribution of the normalized Z,-process for the product
model is a product of two independent Gaussian processes and therefore fails to be
Gaussian. Asymptotic properties of Gauss-Newton estimators of (s, 8,) in model (1.2)

have been given by Bhattacharyya et al. (1996) when o = = 1.

All integrals from henceforth are to be interpreted in the Riemann-Stieltjes sense as
discussed in Hobson (1957) and Yeh (1963).

PROOF OF LEMMA 2.2. Define the random element X, in D; by Xa(u,v) =
%ZEZ‘;] 25131] e;; and denote g{z,y) = e =)e(*—¥)d where (u,v) and (z,y) belong
to I2. Observe that

L pwmirmiego—imyd,

] gz, y)d X (z,y)
na [(i—1)/ni/n]x[(i—1)/n,j/7]

and using model (1.2) and (A.2),

[nau] {nv]

1 _ 1 nul—i)e/n  ([nv]—7)d/n (u=ifn)e (v—j/n)dy
S Wa(w0) = = Y Y (el el (v,
i=1 j=1
+ [ o(a,¥)dXn(z ).
{0,inu] /n] % [0,[nv] /n]

(2.3) S Walw,v) = /[0 oy (@D D) 0 (1),
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The integral in (2.3} can be rewritten, using integration by parts, as a signed sum of
integrals of the form [, X,(z, y)dg(z, y) over k-dimensional subregions A of [0, 4] x [0, ],
where k = 0,1, 2. Using the formula given by Hobson {(1957), p. 666),

/ 9(z,y)dXn(z,y) = lo+ 1 + I,  where
{0,2] % [0,v]

Iﬁ = Xn(u'a U)g(ua U) - Xn(u,())g(u,ﬂ) - XR(D: U)Q(Ovv) + Xn(oio)g(o’ 0)
= Xn(u,v),

I = —/ Xo(z,v)dg(z, v} + Xa(z,0)dg(z,0) “/ Xn(u,y)dg(u, y)
[0,u] [0.v]

(0.u}

* o Xn(0,3)dg(0,y)

e[ Xu(evge e +d [ Xafw gy aad
[0.u] [0,v]

Iy = f Xnlz,y)dg(z,y) = cd Xa(z, y)glz, y)dzdy.
[0u]x[0,2] [0,u]x[0,0]

Thus, from (2.3),

. .
—Walu,v) = X, (u,v) + c/ Xo(z,viglz,v)dz + d Xo(u, y)glu, y)dy
nos [0,u] [0,2]

+cd Xn(z, y)g{z,y)drdy + op(1)
[0,u] x[0,v] )

and it follows from Billingsley {(1968), p. 31) that

L W) W) e | Wiz v)eds
no [0,u}

+d W, y)e " Vdy + cd W (z, y)ev*)ev—¥)ddydy
[0,4] [0u]x[0,%]

for each fixed (u,v) x I?. The above argument can be extended to show that the finite-
dimensional distributions of { W, } converge weakly to those of J.

It remains to show that the sequence {-LW,} is tight in D,. Define the increment
of Z, over the rectangular set (s,¢| by

['rit1] [ntg]

Za(s, )= Y Y abmlmighultie;

i=[ns1]+1 j=[nsa]+1

where 5 = (s1,52) and t = (t1,t) belong to I?, Furthermore, let p = (p1,p2} and
g = (q1,¢2) belong to I? and assume that (p,q] is a rectangular set having only the
line segment connecting (p1,p2) and (#1,¢2) as a common edge with (s,t]. Tightness of
{;LW,} will follow by showing that ;5 E(2Z2(s,t}- Z2(p,q]) < MA(s,t]- A(p, ¢] for some
constant M independent of (s,t] and (p, g|, where X denotes Lebesque measure (Bickel
and Wichura (1971), Theorem 3).
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It follows from (A.3) that E(e;;€; v €ap€qaryr) = 0 unless two pairs of indices coincide.
Moreover, by (A.2), a2{ntl=D o e2lel gpq g2lnt2i=1) < o21dl and hence there exists a
finite constant M such that

S B(Z(5, - Z2(p,a) < T (lnta] = s1]){{nas] = (o]} (nta] — [nsel)([nga] = [npal)

= M{t1 — 51)(q1 — p1)(t2 — 52) (2 — p2) = MA(s,t] - Alp. g

since the vertices of the rectangular sets may be taken to be (%, %) for some nonnegative
integers k and ¢ {Bickel and Wichura (1971}, p. 1665). Likewise, the moment inequal-
ity also holds when the two rectangular sets have any other common edge. Therefore
{W,} converges weakly in D, to J. The desired covariance function of the J-process
can also be checked. 0

Denote

J(1,1)
Ox0¢

(2.4) ate = f cos(Bxu + 8ev)J (u, v)dudv +
Iz

(2.5) bl, = / sin(fgu + Ggv)J (u, v)dudy
72

and let £ = (o)} denote the variance of (af,, bl,). Then

o} = / cos(fru + Opv) cos(Bxu + O¢v) cov(J{u,v), J(s, t})dudvdsdt
s

1 2
_ - 1))dudv,
+ 747 var J(1,1) + o, ,/;2 cos{xu + Bov) cov(J(u,v), J(1, 1) )dudy

The first integral can be expressed in terms of two-fold integrals by using the addition
formula for cosine to expand the integrand. The software Mathematica was then used
to evaluate the integrals. For sake of simplicity, the values of U}j are listed below when
¢ =d. Denote 8 = 8 = 6.

(c? + 6%+ 3c — 4ee® + ce?)? 621 — °)*

(2.6) ol =

4(c? + §2)* T 2(c? + 92)4
[o(+ 67) — 31— )P (1 P2
4c(c? + 82)4 T g
(1 —e)* (1 — e%)2
202(c2 + 02)2  2¢2(c? + 62)2°
L —8(1 — e9)?[36% — 4cel + cPe® 4+ 8%(1 ~ &%)
27 12 = 2¢{c? + 624 ]
and
(2.8) oL, = (8% — 01— ™)) - [? 4 62 + 8o — dec” + cc™]
2c(c? + 62)4
#2(1 — ec)4

It is straightforward to check that X! converges to £° as ¢ — 0 when ¢ = d (or, more
generally, when (¢, d) — (0,0)).
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LEMMA 2.3. Assume that the conditions listed in Theorem 1.1 (ii) are satisfied
1 1 g1

Given the notation defined in (2.4)-(2.8), 2m(ankg, buke) = (kg big), where (ag,, by,
is a bivariate normal with mean 0 and variance &' = (a};).

PRrOOF. Since the process obeys model (1.2) and (A.2),

s i 8 t
2= ZZC‘;—: =i, = ZZe(s—z)c/ﬂe(t—:w)ﬂ!/ﬂ"-fij1
i=1 j=1 i=1j=1

Moreover, apke = ;25 3 g cos(wis + wet)Y, and thus

Akt 1 «
2.9 = —_
(2.9) = ;

2no

L] i

Z OS(quS-I-wgt)e(‘s tJe/nglt— J)d/n

n
=5 Z Z cos(wks—}—wft)e (1-i/n)e (1-j/n}d

Define

[ru] [rew]
(2.10) Uy (u,v) = — S cos(wnlnu] + welna])ellnl=e/nelml=e/n
i—1 j—l

[nu] [nv] {1—ifn)e (i—i/n
- — Z m — cos(wg [nu] + we[nv])e

‘ljn-

=: Rp(u,v) - Sp(u,v), 0<u, v<l,

According to Lemma, 2.2,
(u,v) 2 cos(fru + pv)J (v, v) == R(u,v),
(u,v) LA uv cos(Bru + 8,v)J(1,1) == S(u,v)

in Dy and thus {U,} is tight in Dy. Moreover, U, Z R 5 in D, provided the finite-
dimensional distributions of {U,} converge weakly to those of R — §.
Fix (u,v) € I? and denote g(z,y) = e~ #lee(v=1)2 p(g y) = {1~ -¥d and

[rz] [ny]
X (z,y) Z Z €ij-
z—l_; 1
Then
(2.11) Un(u,v) = cos(Oru + 6,v) gz, y)dX,(z,y)
[0,u] % [0,v]

— wv cos(fru + Gev) / h{z,y)dX,(x,y) + op(1)}.
2
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Integrating by parts (Hobson {1957}, p. 666), f[D,u}x[D,v] gz, ) dXn(z,y) = lo+ ) + Iz,
where

IO = X’n(ua v)g(u, U) - Xn(u,O)g(u,O) - Xn(O,v)g(O,'u) + Xn (0= O)g(ﬂs O)
= X, (u,v),
L=~ Xo(z,v)dg(z,v) -i-f Xn(z,0)dg(z,0)
[0,u] [G,2]
- [ Xa(wos@ o+ [ Xa0,0)d0(0,)
[0,%] [0,2]

=c Xo(z,v)g(z,v)dr +d X (u,y)g(u, y)dy
[0,4] {0,9]
and

L= f Xn(z,y)dg(z, ) = od Xa(,9)9(z,y)dody.
10,u] X [0,4] [0,2] x[0,2]
Hence

(2.12) / glz, y)dX,(z, ¥} = Xo(u,v) + c/ e 2l X, (z,v)dT
[0,%] x [0,v] [0,u]

+d o ]e(""y)‘an(u,y)dy

ted glu—@eav-wdx (r o )drdy.
[0,] x [0,0]

A similar argument shows that

(2.13) / hlz, v)dXa(z,y) = Xo,(1,1) + cfe(l‘“’)an(m, dz
2 I

+d / 1=V (1 y)dy
T

ted | MR-V (5 4)dxdy.
Iz

It follows from (2.11)—(2.13) that U, = ¢{X,) +0p(1), where ¢ : Dy — R is defined
by

&(f) = cos(Bru + 8,v) [f(u,v) + C/O w20 f (. v)d

[0,ui

sd [ )y
(0,v]
+ cd/ elemmleev—mld f(q y)dxdy]
{0,u] %{0.v]
— uvcos(fxu + 8pv) {f(l, 1)+ c/ et=lef(z, 1)de

I

+d f 9451, y)dy
I

+cd e(l_”)ce(l_y)df(w, y)d:z:dy] .
I2
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Since ¢ is continuous when restricted to the set €5 of all continuous members of Ds,
W{Cs) =1 and X, B W in D, it follows (Billingsley (1968}, p. 31) that

Unlu,v) LA I:W(u,v) + cf " EW (y, v)dz
[0

vu]

+d e VMW (4, y)dy + cd/ elv==)eglv—0idyy (g, y)d:ndy}

[0,4] [0u]x[0,7]

- cos(feu + Bpv) — [W(l, 1)+ cfe(l‘”)‘:W(a:, 1)dx
I

+d / VW (1, y)dy
I

+ed | el=2egl-vldpy (g y)dmdy]
iz

v cos(Bpu + 6pv) = cos{Bru + 8v)J(u, v) — uv cos(Bru + 8v)J(1,1)
in R. The above argument can be extended to a finite linear combination of Uy (u;, v;),
1 <14 < k, and thus it follows that the finite-dimensional distributions of {U,} converge

weakly to those of R— 8. Hence U, = R—S in Dy. Moreover, it follows from (2.9)—(2.10)
that

Gn—1.ht =/ Up(u, v)dudv
Iz

2no
‘and thus
Gnké¢ D cos(Bru + Ogv}J (u, v)dudy - J(1, 1)/ uv cos(Byu + Gpv)dudy = ag,.
2ne 72 iz

Extending this argument, \; 225t 4 ), 2akt A Ajak, + Arbk, and thus = (@nke, brke) 4
(a}s,bi,) in R2. O

ProorF OF THEOREM 1.1. Verification of Theorem 1.1 (i-ii) follows easily from
Lemmas 2.1 and 2.3. Indeed, in case (ii}, fix ¢ < 0 and d < 0 and let A; and Ag
denote the corresponding eigenvalues of X! and let Q be an orthogonal matrix such
that QE1Q' = I = diag(A1, A2). According to Lemma 2.3, Rppe = gﬁg(anu,bnu)Q' A
N(0,T) and hence

In(wh,we) _ 1
202n4 402n2

The spatial domain test ¢y, is defined in terms of “Gauss-Newton estimators”. Given
model (1.1), let & = (o, ) and denote the sequence of initial estimators given in (A.5)
by 8, = (@, 8), n = 1. Define f;;(a,b} = aZ;_y ; + bZ; j_1 ~ abZ;-1,j-1, Fij{a,b) =
(%(a: b),%i(a,b)) ={Zi-1,j — bZi—1,5-1,Z; j-1 — aZi_1,j-1) and Ryj{a,b) = —(a —
a)(8—b)Zi-1,5-1. Then model (1.1) can be written in the form Z;; = fii (On)+ Fi(8n){(0—
Br)' 4 Rij(6r) +¢€i;. Denote A, =37 375 F{;(6.)Fi;(9,). The sequence of “Gauss-
Newton estimators” of # = (o, ) is defined to be

(2.14) fn = (G, Bn) = 6 +8,, where

By = AT D D F(Bu)Zis — fii(Bn)), nz L.

=1 j=1

(a%ke + D2re) = RukeRiis DoV + AVa. O
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The spatial domain test for testing Hp : &« = 3 = 1 is defined by
(2.15) Y = n?%(6, — (1,1)).

PROOF OF THEOREM 1.2. A proof of Theorem 1.2 (i) is given by Bhattacharyya
et al. ((1996), Theorem 3.1) when (A.4) is replaced by the stronger assumption that
an —a = Op(n~32) and 3, — 8 = Op(n=3/?), for « = 3 = 1. However, the proof is
still valid when @, — & = Op(n~1) and 5, - 8 = Op(n~1).

Next, suppose that the assumptions of Theorem 1.2 (ii) are satisfied. It is shown
by Bhattacharyya et al. ((1997), Theorem 1.1) that n3/2(4, — 6,) LA N(D,X), where
= = diag(g: (1), 977(1)), g4(2) = (€7 — 1 — 272)/49%, 7 # 0, and 0p = (on,0n)-
Again, it was assumed that &, — an, = Op(n™%2) and 8, — 6, = Op{n=3/2) but
the proof is also valid when @, — a, = Op(n~!) and B3, — B, = Op(n~!'). Since
n = 0320y, — (1,1)) = n¥2(8, — 0n) + n®2(8, — (1,1)), it follows that || = oo,
i = 1,2, where ¥, = (¥,1,¥n2), which completes the proof of Theorem 1.2. O

3. Comparison of tests

Consider the testing problem Hy :a =8 =1vs. H; : 0 < o, 3 < 1 given data
{Zij : 1 <4, € n}. A periodogram test is defined by

(3.1) G = 167 k222, (wi, we) /20l

According to Theorem 1.1 (i), ¢y, zZ 3x2 when & = 8 = 1, where x2 denotes a chi-square
random variate with two degrees of freedom. Given a significance level 0 < 6 < 1, choose
k =£ =1 and let r5 denote the real number for which P{x% > s} =1 — . Then, for n
sufficiently large, the null hypothesis is rejected when ¢, < 3rs.

Given a sequence { (o, 3,)} where a, = e/ and 3, = e%'?, of local Pitman-type

alternatives, it follows from Theorem 1.1 (ii) that ¢y, CA aVi + bVa, where a = 327%A,
b = 327%\y, Vi and V; are independent chi-square random variables each having one
degree of freedom, and A; and ); are eigenvalues of the matrix X! = (cr,}j). Note that
a and b are functions of ¢ and d, and P, 4(x) = P{eVi + bV2 < 2 | ¢,d} is used to
compute the asymptotic power of ¢,. Numerical values of P, 4(x) are given in Table 1
for significance levels of § = .025 and .05, and several values of ¢ = d < 0. Observe that
the asymptotic power of ¢, increases as ¢ decreases, and eventually becomes one.
Given the significance level 0 < § < 1, a level § spatial domain test v, (see (2.15))

is determined from the asymptotic result ¥, 2N (0,T), where I' = diag(2,2) (under
the null hypothesis), as shown in Theorem 1.2 {i). Moreover, Theorem 1.2 (ii) implies
that the asymptotic power of 9, is one for each sequence {(e®/™,e%/™}} of local Pitman-
type alternatives. Hence 1, is superior to ¢, based on the criterion of comparing the
asymptotic power at the above sequence of local Pitman alternatives.

Finally, it should be mentioned that the asymptotic power of ¢,, is one at each fixed
alternative (a, ). Thus one needs a sequence of local Pitman-type alternatives in order
to he able to distinguish between ¢, and 3, when relying on asymptotic results. It is
not surprising that the spatial domain test has asymptotic power one at each sequence
{(e*/™,e/™)} of local Pitman-type alternatives, whereas one needs ¢ < 0 sufficiently
small for this result to be valid when using the periodogram test. The reason heing
that v, is a parametric test, and hence should perform better under the assumptions
of a parametric model. However, the advantage of the periodogram analysis is that the
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Table 1. Asymptotic power: P, 4(z) = P{aV1 + Va2 < x| e, d}.

c d a b P.4(.152) P.y(.309)
—-.001 —.001 2.9980014 2.9980007 .025 .050
-.01 —.01 2.9801341 2.9800709 025 051
-.1 -1 2.812499  2.8071983 027 054
—.5 -.5 2.2408056 2.1778355 034 068

-1 -1 1.7549978 1.6460808 044 .087
=5 =5 3624993 .3226461 .189 363
-10 -10 .0731931  .0647334 .668 .894
-15 —15 0217135  .0186837 977 998
-20 -20 0085121  .0070005 1.000 1.000

periodogram can always be computed (even without a model} and is thought to be less
sensitive to model assumptions, and hence has wider applicability. Moreover, while the
periodogram provides a means of detecting the seasonal periodicity, a consistent set of
large periodogram ordinates and corresponding chi-square random variables (each having
two degrees of freedom) can be used as a diagnostic tool to detect nonstationarity, and
also long term dependence of the underlying stochastic process.
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