Ann. Inst. Statist. Math.
Vol. 52, Neo. 1, 2842 (2090)

COVERAGE PROPERTIES OF ONE-SIDED INTERVALS
IN THE DISCRETE CASE
AND APPLICATION TO MATCHING PRIORS

JUDITH ROUSSEAU

Labaratoire de Statistique, CREST, Timbre J340, 92241 Mualakoff Cedex, France and
Laboratoire de Statistiqgue Théorique et Appliqguée, Université de Paris 6, France

(Received September 22, 1997; revised August 14, 1998)

Abstract. We consider asymptotic coverage properties of one-sided posterior con-
fidence intervals for discrete distributions, with a unidimensional parameter of inter-
est and a nuisance parameter of arbitrary dimension. In this case, no higher order
asymptotic expansion of the frequentist coverage for these intervals is established,
unless some randomization is added. We study here the existence of such frequen-
tist expansions and propose simple continuity corrections based on a uniform random
vector. This helps in determinig a family of matching priors for ane sided intervals in
the discrete case.
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1. Introduction

The past thirty years have seen a great number of papers dealing with approxi-
mate confidence intervals and, in particular, with the problem of determining confidence
sets which would have both good frequentist and Bayesian coverage properties. In the
continuous case this problem has been settled for different types of confidence sets. In
particular, Welch and Peers (1963) and Peers (1965) consider one-sided confidence in-
tervals with and without miisance parameters, their results were improved by Tibshirani
(1989), Mukerjee and Dey (1993) and Mukerjee and Ghosh (1997). They derive classes
of priors such that both frequentist and Bayesian coverages of these confidence inter-
vals agree to the order n~!, i.e. matching priors for one-sided confidence intervals to
the second order of approximation. They also prove that there is no matching pricr to
the order n73/2 except in some special cases. Other types of confidence regions have
been considered as well, such as two-sided intervals, by Severini (1993} who provides
asymptotic coverages to the order O(n“‘3/ %), Bayesian and frequentist, the latter being
conditional on some ancillary statistics. Likelihood based regions and highest posterior
density regions have also been studied; see for instance Ghosh and Mukerjee (1993).

However, these results do not extend to the discrete case, as far as the frequen-
tist coverage is concerned, since they are based on formal (i.e. continuous) Edgeworth
expansions. Only a few results have been established for lattice variables. Davison
(1988) provides expansions for one-sided intervals, with implicit end-points, when the
observations are univariate and on a lattice. There have been some advances, both in
the binomial and in the Poisson cases; see Hall (1982) and Blyth (1986}, on different
possible approximations, to the order O(n~1/2) of one-sided and two-sided intervals.

To derive higher order expansions, some continuity corrections have already been
proposed. Lehmann (1986} has proposed to make each observation continuous by adding
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a uniform random variable on [0, 1] to every observation. Babu and Singh (1989) have
established that the distribution of the convolution of a sum of » iid lattice variables
with a uniform variable on [-1/2/n,1/2\/n] has a continuous Edgeworth expansion to
the order O{n~1),

In this paper we study the asymptotic behaviour of one-sided intervals, both from
a frequentist and a Bayesian point of view, when the observations are discrete, and
we propose a method to smooth these intervals, so that they can be better controlled
in terms of coverages, these results are obtained for multivariate as well as univariate
models.

Let X™ = {X1,..., X} be asample of random variables with distribution Py, where
8 ={(6,...,0;) belongs to © C R*. We consider inference about 61, (f2,...,0;) being a
nuisance parameter. Let m be a prior distribution on the parameter 8. In the following,
P7[- | X™] denotes the posterior distribution of 8 and C7 denotes the posterior one-sided
confidence interval defined by

PT[CT | X = P™[8) < kn(a) | X"] = a,

where &, (c) depends on X™. This is the one-sided posterior confidence interval consid-
ered by Peers (1965). As a first order approximation, it is well known that

(1.1) P}ICE] = a+ O(n™/).

So, to this order, Bayesian and frequentist one-sided confidence coverages are equivalent.
Peers (1965) has shown that when the random variables are continuous with respect to
Lebesgue measure, Py*[CT] has an asymptotic expansion of the form

PPICE] = a + Pi(g,m)/vn+ O(n™"),

so that if the prior satisfies some differential equation (which leads to Jeffreys prior in
the unidimensional case}, (1.1) is correct to the order O(n~1).

Unfortunately, these results do not apply in the discrete case. Indeed, in Section 2
we prove that expansions of the frequentist coverage of one-sided confidence intervals
exist to the order o(n~1/2}, if and only if the statistic controlling the one-sided interval
behaves like a nonlattice random variable, to the first order of approximation. Under
this condition, denoted hypothesis (/) in Theorem 2.1, we can then determine a class
of matching prior to this order of approximation. Moereover these matching priors are
formally the same as those obtained in the continuous case by Peers (1965). To get
a better approximation, we propose, in Section 3, a simple correction for one-sided
Bayesian intervals, which is to add to the posterior a-quantiles a uniform perturbation
of order n~1/2. Then, the corrected one-sided intervals CT(I7) have correct coverage
properties to the order O(n™!), even when hypothesis (H) is not satisfied. This result is
interesting from a theoretical point of view since it generates a class of matching priors,
in the sense of Welch and Peers (1963), for a certain class of discrete distributions. An
expansion to the third order is also established in Section 4 with applications to matching
confidence sets. The corrections we propose give a great flexibility to the model, since
we can then control the term of order O(n~1) in the expansion. In particular we exhibit
a correction allowing for a class of matching priors to the order o{n"!). Besides, when
the observations are related with a latent continuous process, this continuity correction
has an interesting implication, since we show, in Subsection 5.2, that the impact of
discretisation is of order O(n~/2). These results shed light on the asymptotic behaviour
of lattice distributions and on the structure of discrete confidence intervals.
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From a practical point of view, the corrected intervals also behave satisfactorily, in
terms of their frequentist coverage. Simulations are proposed, in Subsection 5.1, for the
Poisson and the binomial distributions, in order to compare our corrections with those
already obtained in these two special cases.

2. On the existence of asymptotic expansions

In this section, we prove that when the model behaves like a nonlattice model, i.e.
when hypothesis (H) is satisfied (see Theorem 1, below), there exists an asymptotic
expansion to the order o{n~'/?), which is fairly natural.

Let f(X™ | @) = fo(X™) be the density of X™ with respect to some discrete mea-
sure. We note I, (#) = log f(X™ | §). We assume that X,..., X, are independent and
identically distributed. Let D denotes the differential operator with respect to &; in
particular, D*h represents the divergence of h, i.e. the sum of the derivatives of h. The
following assumptions are standard in asymptotic expansions:

Al. log fe(x) is 4 times differentiable in #, and for all ¥ = (v4,...,14) € N* we
have, if |v| = Zle v =3,

Eq[[D* log fo(X)[*] < 0,

and if {¥| = 4, then VK C © compact, 3¢ > 0 such that

sup Eg | sup |D¥log fo (X)?| < .
fcK |- |<e

We consider only the linearly independent components of (D log fo(x), D? log fo(x)) (as
functions of z}, so that their covariance matrix T is invertible.

A2. The Fisher information, ¢(§), is positive definite and continuous.

A3. The prior 7 is positive and log 7 is twice continuously differentiable on ©.
In the following let R, Q and Z respectively denote, the sets of real numbers, rationals
and integers. We assume that D log fp(X) and D?log f3(X) are random lattice vectors
(matrix). Let Ly = 2o+ £Z + - -+ + £k Z be the supporting lattice of D log fo(X). For
a matrix M, we denote M*/ the (i, ) component of its inverse, M* the i-th row of its
inverse and M? the i-th column of its inverse.

THEOREM 1. When conditions A1-A3 hold, there ezists a continuous asymptotic
expansion of PR{CT) to the order o(n1/2), if and only if , 341, j2 < k such that i(8)1&;, +#
0, and

z.(9)15'2
(H) 'é(ﬂ)‘él ER-Q.

The expansion is then the same as in the continuous case:

- (@ '(a)) | i(8)Dlogm(#) ts - ~1/2
PrC =+ 2 \/ﬁ“ {’ ﬁ% —D(zl(ﬂ)/\/zlvl(ﬁ))}-l-o(n /2,

Hemerk 2.1. This result implies that when (H) is satisfied, the frequentist coverage
is equal to o to the order o{n=1/2) if

(2.1) [{(8)Y 7 25(0) D log 7 — DE{i(8) ]i(9)!]1/2y = 0.
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Peers (1965) gives further details on the form of the solutions of this partial differential
equation.

The idea of the proof is to compare the probability Py [C7] with the formal expansion
obtained in the continuous case. The differences appear near the boundaries of the
confidence interval. See Appendix 1 for technical details.

Remark 2.2. Condition (H) implies that the leading term of the statistic related
with the asymptotic expansion is discrete but nonlattice. Therefore it is natural that the
order of the frequentist asymptotic expansion is the same as the order obtained when
considering discrete nonlattice distributions. An interesting feature of this result is that
it depends strongly on the parameterisation. To illustrate this, consider the following
simple example.

Ezample 2.1. Let (Xy,...,X,) be drawn from a multinomial distribution
M(n, p1,p2,p3), with E?=1 p; = 1. The canonical parameterisaton is p = {p1, p2}. Then,
condition (H) is not satisfied. However, if the parameter of interest is 61 = apy + pa,
with a € R — @ and the nuisance parameter remains p;, then condition (H) is satisfied
and equation (2.1) becomes, with 7(§) = e¥(® /{11

(2.2) (a(fy — 02) — 87 + 02) D13p(8) + 62(1 — 1) Dayp(8) = —(a + 1) + 361

There is no higher order expansion of the frequentist coverage of the one-sided confidence
intervals, in particular when #; is orthogonal to (#2,..., 8} in the sense of Cox and Reid
(1987), or in binomial and Poisson cases. In such cases, there is no answer to the
problem of higher order asymptotics and in particular to the determination of a class of
pertinent matching priors for such cases, unless some continuity corrections are added.
Even though randomization contradicts the Likelihood Principle, it must be invoked to
get an improvement in the frequentist coverage of these confidence intervals.

3. Randomized corrections and second order expansions

We propose in this section simple randomized corrections based on a uniform random
variable, which lead to higher order expansions of the frequentist coverage of our intervals.
Recall that from a frequentist point of view, randomization is necessary to reach a given
level ¢ for lattice distributions (Lehmann (1986)). Therefore we propose the following
correction:

CH(U) = {61 < knla) + JLUY,

where U = 25:1 ¢;U; is based on & independent uniform random variables on [—1/2,1/2]
independent of the observations, and J, /n is an approximation of the Fisher information
of the sample to the first order. Tt is then possible to obtain an asymptotic expansion
of the frequentist as well as the posterior coverages of CT(U) to the required order,
ie. O(n7l). Moreover, we prove that this expansion is formally the same as in the
continuous case. The term I can be seen as a ‘smoothing’ correction of the discrete
kn(a), so that ky, (o) + JLU approaches ¢, to a higher order. The correction is necessarily
of order n=1/2, because it corresponds to the order of the ‘jumps’ in the likelihood, i.e.
the distance between two values of the likelihood (# being fixed). Note that to the first
order, CT(IJ) = CT,
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3.1 Main result

Set J, = ~(D%,(#)),_;- The expansions are expressed in terms of the maximum
likelihood estimator, but we could use other consistent estimators such as Bayes esti-
mators. This is in particular more coherent when considering confidence regions from a
Bayesian point of view.

The corrected bound in CZ(U) then allows for an asymptotic expansion of the
frequentist coverage of the Bayesian one-sided confidence region.

THEOREM 2. If© is an open conver set and if the assumptions A1-A3 of Section 2
hold,

(3.1) P26y < knla) +JI0)
S ) {”'1(6)1} logn(®) _ py (6)/v/73@) } + O™,

Vn it {0)

where & and ¢ denote the standard normal distribution and its density w.r.t. the Lebesgue
measure, respectively,

We thus obtain the same expansion as in the continuous case; see Peers (1965). The
frequentist coverage is equal to a to the order O(n~1) if and only if (2.1} is satisfied.
In particular, if § is real there is no asymptotic expansion of the uncorrected confidence
interval and Jeffreys prior, (@) o +/i(6), is the unique solution to (2.1) for the corrected
one-sided interval CT (/).

The posterior coverage of this corrected interval is still a to the order O(n~").
[ndeed,

P8, < kn(a) + JIU | X™, U]
= P8, < kn(a) | X7 + JUnlkn(@) | X"} + Op(n~Y);

taking the expectation with respect to U, leads to the required expansion.

This set is then, to the second order, a Bayesian confidence interval with coverage
o and can be used as such. This implies in particular that there exists matching priors
for corrected one-sided confidence intervals when the observations are random lattice
vectors, and, moreover, that they satisfy the same formal differential equation as in the
continuous case.

Consider, for instance, the binomial case where some bounds, for the one-sided
intervals, have been studied (see Hall (1982), Blyth (1986)), using approximations to the
order O(n~'). Section 5 presents simulations to compare our resuits with theirs from
a practical point of view. Theorem 1 implies that there is no expansion to the order
O(n™1) of P}CT] and a randomized correction is needed.

Note that X71,..., X, need not be lattice random vectors. The only true requirement
is that D log fe(X) is a lattice random vector.

3.2 Elements of preof

The proof applies Babu and Singh’s (1989) result to the derivatives of the log-
likelihood. The expansions considered here are very similar to those of Welch and Peers
(1963) and Peers (1965). Let

r(X”,t1)=/ / w61, 8., 86} | X"]d61d8, - -- B,
1<t VB
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where ©;_; denotes the set where (#s,...,0,) varies when ), = ¢ is fixed. We have
Fier < kn(a) + U] = PPr(X™, 6, — JIU) < a.

Considering the usual normal approximation of the posterior distribution and equation
(19) in Welch and Peers (1963), we get

(3.2) rwmm—ﬁm-QGummy-ﬁU)+mmn

where z(X™,6;) = &~ 1(r(X",8;)). Therefore,
FPICeU)) = Fil=(X™,01) = LU/ I < 7' ()] + O(n 7).

In the following, we omit & in our notations whenever it does not induce ambiguities. Set
2,5 (0) = (D71 (6) — Es[DIL(0)])/ /7, for j = 1,2. Then, see Appendix 1, 2(X*,8;) can
be expressed as, 2(X™, 61} = g(Z,) + Op(n~3/?), where Z,, is the largest sub-vector of
(Zn,1, Zn,2) whose components are linearly independent as functions of X*. Therefore,
z(X",01) — (JI) 71210 has exactly the same expansion as z{X™,#@,) in terms of the
Yas's, where Yo, 1 = Z,, + U/y/n and Yo 2 = Z, 5 + Upny/+/1, and Upy is a symmetric
matrix such that the components of its upper triangular part are independent uniform
random variables on [-1/2,1/2|, independent of the observations and of U/. Using Babu
and Singh’s result ((1989), Theorem 1) and considering f(z) = lysy<a-1(a), Where |
represents the indicator function of a set, we finally establish (3.1).

Note that the above argument holds for any kind of likelihood-based confidence
region, since this continuity correction allows for an expansion to the second order of the
distribution of any statistic function of Z,,.

4. Randomized corrections and third order expansions

4.1 Mauain result

We now consider a higher order expansion for the frequentist coverage of this kind of
one-sided confidence intervals. Babu and Singh’s result (1989) does not hold any longer.
However it is possible to find a class of functions h,{U) such that P}t [ +2,,(T) < k()]
has an asymptotic expansion. This leads to an asymptotic expansion of the frequentist
coverage of the corrected confidence interval CT(U) = {01 +hn(U) < kn(a)}. We assume
that the usual regularity conditions in the strongly non lattice case (see Bickel and Ghosh
(1990)) hold for the density fs {w.r.t. the counting measure).

Let U = zf;“;l & U;, where the U; are uniform random variables on [-1/2,1/2];
with D?log fs(X) € Z;-Lk +1&Z. Set T the linear operator such that TZ, = Z,»
and V = T{. In the following we note & = b(#) for any function b of 6 and Mijk =
Ey[Dyji log fa( X)).

THEOREM 3. If (H) holds and the U, s are independent of the observations, then
P61 + ho(U) € kn{e)] has an asymptotic expansion to the order o(n™1) if

3 JLH (U
(4.1) halU) = — I Uy + n1+'}g)

W haik Zn 1 T U
- nl/2

Ui % e Jh Znn
+ nl72J11

-+ \/ﬁJTILVJJIZﬂ,l

1 -1
+ 0 L) Y I

9/ J11
1 YEE R LUy 2
—8-1(a) nD | oY,

2n./JM1
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where H,(U) is a function of (Zn,U), continuous in Z, and differentiable in U, such
that

(4.2) Z [ 61;; =0

and Ef [|Hy(U)|] < 0o uniformly in U. The ezpansion of P}CT(U)] is then
P8, o) N P8, 0,7)
vn n

k & o1
-3 e )

Ro{a, 0,7, H,)
n

(43) POy + ha(0) < knfa) = a +

+ (@7 Ha)) +o(n™h),

where Py and Py are the corresponding terms of the expansion in the continuous case
and R,, is of order O(1) and is due to H,,.

THEOREM 4. If(H) is not satisfied, then P}[6)+h,(U) < k,(a)] has an ezpansion
to an order higher than O(n=1) if H,(U) satisfies

S OHL(U) _
au,

=1

—UtSlz + Om~Y?),

(4.4)

where HE(U) is the i-th component of Hn(U) in the basis (&1,...,£q) and T is the
asymptotic covariance matriz of Z,. In this case the frequentist coverage of CT(U) is

(4.5) @+

P8, P(# x ) ot -
1(\/2 S 2( = +§; Were 245233(0) @) 4 o,

The proof is given in Appendix 2.

Remark 4.1. The above conditions are close to being necessary conditions. In
particular the U;’s need not be uniform random variables, but the density, gn(u) of
7 condltmnal on the observa,tlons must satisfy, see Appendix 2, for all ¢t such that

~ Y gl <t < T 11,

f bty 2e{gn(u) — 1)du =
K

In the case & = 1, this implies that lest {/; be uniform on [-1/2,1/2], independent of
the observations to the first order of approximation,

P (8, a,m) s ~vo(x, 8, 7)
Vn Y

where s, is a sequence of real numbers, which is dense in [-1/2,1/2].

PRCIO)] =a+ +0(n™Y),
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Two particular choices of H, (U} are of interest:
(1) Hn(U) = 0. If m(8) satisfies (2.1}, 1.e. 7 is a matching prior to the order O(n 1),
then, to the order o(n™!), the frequentist coverage is equal to

- k .
F(CEO)] = o+ p(@ (@) @) 2O | pamtiaa-i(e Y LaX

where P,(6,7) corresponds to the formal expansion (i.e. the continuous one}.

(i) Ho(U} = H, 1(U) is such that the frequentist and coverage is equal to o to
the order o{n~!), when = satisfies (2.1). There are many possible choices for I, ,(U), a
simple one is for instance

k REU2 -
(49) Hos(©) = — iy - o)y, 2 =Y

=1

(o) (£36)*
T om0 i HZ 2t |4

where e; is the vector whose componants are (1,0,...,0) in the canonical basis of Rk,
I, = —D1,,(6)/n and h; is given by

o E S BE? s
D ohilghy == i — 6P(h,m).
This third order expansion sheds light on the asymptotic behaviour of likelihood

based statistics for discrete distributions, see Appendix 2.

4.2 Posterior coverage and matching priors
Depending on the choice of H,{U}, the posterior coverage of C7 (U} differs from o
by a term of order O(n1}.

ProprosITION 1. Under the same assumptions as in Theorem 3,
S GL3) PP
(47) PICIO) | XM = o= 3 S e(@ 7 (@)27H(a)
J=1

" W(‘p_l(a)irn(ﬂmw) + O(n—3/2)‘

where Ty, is due to H,(U).

This result is proved by first approximating P*[C7(U) | X", U], using the charac-
teristic function and integrating over UV this approximation.

There is no explicit form for T, since H,(U) can be any continuous integrable
function of Z,.
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COROLLARY 1. When H,(U) is given by (4.6}, and when = satisfies (2.1}, the
posterior and the frequentist coverages of the confidence interval are both egual to o to
the order o(n=1):

PRICT(U) | X™] = PRCT(U)] + O(n~%2) = a + O(n=%?),

In the continuous case, studied by Welch and Peers (1063), no prior matches both
coverages to the order o(n™!), except for some special distributions. In the discrete case,
our corrections imply matching priors to the order o(n~!) as soon as (H) is satisfied.
Therefore these corrections allow for greater accuracy.

Note that, in some cases, the corrected confidence interval can be in the form

b, nZn10)U) ”(Z;’?f/(za L)
This implies that, to obtain matching priors in the discrete case, it is, in some cases,
necessary to slightly change the structure of the confidence region. This result is of
interest, since it sheds light on the effects of discretization. From a practical point of
view, however, it is better to approximate this correction term, so that the correction
does not depend on the nuisance parameter any longer. A possibility is to approximate
Z,,,1(8) by a term in the form Z,, 1 (§(61)) +Jn/n(6(61) - 8), where 8(8,} is the constraint
maximurm likelihood estimator.

< kalo, ﬁ'), where fn.(Z,1(8),U) = Gp(1).

4.3 Standard distributions

We now consider two examples to illustrate the ¢orrections of Sections 3 and 4.
4.3.1 The binomial distribution

Consider X® ~ B(n,p). Then $ = X" /n, the Bayes estimator is §* = (X +0.5)/(n+
1) when 7(p) x 1/i(p) and & = i(p). The correction term is

Ui Uh(1-26M87(a) o, ()
n Ao | i 1/4)2713/2\/5«(1 —&)

The frequentist coverage of CT({J) is then P} [CE(U)] = a+0(n~3/2), while PT[CZ(U) |
X"] is not equal to «, but to

h’n(U) ==

-1 -1

‘P((I) (f!))q) ; (O!) +O(n—3/2)'
24np(1 - p)

The Poisson distribution has a similar behaviour.

432 The multinomiel distribution (see Example 2.1}

If the parameter of interest is py and the nuisance parameter is (1—py)/p2, (H) is not
satisfied. For any prior in the form 7 (8;, 82} = [61{1 - 61)]~1/2g(82), both the frequentist
and the Bayesian coverages of the corrected confidence interval C7(U) = {81 < kn(a) +
U,/n}, where U is uniform on [-1/2,1/2], are equal to o to the order O(n"'}). The
following continuity correction allows for an expansion to the order O(n=3/2) of its
frequentist coverage.

24 U12 - 1/4 {\/ﬁ(:nl/n _8p) - Vvr{l —z1/n— 921!)2/’!‘&)}

Pr[CI(U) | X" =a+

hn(U) = -

n 20372(1 -z, /n) (z2/n)(23/7)
_ Uiz /n— 61)(1 — 221 /n)
n3/2
-3 2 ()t (1 - 221 /n(l = 2, /m)).

M3/2 /2 /n(l — z1/n)
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5. Discussion

5.1 Simulations

The above corrected intervals have a theoretical interest since they allow for the
determination of matching priors for discrete distributions and help in understanding
the asymptotic behaviour of discrete distributions; see Subsection 4.1.

From a more practical point of view, we now report simulations in the binomial and
in the Poisson cases and compare the frequentist coverages of our intervals with those of
Hall (1982) and Blyth (1986), which are not randomized (with error of order O(n=1/2)).

We have simulated samples of size n for hoth distributions and derived the corre-
sponding frequentist coverages based on ¢ = 10000 replications. In these computations
Welch and Peers’ (1963) bound, as well as ours, are related to Jeffreys prior and expressed
in terms of the associated Bayesian estimate.

Table 1 gives the bias between the observed and the nominal frequentist coverages
for (a) the classical Welch and Peers one-sided interval, (b) our corrected interval to
the order O(n=') (H,(U) = 0, {c) our corrected interval to the order O(n=3/2), (d)
Hall's interval and (e) Blyth’s intervals (A), (B}, (C), as defined in Blyth {1986), for
n = 100, 1000 and for various values of the parameter p, in the binomial case. Table 2
provides the same bias, for Welch and Peers’ one-sided interval, ours (to orders O(n~!)
and O(n~%?)) and Hall’s in the Poisson case.

Both tables show that our bounds behave in a way similar to the alternatives. We
note that in both cases, the bias of our intervals decrease faster than the others, but are
greater for small values of n. This is due to the fact that the intercepts in the error terms
are greater in our bounds. Therefore, the corrections proposed above have not only a
theoretical interest, but have also good performances in practice,

5.2  Discretisation and continuity corréction

When the observations are linked to a continuous process, the continuous correction
is not so arbitrary any longer and Theorem 1 sheds some light on the distortion discreti-
sation implies on inference. Let Y™ = (¥3,...,Y,) be a sample with density fp(¥™) with
respect to Lebesgue measure, consider X" = (X,...,X,) to be a discretised version of
Y™, ie X; = g(Y;), where g takes its values on a discrete set, for instance g(z) = lo<s,
where 5 € R is fixed. Let gg be the density of X with respect to some discrete measure.
Under the usual regularity conditions, when the prior 7 x +/¢{#),

PPO < kola, Y™ = a+ O(n™ ).

The confidence one-sided interval can be approximated by: Co(Y™) = {hn1(¥,8) <
®~l{a)}, and in the same way, the corrected discrete confidence set, based on X™, can
be expressed as: Co{U,X™) = {hn2(X,0) — U&1/vn < & Y{a)}, to the order n™*,
where hn1 and hy, 2 have the same form. Since P} [Co(Y™)] = PP[Ca(U, X™)] = a, to
the order n~1, for all @ € (0,1), we have

hna(Y,8) = hpo(X,0) — U&/v/n+O(n7!),  in distribution.

Therefore discretisation implies an error of order O(n~1/2) on the bounds of confidence
intervals which can be modeled by a uniform random variable on {~£1 /(2y/m), &1 /(2/n)}-
This result is quite close to the one obtained by Kolassa and McCullagh (1990) on the
rounding effect, where they prove that it can asymptotically be modeled by a uniform
random variable.
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Table 1. Bias in the covérage for different one-sided confidence intervals in the binomial case.

p W-P.  orderl order 3/2 Hall  Blyth(A) Blyth(B) Blyth{C)

0.1 -0.0667 -0.0667 -0.0654 -—0.0076 -0.0076 —0.0076 +0.0272

0.2 -0.0331 -0.033FT -0033% -0.0331 -0.0001 -0.0001 -0.0001

0.3 -0.0273 --0.0227 -—-0.0217 -0.0273 +0.0004 +0.0004 +0.0004

n=100 04 -—-0.0096 -0.0096 -—0.0098 -—0.0096 —0.0096 +0.0109 +0.0109
0.5 -0.0190 -0.0084 —0.0073 +0.0045 +0.0045 +0.0045 -+0.0045

0.6 +0.0085 -0.0008 +0.0000 +0.0085 —0.0130 +0D.0085 +0.0085

0.7 -0.0019 +40.0037 +0.0043 -0.0019 -0.001%9 +0.0181 +0.0181

0.8 +0.0184 +40.0110 +0.0120 40.0184 -—0.0037 +0.0184 40.0184

0.9 +0.0121 +0.0201 +40.0209 40.0121 —0.0222 +0.0285 <40.0121

0.1 -0.0096 -00100 -00102 -0.0096 +0.0005 +0.0005 +0.0005

0.2 -0.0091 -0.0045 —-0.0041 +40.0006 +0.0006 +0.0006 +0.0080

0.3 -0.0018 -—-0.0043 -0.0043 -0.0018 -0.0018 —0.0018 +0.0054

n=1000 0.4 +40.0019 -0.0002 -0.0002 +0.0019 +0.0019 +0.0019 +0.0019
0.5 —-0.0021 +0.0008 +0.0008 -0.0021 —0.0021 +0.0036 +0.0036

0.6 —-0.0006 +0.0012 +0.0012 --0.00068 —0.0006 +0.0065 +0.0065

0.7 +0.0038 +40.0027 +0.0028 +0.0038 —0.0040 +0.0038 +0.0038

0.8 +0.0061 +0.0064 +0.0063 +0.0061 —0.0029 +0.0129 +0.0061

0.9 +0.0076 +0.0084 +40.0083 +40.0076 -0.0021 +0.0174 +0.0076

Table 2. Bias in the coverage for different confidence intervals in the Poisson case.
n = 100 n = 1000

A W-P.  order 1l order 3/2 Hall A W.-P. order1 order 3/2 Hall
0.5 -0.0132 -0.0043 -—0.0011 +0.0033 0.5 40.0002 +0.0004 —0.0002 +0.0002
1.0 -0.0061 -0.0033 —0.0011 +0.0054 1.0 —0.0003 +0.0003 -0.0000 —0.0003
L5 -—-0.0009 -0.0000 -0.0007 —0.0009 1.5 -0.0024 -0.0024 -0.0026 -—0.0024
2.0 —-0.0043 -0.0041 —=0.0030 -0.0043 2.0 -0.0007 -0.0010 -—-0.0011 -=0.0007
2.5 —0.0034 -0.0051 -0.003% —0.0034 2.5 +40.0017 40.0023 +40.0021 +4-0.0017
3.0 -0.0024 -0.0051 -0.0038 --0.0038 3.0 —0.0008 -0.0005 —0.0006 —0.0008
35 -—-0.0025 --0.0111 00032 -—0.0025 3.5 +0.0028 +0.0016 +0.0015 406.0029
4.0 -0.0008 -0.0035 -—0.0020 —0.0008 4.0 —0.0006 -—-0.0006 -0.0006 —0.0006
4.5 +0.0018 +40.0006 +0.0011 +0.0019 4.5 +0.0040 +0.0030 +0.0029 +0.0040
5.0 +0.0000 -—-0.0026 —0.0021 40.0000 50 +40.0013 +0.0008 +40.0007 +40.0013
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Appendix 1: Proof of Theorem 1
We consider the same notations as in Subsection 3.2. g(Z,) has the form

z(e)lzﬂ 1 A(Z'n Q)th 1 Zﬁt ].BlZn'l o Mn(Zn.)
Al Zn) = — 2 : : : - ,
(A.1} 9(Zn) Ao Y e N A

where A(Z, ) is linear in Z, o, B is a matrix of order O(1), 6™ is a constant and
M, is polynomial in Z,,. Let ¢,(z) be the density of the formal Edgeworth expansion

of Z,, with L, = I}/\/ﬁ the supporting lattice of Z,, ie. L = Z;{:l £;Z + T, Set

Clz) ={y =n& + -+ yaba; —1/(2v/n) < i — 3; < 1/(2¢/n)}. We compare FJ[CT]
with its formal expansion:

A= Z Fl@)pnlz) - f F(9)gn(y)dy = Z / (f(%p& 7 _ f(y)qn(y)) dy

= T - n=3/2y,
g_if( ) /C (@a() = 0u(a )dy+m§ / o) (F@) — £y + O
We have

B(z) = f (@) - f@)dy £0, &
C(x)

k \ 1¢e k . 1e
7 Ha) - Zl Wﬂ“——;\zf(ggf(‘l,) +0(n™) < g(z) <27 (o) + ; ——2[}(,2315 (l,) +0(n ).

Let & be the vector whose coordinates are 8, = i(#)'£,.. Then, see Bhattacharya and
Rao (1986),

Z B(z) = f f gn(2)dzdl
R* J[-172,1/2)¢

:ceL
X (*ﬂcu:g{m) & Ha)< 6t/ VRill hn fn +nﬂzg(m)—@*‘{a)26°t/~’n'i”+hn/ﬂ)
+Zn‘“‘ —r41)/2 Z Z / / dr[S1(v/nz, oz (z)]da.)dt
Lo T J[-1/2,1/2)4
X (—HOSQ(E)—‘?—l(a)S—6"t/\/m+hn/n +lozg(a)- 81 (a) 262t/ VAT +ho fn)

+_1
n

where 51(y) is a real function, discontinuous at every integer, defined by Bhattacharya
and Rao ((1986), Appendix 2), d, denotes the differentiation with respect to the r-th
component of z, dz(.,) = [];., dx1, hn is of order O(1) and ¢5 denotes the density of
N(0,Z). If r > k, the term

e am—(d—r+1)/2
I =n-@r2 30 Z/rf[_mm]d

Loy

ﬂogg(m}—q)-l(a)g—m,fv’m'll+hﬂ/ndr[Sl(ﬁ‘fr)ﬁoﬂ(x)]dx(w)dt
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is of order O(n™"). If ¥(r, 5) < k such that §(6)'¢, # 0, 6,/6, € @, then the the following

transformation, y; = E:=1 i)V &k, Yu = 21, k # 7, takes its values on a lattice, where
&8; # 0. Therefore, calculations lead to

> B = Y B =Y L+

:::Ef,n yEl_.n,

with I, = O(n™1) if r # j, and I; = H,/\/n, where H, = O(1) has no limit, when n
goes to infinity.

If 3s # j such that é,/6;, € R — Q, then there exists a continuous expansion to
the order o(n~1/2). Indeed, suppose without lack of generality that s > j and Vr < 4,
br =0. Set e(t) = §'t - |6'¢], e;(t) = e(t)/6; - |e(t)/6;] and F; the distribution function
of e;(t}). Then

Ij= —n e 3 /R en(p/ Vit @/Vi)lsizo

pEZd=s
« [Bles(0) =1+ Fy(an 1 8lpy) ~ 2 Brp— Vit /)~ #Buo/n)
= Fi(1 = an = Blp,)) + 2"Bip + [Vt (p/ V) - p'Bip/n]) + %] :
where o, = vn® (a) — [/n® ()], and [7‘(1_)(1)) = Zf# bipi — LZ:‘;S 8;pi|. Consid-

ering the same kind of calculations as Pélya and Szegd, ((1972), Chapter 4), we obtain,
that Vk > 0,

1 ; ZT
n-(k—3)/2 . 902(1_’(1)/~./ﬁ|)(')eg"”kﬂ“ﬁlﬂe2 ) = 0.
gy Em
Therefore
1
| Bt = im0 S s e ¢ Gy, R

k-
E(I)EZ

X Fj(op + 5(2(1)) - EtBIE - [ﬁtj(ﬂ/\/ﬁ) —~p'Bip/n])
= E[ej (y)ué't>0]1

and Theorem 1 is proved.
Appendix 2: Proofs of Theorems 3 and 4

The idea of the proof is to replace, in expansion (25) of Peers (1965}, Z,; by
Yoi= Zn:+Wgy//n, where Wi,y are continuous random vectors whose distribution is
given below. It leads to

Z(X’ 9) = g(Yn)
i(8) W) N AWy} Bz Zp 1
Vol Va1
N A(Z2)'BaWyyy  WHB1Zny + 27 1 Bi Wy
nVibl * ny/ill

=2(X,0) -

+ O(n_3/2).
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Let P, be the distribution of Z, and F;, the distribution of W/+/n conditional on
Z, = z, with density h,. Let f(x) = lyzy<a-1(a)- In the following, we note M, any
quantity of order O(1) which can be neglected. We choose Hy, so that [ fd(FPp*F,—Qy)
can be approximated to a higher order, where @, denotes the formal Edgeworth expan-
sion of a sum of continuous iid vectors with density ¢,. Set K = {t = Ele Eits |ts] <
1/2}. A(K) denotes its Lebesgue measure. Then

[ $a(Pur =Gy = 0 )+ S

/ F{gn(@) Ay — z)AE)In~Y2 = gu(y) }dy.
ccL, ¥ €(@)

Two cases occur:
(i) Yt € K, g(z + t//n) < ® '(a), which implies that

B(z) = jc B sty = HNE) 2 — )

d
= (ﬁr’i >_Elan(@)é + O(n"m)) :

i=1

(ii) f(z +t/+/7) varies when t runs the set &, for which

t 1

B =n [ Lapuzies an(@loaNE) -1 - Lol X g,

Set B as the set of such z's and ¢, = vnil-1(—® " }{a) + g(z)). To get a higher order
expansion than in the pure lattice case (see Theorem 1), it is necessary that

/f:% ﬂf(9)1u(1)2tn_1 (Q‘n(U)/\(ff) - l)du = O(n_lfz)_

Therefore, if
Sn ()
vn’

gn(u))\(ﬁ’} =1+

with [z f.(u}du = 0, then

M
o ={d+1)/2 — ol -

B(#) =m0 200(0) [ Wipugyzens { n(0) = wi(e) + 72 b
where j/,{z) = ¢/,(z) /¢ (). Considering Theorem 1, if (H3) is satisfied, then
S 8@ = [ | [ es@law@Unlu ] 2) - st iNdude + ofn™)
el R¢ JK
If (H3) does not hold, there is no asymptotic expansion to orders higher than O(n™1),
unless

- Mn _ ~1/2
/;E’ ﬂi(ﬂ)‘u(n?_th {fn(u) - ut.?n(m) + ﬁ} dt = On )-

This is satisfied in particular if

k
Fa(w) =Y uitlin(2).
=1
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Besides, if the conditional density of W with respect to Lebesgue measure is
falw
anli) = MR Mgt (14 2521

then, U = W(1 + H,(W)/y/n), where

3 el

i=1
is a random vector whose coordinates in the basis (&1, ...,&q) are U[—1/2,1/2] r.v.’s.
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