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Abstract. As a flexible Bayesian test criterion for nested point null hypothe-
ses, asymmetric and multiple Bayes factors are introduced in the form of a
modified Savage-Dickey density ratio. This leads to a simple method for ob-
taining pairwise comparisons of hypotheses in a statistical experiment with a
partition on the parameter space. The method is derived from the fact that
in general, the asymmetric Bayes factor can be written as the product of the
Savage-Dickey ratio and a correction factor where both terms are easily esti-
mated by means of posterior simulation. Analyses of a censored data problem
~ and a serial correlation problem are illustrated for the method. For these cases,
the method is straightforward for specifying distributionally and to implement
computationally, with output readily adapted for required tests.

Key words and phrases: Asymmetric and multiple Bayes factors, Savage-
Dickey density ratio, Gibbs sampler, point null hypothesis, censored data, serial
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1. [Introduction

Consider an experiment with a parameter vector (or suitably reparameterized
vector) 0 = (w,¥) € O(= Q2 x ¥;Q C R and ¥ C R), where we are interested in
testing a nested point null hypothesis Hp : w = wp {wp given) against a general
alternative Hj : w # wo, where w € Q is an unknown parameter of the statistical
model. For Bayesian inference, Bayes factor is usually used as measure of evidence
in favor of Hy versus H 4, which is complement of Hy (cf. Kass and Raftery (1995);
Verdinelli and Wasserman (1996)). Let = € (0,1) be the prior probability of Hy,
and let py and p be the densities conditional on Hy and H 4 (here py is also a density
of 8, but the conditioning on Hy : w = wy eliminates w from the argument). Thus
the overall prior distribution function of # = (w,)’ is the mixture

P w P
F(6) = 11y o)) / po(ta)dts + (1 — ) / / p(t1, ta)dtadt.
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The Bayes factor, B, for testing Hy is

Jo L(wo, ¥)po(v)dip
Jo Jo L(w, ¥)p(w, ¢)dwdyp’

(1.1) B=

where L(w, ) is the likelihood function (cf. Jeffreys (1961)). In constructing the
Bayes factor for the point null hypothesis, it has been usually thought sensible to
take the prior distribution of the parameter w, conditional on H 4, to be symmet-
rical with respect to wp (so as to have an equal weight function).

In an effective Bayesian analysis concerning a real parameter w, however, it
often occurs that prior attitudes with respect to w < wg and w > wq are different.
For example, it is unusual that the effect of a policy will be given a priori an
equal chance of being positive or negative. In the particular case where there
is no nuisance parameter () involved in the null hypothesis, Zellner (1987) and
Bertolino et al. (1995) suggested a. flexible Bayes factor which deals simultaneously,
and without any constraints of symmetry, with any number of hypotheses. Given
a partition (o = {wo}, N1 = {w < wo}, U3 = {w > wp}) of parameter space
2, they introduced a multiple Bayes factor as a vector with two components, the
asymmetric Bayes factors of {2 versus 1, Qg respectively (they called asymmetric
Bayes factor as partial Bayes factor in their works). Therefore, this approach
makes a separate analysis of suitable subsets of 2 possible so that, from a classical
perspective, the approach may be seen as a multiple decision problem (see, for
example, Ferguson (1967)). It is seen that the approach is appropriate in practical
problems and useful in robust perspectives (cf. Bertolino et al. (1995)). However,
the approach is not directly applicable for the case of a nested null hypothesis where
w is a subcomponent of the whole parameter . This indicates that the application
of the concepts of multiple Bayes factor to the comparison of hypotheses in the
presence of a nuisance parameter can be interesting; a modification to the multiple
Bayes factor is needed for encompassing a nested point null hypothesis.

The purpose in this paper is to suggest the multiple Bayes factor that enables
us to deal with the nested point null hypothesis when the different prior attitudes
with respect to the partition (0,Q4,...,Qk), K > 1, of parameter space  is
appropriate. Analytic methods(exact or approximate) for carrying out required
multi-dimensional integrations in calculating the multiple Bayes factor will some-
times be well-nigh impossible (especially for analysis of constrained parameter and
truncated data problem as studied in Gelfand et al. (1992)). A simple method for
approximating the multiple Bayes factor is also proposed. It is shown that the
Bayesian calculations can be implemented routinely for the analytically impos-
sible cases by means of the method. The method is obtained by extending the
method of Verdinelli and Wasserman (1995) to the case where there are several
hypotheses.

In Section 2, we introduce the multiple Bayes factor for testing a nested
point null hypothesis. Section 3 interprets it in terms of a modified Savage-Dickey
density ratio. Then we introduce the simple method for estimating the density
ratio and discuss its implementation. In Section 4, we apply the simple method
to a censored data problem. As another illustration, in Section 5, the method is
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applied to the analysis of a serial correlation, and a summary discussion is provided
in Section 6.

2. Asymmetric Bayes factors for nested point null hypotheses

Let X having a density f(z | #) be observed with unknown 6 = (w, ) € O(=
2 x ¥), and it is desired to test the nested point null hypothesis Hy : w = wy
versus Hy : w # wo. Introducing the partition (Qo,Q4,2), where Qo = {wo},
M ={w:w<wp}, and Q2 = {w: w > wp}, makes it easier to perform a Bayesian
analysis, especially the subsets ; and €y play a priori different roles. Let us
assign the probabilities 7;(3_ 7; = 1) to the events § € Q; x ¥ (i = 0,1,2), and
let po, p1, and ps be respective prior densities of # conditional on § € Qg x U,
€ x ¥, and 8 € 2y x ¥. Then the overall prior distribution function of 8 is

g7 w ¥
(2.1) F(H) = WOI[wo,oo) (u})/ po(tg)dtg + 7r1/ / [*)] (tl I t2)p(t2)dt2dt1

w Y
+ 2 / / ga(t1 | t2)p(ta)dtadty,

where g;(w | ¥)p(¥) = p;(8), is the conditional prior density for 6 € Q; x ¥,
Jj = 1,2, and po(¢) is the prior for ¥ under Hy. Here I(-) denotes the indicator
function. Different prior beliefs about w in €, and Q3 can be represented by a
suitable choice of the conditional density ¢g; and g, (or, for robust analyses, of
classes G1 and G of possible densities). Extending the asymmetric Bayes factors,
introduced by Bertolino et al. (1995), to the case of the nested null hypothesis, we
set up the following definition.

DEFINITION 1. The asymmetric Bayes factors of Qg versus ©Q; and Q, are
defined as

Sy L{wo, ¥)po(v)dyp

_ Jo L(wo, ¥)po (1) dyp
m(g2)

and B;=
m(g1)

(2.2) B,

" and the multiple Bayes factor is a vector with components By and Bs; (Bj, Bs),

where L(w, ) denotes the likelihood function, and m(g;) = fn,- Jo Lw, ¥)gj(w |
Bj and B can be seen as asymmetric Bayes factors of Qg versus 25, j = 1,2,

conditional on 8 € (2 U Q) x ¥ and 8 € (o U Q) x ¥, respectively. They
do not depend on 7, m; and ws but rather depend on the given partition; Q =

(907 917 QQ)-

Extension to point null hypothesis (Hy : w = wp) with the partition (o,
Q1,...,Qxk) of the parameter space ) can be easily obtained.

LEMMA 1. Assigning probabilities mo, 71,..., Tk, Y, ™ = 1, to subsets {Qg x
U} {0 x¥},...,{Qk x ¥} and joint prior densities p;(0) for 6 = (w,¥) € U x T,
1=1,..., K, we have the asymmetric Bayes factor of Q0 versus Q; given by

L(wy, d

23) B = Ju Lo, $)po(¥) Y for weouQ i=1.. K

m(gi)
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and the overall Bayes factor:

K K
(2.4) OB=> m/Y mB',
=1 i=1

where po(y) denotes the prior for v under the space §o X V¥, m(g;) =
Jo, Jo Lw, ¥)gi(w | ¥)p(4)dvpdw, and pi(0) = gi(w [ ¥)p(¥)-

PROOF. Given the partition of the parameter space, the overall distribution
of 0 = (w,y) is

Y w Y
(2.5) F(9) = Wof[wo,oo)(w)/ po(te)dts + 771/ / g1(t1 | t2)p(te)dtadt;

w P
ot [ [ gl | tap(ta)dtades

Thus, from (1.1), we get the Bayes factor of o versus €; conditional on § €
(QUQ) x ¥ as By, i =1,...,K. Now the overall Bayes factor is

Jo L{wo, ¥)po()dy

OB = 1171 95w | Dp)dpds’
where
~ ™ TK
(26) 90 19) = T2 | )+ -+ T | 9)

is the prior density of § conditional on H,4. Expressing OB in terms of B;, ¢ =
1,...,K, we have the equation (2.4).

Note that if g;(w | ¥) = --- = gk (w | ¥) for Q; U--- U Qk, then the overall
Bayes factor becomes the same as the usual Bayes factor in (1.1). Extensions
to a nested point null hypothesis with more than one nuisance parameter can be
easily obtained by setting ¢ € ¥ C RP, p > 2. For the general case, the final
probabilities of 2o and €2; turn out to be

K -1
P(Q | data) = {1 5 ZmB;l} ,
1=1
(2.7) K -1
P(Q; | data) = { 1+ mo/mB; + 7 'B; > mB;'y
J=1,J#1
i=1,...,K.
It is easily seen that if we are interested in the asymmetric Bayes factor

B’ for Qg versus, say, £, Uy, U---UQ;,, where {i1,i3,...,in} is any sub-
set of {1,2,...,K}, then we have directly B’ as the weighted harmonic mean of
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B;,,Bi,,...,B;,. Moreover, the asymmetric Bayes factors of §2; versus (}; are
given simply by B;/B;.

The asymmetric Bayes factors based on asymmetry of the conditional prior
densities also reveals the conflict between p-value (observed significance level) and
P(Qq | data). This can be seen by using the example in Berger and Sellke (1987):
Suppose X = (z1,...,Tn) is a vector of independently N(w,) random variables,
and that 1 is known, and suppose it is desired to test the point null hypothesis
Hy : w = wp versus Hy : w # wo using the asymmetric Bayes factors B; and
Bs. Under the partition (Qo,;,82) of the parameter space, where Qo = {wo},
0 ={w:w<wp}and Qy = {w:w > wp}, we assume the conditional prior density
gi(w) is Na, (wo, T:02), j = 1,2. Since a sufficient statistic for w is X ~ N(w,a?%/n),
we have that m(g;) is an N(wo, (; + n~1)o?), i = 1,2. Thus

£2
2. = 1 - 1/2 _ — 1.9
(2.8) B;=(1+nmn) exp{ ———2(1 n (nn)‘l)}’ i ,2,

and, from (2.7),

LI 2 -
(2.9) P(Ho|z)= |1+ Z W—;(l +n71) Y2 exp {—m}] )

=1

where t2 = n(Z — wo)?/02.

Therefore, the Lindley paradox is apparent from this expression: For arbitrary
7o, m and 7g, if ¢ is fixed, corresponding to a fixed p-value, but n — oo, then
P(Hg | ) — 1 no matter how small the p-value.

3. The simple method

As seen in (2.3), it is often difficult to compute B; due to required multi-
dimensional integrations (especially for ¥ C RP). One possibility is to approximate
B, analytically by approximating the integrals in B; by Laplace’s method (cf.
Tierney et al. (1989); Hsiao (1997)). Recent advances in statistical computing
make it feasible to use posterior simulation output to estimate the Bayes factor,
or integrated likelihood ratio, for a large class of problems (cf. Gelfand and Dey
(1994); Newton and Raftery (1994); Chib (1995); Lewis and Raftery (1997)). In
this section we consider yet another simple method (an extension of the method by
Verdinelli and Wasserman (1995)) for estimating B; which exploits Gibbs sampling
algorithm to avoid or improve on the analytic approximation.

3.1 Modified Savage-Dickey density ratio

Dickey (1971) derived an alternative expression for the Bayes factor defined
in (1.1). The expression can be directly applied to the asymmetric Bayes factors:
If the prior in Lemma 1 has a relation that

(3.1) pi(¥ | wo) =po(y) for (w,9) € (QUQ) xT, i=1,...K,
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then B; = pi(wo | )/pi(wo), where pi(w | ) = [pi(w,¥ | z)dy, the marginal
posterior of w € (Qo U ;) . Dickey attributed this formula to Savage. Thus
the alternative expression for B; is called Savage-Dickey density ratio. We see
that when the special form (3.1) holds, computing B; reduces to the problem of
estimating the marginal posterior density p;(w | z) at the point wy. But there are
cases where (3.1) is not appropriate. The next section presents an example of this.

When (3.1) is not appropriate for the prior specification, the following theorem
gives an alternative expression of the asymmetric Bayes factor suited for a simple
approximation method.

THEOREM 1. Assume that 0 < p;(wp | ) < 00 and that 0 < p;(wo, ) < 0o
for almost allp, 1 =1,..., K. Then the asymmetric Bayes factor of Qo versus €);
defined in (2.3) is

(3.2) B; = pi(wo | 2)E [ Po(¥) ] _ pilwo | 2) [ Po(¥) ] ’

pilwo,¥)|  piwo) pi(¥ | wo)

assuming that the expectation is finite, where the expectation is with respect to

pi(¥ | wo,z). Here pi(w | 2) = m(g:)~" [ L(w, ¥)pi(w, ¥)dpIn,ua, (W) s the
truncated marginal posterior density, and p;(w, ) is the conditional prior density
of (w,9) € Q; x 0.

ProOOF. For w € QU Q;, we have that

Sy L(wo, ¥)po(v)dy
m(g;)
Jy L(wo, ¥)po(v)dy
pi(wo | z)m(g:)
L(wo, ¥)po(¥)p:i (¥ | wo, 7)
=nlen | 2) [ e
po(¥)

= pi(wo | z)/y ml)i(iﬂ | wo, z)d1p,

because p;(wo, ¥ | ) = L(wo, Y)pi(wo, ¥)/m(gi).

B =

=pi(wo | T)

Note that, when (3.1) fails, B; in (3.2) is equal to the Savage-Dickey density
ratio times a correction factor, and hence (3.2) can be seen as a modified expression
of the Savage-Dickey density ratio for the asymmetric Bayes factors.

3.2 Simple approxrimation method
Theorem above shows that computing B; is reduced to the problem of esti-
mating the truncated marginal posterior density p;(w | z) at the point wy and the

factor C; = FE [%] An adaptive Monte Carlo integration technique known as
the Gibbs sampler is proposed as a mechanism for implementing a conceptually
and computationally simple solution in such a problem. We refer to Gelfand and

Smith (1990) for a discussion of this technique and its properties.
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Assume that samples {(w;(i),%;(i)),j = 1,...,m} and {4;(3),5 = 1,...,m},
¢t =1,... K, are independent Markov chain samples from the posterior using the
implementations of a Markov chain Monte Carlo. If the conditional posterior
pi(w | ¥, x) defined for w € QU ; is in a closed form, then, following Gelfand
and Smith (1990), we can estimate p;(wp | z) by the finite mixture density

(3.3) pilun | 2) = — > pilwo | 95,2).
j=1

When it is not in a closed form, one could use a method by Chen (1992) or standard
density estimation techniques such as a kernel density estimate and a smoothed
histogram.

Using the sample (z[)l, <, Um) from p; (¥ | wp, &), we estimate C; by

& 1 &
34 C, ==
( ) mz:: w07¢3)

These estimates lead to final estimate of B; as B; = ps(wo | 2)Ci. pi(wo | z) is
consistent and a central limit theorem is available for the estimate (cf. Tierney
(1994)). The consistency of C; follows from the ergodicity of the Markov chain.

Moreover, if the chain is uniformly ergodic and the expectation of | ”("(ﬁf,}) ]2 under

pi(¥ | wo, ) is finite, a central limit theorem applies to C; (cf. Tierney (1994)).
Since pi(wo | z) and C; are based on two- independent samples, Taylor series
expansion yields a first-order approximate variance for B; as

(3.5) V(B,) = $3C? + s} (wo | 2),

where s; and s, are respective standard errors of p;(wo | z) and C;. We refer Ripley
((1987), p. 155), Gelman and Rubin (1992), and Geyer (1992) for the methods of
estimating the standard errors.

It is straightforward to see that, setting the joint priors py(w,9) = --- =
Pk (w,¥) = p(w, ) for the parameter space (Q; U---UQg) x ¥, we can readily
apply the equations (3.2), (3.3), (3.4), and (3.5) for estimating the usual Bayes
factor in (1.1). This yields the estimated Bayes factor as

(3.6) B = p(wo | )C
i - R pO("/’J
m;p(wﬂ%,x) ZP(WO’%) :

where p(w | z) is the marginal posterior density of w € € obtained from using the
common prior p(w, ).
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4. Application with censored data

4.1 The simple method

Consider the testing of normal mean with censored data. Assume we have a
series of observations xp ~ N(u,0?), h=1,...,n, and we observe only that z) €
Ay, for some set Aj. Our problem of interest is to test Ho : 0 = po with different
prior attitudes with respect to a sensible choice of the partition o = {u = po},
0 = {p < po}, and Q2 = {i > po}. Let overall prior distribution function of

(u,0) be
o m o
(41) F(p,0) = TFOI[uo,oo)(#)/ po(t2)dts +7f1/ / g1(t1 | t2)p(t)dtadty
0 —00 JO
m o
+m / / as(ts | t2)p(ta)dtadts,

where gi(u | o) is the pdf of Ng,(uo,7:0%), denoting a normal distribution
N{(uo, 7:02), truncated to the set Q; and p(c) = po(o) ox o~!. Note that, in
this case, § defined in (2.6) with K = 2 is a unimodal density having a disconti-
nuity point in the mode yu = o, and see Lee ((1988), p. 140) for the dependent
prior setting.

Standard Bayes calculations yield the following complete truncated condi-
tional distributions involved in (3.2): Given the partition and the prior p;(u, o),
i=1,2,

_ -1 2
nx + poT; o
u|x1,...,wn,o~Ngi( = _1>, for peQ,
n+7; n+T;
1/2
‘7'371,-”,-’51”#691”“ : ’
X(n+1)

where S; = S°p_, (zn — )2+ 77 (1 — po)?, T = Y_h_; Th/n. Treating the true un-
observed values of the censored z}’s as parameters, we also obtain the conditional
distributions of x;’s:

zn | o ~ Na, (#,0%), h=1,...,n

We may implement the Gibbs sampler using the complete conditional distri-
butions given above. Run the Gibbs sampler for each of the Q; separately with
m times to produce a sample whose empirical distribution approximates marginal
posterior of i (see, for example, Geyer (1992), for choosing m). Then we estimate
pi(uo I 1 €A,...,xn € An), i=1,2, by

(4.2) ﬁi(HO Il‘l €A1,...,l’n€An)
" ( NIy + por; ! ol )
Ho; n—i-'ri'1 ’n+7‘f1

1 m
:EZ
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where ¢(7; a, 3) denotes the pdf of N(«a,3) with variable v, and Z; and o) are
the mean of z1,...,z, and the value of ¢ at the k-th replication, respectively. We
proceed the same Gibbs sampling with p fixed at o to draw a sample (a1, . .., 07,)
from the posterior p;(o | po,z1 € A1,...,z, € A,). Since po(o)/pz(uo,a) =
1/gi(po | 0) = 27Y2(rym) 20,4 = 1,2, the factor defined in (3.2) is given by

C E[#IHWXIEAI’ XneAn:l
pz(/-’dﬂy )

=2 1/2(7r'r,-)1/2E[<7 | o, X1 € As,..., X, € Ay,
which can be estimated by

) 1/2(7m_)1/2 m

(4-3) Ci = Z Ok.

Finally, using (2.8), we calculate posterior probability of each hypothesis based
upon the estimated asymmetric Bayes factors given by

(4.4) Bi=Cipi(po | 71 € A1, ..., 70 € 4,), i=1,2.

In the course of sampling from the truncated normal distributions, we may
use a convenient “one-for-one” sampling method by Devroye (1986): To draw an
observation from N(a, 3) restricted to an interval (a,b), we generate U, a random
uniform (0, 1) variate and calculate X = o + 8/20~1(¢), where

bh— -
= () oo () -2 () -

with & denoting the standard normal cdf. It is straightforward to show that X
has the desired distribution.

For estimating the asymmetric Bayes factors, several methods are also avail-
able. In particular, Newton and Raftery (1994) and Gelfand and Dey (1994) took
advantage of posterior simulation to compute the Bayes factor. However, their
methods need evaluation of the likelihood L(y, o) that might be a computational
burden for this example: In the censored data problem where x; is known only
to lie in a set Ay, the likelihood evaluation involves integration over the set Ay,
h=1,...,n

4.2  Simulation results
The aim of this simulation study is to see the performance of the simple
method and when and how much the use of the multiple Bayes factor yields sub-
stantially different conclusions with respect to the use of the usual Bayes factor.
For the study, we considered two cases of censored data of size n from

N(u,0?):

Case 1. {{—.2(z1),z2,%3,%4,...,Zn-2,Zn-1).3(Tn)}, where the first obser-
vation is left censored, and the last observation is right censored.
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Case 2. {(—.2(z1)(—.5(z2),%3,Z4,...,Tn-2).1(Tn-1)).3(zn)}, where the
first two observations are left censored, and the last two observations are right
censored.

Under the partition 2 = {u = 0}, @ = {g < 0}, and Qp = {p > 0}, we
estimated B;, 7 = 1,2, and then calculated the posterior probabilities of Hy : u = 0,
H, : p < 0and Hy : u > 0. For illustration, we specified conditional priors g; (i | o)
as ¢(u;0,7;02)Iq, (). Thus {n,u,0,71,72} is the parameters set to be varied in
this simulation.

Given a generated data, Gibbs sampling in the previous subsection was con-
ducted. Running the Gibbs sampler for each of the p;(uo =0 | z1 € 4;,...,2, €

A,) and the C; separately with m = 1000, we monitored the collection {p,g), k=
1,...,m} and {&,(:),k = 1,...,m} over 5-unit t-increments (t = 5,10,...). Sta-
bilization of each empirical quantiles of p,g) and &,(:), and successive density es-
timates obtained by (4.2) indicated convergence of the algorithm within ¢ = 30
iterations. Under the same simulation, to estimate the usual Bayes factor for
testing Ho versus Hy (Hs = Hy U Hy), we specified the conditional priors to be
n(p| o) =ga(u| o) = (1;0,70%) I, U0, (W)

For each parameters set with o = 1, we carried out 200 runs of the posterior
simulation. In the case of u = 0, Table 1 tabulates means and standard deviations
(in parentheses) of the estimated asymmetric Bayes factors and the usual Bayes
factor for a couple of sample sizes n and for different types of 71, 72 and 7. Posterior
probabilities of Hy (denoted by Pr(Hp | x)) calculated from the estimated Bayes
factors are also tabulated in the tables. For the calculation of the probabilities
from (2.7), we assumed that the prior probabilities of the three hypotheses are
o = 1/2 and m = me = 1/4.

The table notes several points: (i) The posterior probabilities for Hy indicate
that the simple method in Section 3 estimates of the asymmetric Bayes factors for
testing the null hypothesis (Hp : p = 0) properly. (ii) It is also noted from the
tables that, regardless of prior distributions, the test using the asymmetric Bayes
factors results in higher posterior probability of Hy than that using the usual Bayes
factor. This favorable performance of the test by the asymmetric Bayes factors is
shown to be consistent with different settings of censored data (Case 1 and Case 2),
and the parameters set. This suggests the idea that the asymmetric Bayes factors
carry information about Hy that could be remain hidden when considering the
usual Bayes factor. (iii) Finally, the above implications become more apparent
with increase of the sample size.

The advantage of using the asymmetric Bayes factors (B; and Bs) is that,
when Hj is not true, they enable us to make a correct decision between H; and Hy
incorporating the different prior attitudes with respect to the hypotheses. This
is not available from the use of the usual Bayes factor. Table 2 highlights the
merit of the asymmetric Bayes factors by comparing the posterior probabilities
of Hy : u < 0 and Hs : yu > 0 with those obtained from the symmetric priors.
The probabilities noted in the table are calculated from (2.7) using mo = 1/2
and m; = m = 1/4 for the Case 2. For the comparison, the conditional prior
distributions (i | ¢ ~ Ng, (o, 7:02), i = 1,2) to be used are as follows:
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Table 2. Pr(Hp | z) and Pr(Hz | z) for the true mean p.

Pr(Hi | z) | Pr(H; | z)

u] = Prior 1 Prior 2 Prior 3 Prior 4 Prior 1 Prior 2 Prior 3 Prior 4

-15 10 0.83072 0.78033 0.82888 0.78254 0.00480 0.00899 0.00700 0.00617
20 0.99777 0.99675 0.99776 0.99677 0.00003 0.00007 0.00004 0.00005
-1.0 10 0.56186 0.46638 0.55736 0.47092 0.01798 0.03115 0.02584 0.02171
20 0.92556 0.89528 0.92495 0.89610 0.00151 0.00302 0.00216 0.00210
-0.5 10 0.35804 0.27618 0.35124 0.28216 0.04589 0.07144 0.06403 0.05131
20 0.35069 0.32739 0.40949 0.27490 0.17343 0.03968 0.03484 0.19367
-03 10 0.25965 0.19318 0.25164 0.19982 0.08531 0.12240 0.11353 0.09220
20 0.31022 0.23795 0.30468 0.24270 0.04482 0.06782 0.06188 0.04921
0.0 10 0.16793 0.11489 0.16199 0.11935 0.10122 0.14046 0.13299 0.10712
20 0.12829 0.08866 0.12461 0.09139 0.07539 0.10608 0.10190 0.07858
0.3 10 0.09664 0.06155 0.09140 0.06520 0.20220 0.25350 0.24543 0.20924
20 0.07049 0.04567 0.06582 0.04899 0.23785 0.29462 0.28840 0.24335
0.5 10 0.13373 0.08937 0.12722 0.09415 0.18530 0.23472 0.22497 0.19376
20 0.04147 0.06336 0.03788 0.06919 0.32378 0.37224 0.38237 0.31442
1.0 10 0.03933 0.02314 0.03653 0.02494 0.40031 0.44921 0.44306 0.40631
20 0.00425 0.00254 0.00386 0.00280 0.86302 0.87681 0.87565 0.86428
1.5 10 0.01054 0.00672 0.01087 0.00652 0.76989 0.77583 0.76263 0.77302
20 0.00009 0.00008 0.00013 0.00006 0.99593 0.99395 0.99391 0.99394

Asymmetric priors. Prior 1: (n, = |p| + «, 72 = 2(|p| + «)); Prior 2:
(ro =2(lul + ), 72 = |u| + @)

Symmetric priors. Prior 3: (1 = 72 = |p| + @); Prior 4: (1, = 7p =
2(Ju| + @), where a = .5Ig,(1)).

The table notes a systematic pattern that, when true mean is u < 0, the
asymmetric priors with 7 < 7> yield the highest Pr(H; | ). On the other hand,
when p > 0, those with 71 > 73 yield the highest Pr(H; | ). These phenomenon is
shown to be consistent with the true mean value (u) and the sample size (n). Thus,
this fact can be used as a criterion for the choice of the asymmetric priors. Finally,
from Tables 1 and 2, we can deduce that, if we have different prior attitudes with
respect to the hypotheses, the asymmetric Bayes factors leads to more correct
test than the usual Bayes factor. In this comparison, we see that the posterior
probabilities for Case 1 reveals the same implications as those in Table 2, and
hence we omit them from the presentation.
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5. Test of serial correlation for simple regression model

5.1 The simple method
Consider a model with a disturbance term generated by a first-order autore-
gressive process; that is,

Yt = BTy + ug

(5.1)
Uy = pug—1+€, t=1,...,T,

where p is restricted to A = {p : —1 < p < 1}. It is assumed that the ¢; are
normally and independently distributed with zero means and common variance
1/6. Note that if p = 0 would reduce to a simple regression model. Therefore, our
interest in this section is to construct the simple method for testing of Hy : p = po,
H;:1< p<pyand Hs : pg < p <1 with different prior attitudes with respect to
a sensible choice of Qo = {p = po}, %1 = {-1 < p < po} and Ry = {po < p < 1}.
Difficulties of the test arising from the frequentist approaches are well illustrated
in Marr and Quesenberry (1991). Let overall prior distribution function of (p, 3, 6)
be

6 B
(52) F(pv ﬂa 6) = 7TOI[p0,1] (p)A / pO(t2, t3)dt3dt2
p 6 B
+ 7r1/ / / g1(t1 | to, t3)p(te, t3)dtsdtadty

e 6 B
+ 7r2/ / / g2(t1 | t2,t3)p(te, t3)dtsdtadty,

where g;(p | 8,6) = gi(p) is the pdf of Ng,(po,i), denoting a normal distribution
N(po, i), truncated to the set Q; and p(3,6) = po(B,8) ox 6'/2 (cf. Zellner (1971)).
Note that, in this case, § defined in (2.6) with K = 2 is a unimodal density having
a discontinuity point in the mode p = py. Assuming the asymmetric prior setting,
we have, for given data D = (y1,...,yr,Z1,...,2T), joint posterior density for S,
p and § given by

(5.3)  p(B,p,6|D)

5 T
o678 03 - s - i

t=2
2
- % }IQ‘ (p)1

where —oo < 8 < o0 and 6 > 0. Thus we have the following Gibbs sampler for 4,
B and rho:

6| B,p,D ~ Gamma(a,b), i=1,2,
/8 | 6; p:D ~ N(Q2(p)/Q1(p)a (Ql(p)é)_l)a

riQa(B) + pob! 78! |
”‘ﬂ’é’DNN""( rQu(8) + 671 ’nczl(mw-l)’ for P&
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where

T

a=(T+3)/2, b=2/ {Z(yt — pye-1 — Bzt — Pi’?t—l))} ;

t=2

M~

T
Qi) =Y (e —pwe-1)®,  Qa(p) = Y _ (¥ — pye-1)(ze — pEe-1),
=2

t

T
QB) = (W1 — Bz-1)®,  Qa(B) =D (ye — Bre—1)(ye — Be)-

t=2 t=2

il
M)

Given the prior independence assumption that p(3,6 | p) = p(B, §), the asymmetric
Bayes factor of g versus €; in (3.2) reduces to

_ pi(po | D)
gi(po)
= pi(on | D)(2rr)? [ (2mn) 2 exp{~(o = po)*/(2ri) ),
i=1,2.

(54) B

The marginal posterior p;(po | D), i = 1,2, can be estimated by running the
Gibbs sampler for each of the {2; separately with m times to produce

o ( 1iQ2(Bk) + 905;1 7'1'5;:1 )

m Po; 1 =
5. _ 1 riQ1(Bx) + 8¢~ TiQ1(Bk) + b
(5.5)  Pi(po | D) = m kZZI [ # (p TiQa(Bk) + Pofsk_l Ti(s;l > dpa
£ ” TiQ1(Bk) + 61:1 ’ r:Q1 (Bk) + 5,:1

where ¢(7v;71,72) denotes the pdf of N(vi,72) with variable v, and B and 6 are
respective values of 3 and & at the k-th replication of the posterior simulation from
the Gibbs sampler. Finally, we estimate the asymmetric Bayes factor of Ho versus
Hi by

(5.6) B =pi(po | D) /Q (@nr) 2 exp(~(p - po)*/(2ri)dp,  i= 1,2

Thus the posterior probabilities Pr(Hp | D), Pr(H; | D) and Pr(H | D) calculated
from the estimated asymmetric Bayes factors lead to testing the hypotheses.

5.2 An empirical data example

Consider the data in Table 3 on a set of 113 measurements of diameters
of certain automatic-transmission parts made during the life of one cutting tool
having an automatic compensator. The data (reported in the study by Marr and
Quesenberry (1991)) include compensator setting (Setting) the diameter (y) and
part number (z). The objective is to test the existence of serial correlation of y for
each of three compensator settings (87, 107, 112) by means of the simple method
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Table 3. The empirical data set.

Setting Y Setting Y z Setting Y T
87 26.791 87 26.809 40 87 26.831 78
87 26.793 87 26.805 41 107 26.816 90
87 26.798 87 26.808 42 107 26.821 91

T
1
2
3
87 26.800 4 87 26.808 43 107 26.813 92
87 26.791 5 87 26.810 44 107 26.817 93
87 26.806 6 87 26.808 45 107 26.821 94
87 26.794 7 87 26.810 46 107 26.820 95
87 26.802 8 87 26.810 47 107 26.823 96
87 26.796 9 87 26.808 48 107 26.818 97
87 26.803 10 87 26.808 49 107 26.824 98
87 26.805 11 87 26.811 50 107 26.824 99
87 26.796 12 87 26.808 51 107 26.824 100
87 26.798 13 87 26.812 52 107 26.821 101
87 26.792 14 87 26.819 53 107 26.828 103
87 26.797 15 87 26.810 54 107 26.826 104
87 26.801 16 87 26.814 55 107 26.833 105
87 26.796 17 87 26.805 56 107 26.830 106
87 26.800 18 87 26.819 57 107 26.822 107
87 26.811 20 87 26.816 58 107 26.823 108
87 26.810 21 87 26.808 59 107 26.813 109
87 26.805 22 87 26.814 60 107 26.820 110
87 26.813 23 87 26.808 61 112 26.815 111
87 26.805 24 87 26.808 62 112 26.816 112
87 26.811 25 87 26.806 63 112 26.813 113
87 26.815 26 87 26.800 64 112 26.826 114
87 26.821 27 87 26.811 65 112 26.821 115
87 26.805 28 87 26.821 66 112 26.827 116
87 26.803 29 87 26.821 67 112 26.829 117
87 26.806 30 87 26.817 68 112 26.828 118
87 26.802 31 87 26.814 69 112 26.826 119
87 26.804 32 87 26.816 70 112 26.826 120
87 26.821 33 87 26.823 71 112 26.833 121
87 26.808 34 87 26.823 72 112 26.835 122
87 26.803 35 87 26.816 73 112 26.826 123
87 26.801 36 87 26.828 74 112 26.827 124
87 26.805 37 87 26.826 75 112 26.825 125
87 26.808 38 87 26.825 76 112 26.823 126
87 26.804 39 87 26.814 77 — — —

developed earlier. The first-order autocorrelation of the disturbance term can be
explained by the p in (5.1). Test results of the simple method are summarized
in Table 3, where for each of three settings, estimated Bayes factors are reported
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Table 4. Test results for the empirical data set.

(r1=0a, 12 =20a) (r1 =2a,r2 = a) (ri=r2=0)
Setting B B ey B B a3 B Pr(Ho|z)
87 20.947 160 .229/.766  18.920 .168 .235/.758  .304  .0221
(3.106) (.085) (2.860) (.092) (.166)
107 9.215 .218 .260/.723 8.457  .207 .249/.733 413 .258
(2.474) (.166) (2.347) (.163) (.307)
122 8.006 .170 .204/.779 7.564 .156 .192/.791 302 197
(2.552) (.169) (2.398) (.157) (.289)

along with the posterior probabilities. The values in parentheses are the estimated
standard errors of the estimates. The simple method is performed with Gibbs
sequence t = 10 and m = 1000 repeated runs and with the hypotheses Hp : p = 0,
Hi:-1<p<O0and Hy:0<p<1l

From Table 4 it can be noted that the asymmetric Bayes factors precisely
indicate the existence of positive serial correlation of y in each of three compensator
settings, while the usual Bayes factor provides practically no evidence either way
so far as comparing H; and H: in three settings is concerned. In comparison
with classical Durbin-Watson test, we see that, except for the setting 87 with test
statistic value 1.441, the classical serial correlation test fails to test the setting 107
and the setting 112 because their test statistic values (1.220 and 1.039) are located
in “inconclusive bounds” for the test with significance level .05.

6. Concluding remarks

In this paper we have suggested a method that applies the concept of mul-
tiple Bayes factor to the comparison of hypotheses in the presence of a nuisance
parameter (extendible to the case of multiple nuisance parameters). The compari-
son uses posterior probability (calculated from the asymmetric Bayes factors) that
accounts for different prior attitudes about suitably chosen subsets of the param-
eter space. For simple estimation of the multiple Bayes factor, the asymmetric
Bayes factors are expressed in the form of modified Savage-Dickey density ratios
which can take advantage of posterior simulation to compute the Bayes factors.
The simplification is implied by suitable restrictions on the prior distribution of
the nuisance parameter conditional on the parameter of interest. It is applicable
whenever the null hypothesis is a nested hypothesis. A couple of applications are
adopted to describe how Bayesian test of nested point null hypothesis can be im-
plemented straightforwardly by means of the suggested method. It is shown that
the method can eliminate complicate numerical integrations over high dimensional
sets defined by complex restrictions. Rather, it requires only sampling from uni-
variate full conditional distributions, restricted to easily described subsets of one
dimensional space.
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Using a Monte Carlo simulation and an empirical data analysis, we examined
and demonstrated performance of the suggested method. It is shown that much
stronger inference can be made by the method when different prior attitudes with
respect to the subsets of a parameter space are taken into consideration in testing
the point null hypothesis: (i) The suggested test by posterior probabilities ob-
tained from the asymmetric Bayes factors yields more accurate and flexible test
for point null hypothesis than the test based upon those from the usual Bayes
factor. Moreover, this fact is shown to be robust with respect to the choice of the
priors considered in the study. This coincides with the implication of Bertolino
et al. (1995), i.e. asymmetric Bayes factors are useful in a robust perspective.
(ii) The method can be used for a multiple decision problem in a sense that the
estimated asymmetric Bayes factors make a separate analysis for the subsets of
the parameter space possible.

In defining the asymmetric Bayes factors, we considered asymmetric condi-
tional priors p;(w | ¥) over w € ;, remaining p;(v)’s (the priors of the nuisance
parameter) common to each i. It would be appropriate to extend the asymmetry
concerns to the priors of nuisance parameter to coming at more flexible Bayes
factors. A study pertaining to this problem is left as a future research of interest.
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