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Abstract. The problem of estimating R = P(X < Y) originated in the
context of reliability where Y represents the strength subjected to a stress
X. In this paper we consider the problem of estimating R when X and Y
have independent normal distributions with equal coefficient of variation. The
maximum likelihood estimation of R when the coefficient of variation is known
and when it is unknown is studied. The asymptotic variance of the estimators
are obtained and asymptotic confidence intervals are provided. An example
is presented to illustrate the procedure. Finally some simulation studies are
carried out to study the coverage probability and the lengths of the confidence
interval. In particular, lengths of the confidence intervals are compared with
and without the assumption of common coefficient of variation. It is observed
that the assumption of common coefficient of variation results in considerably
tighter intervals.
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1. Introduction

The problem of estimating R = P(X < Y) has been considered in the litera-
ture in both distribution free and parametric frameworks. The problem originated
in the context of reliability of a component of strength Y subjected to a stress X.
The component fails if at anytime the applied stress is greater than its strength
and there is no failure when Y > X. Thus P(X < Y) is a measure of the relia-
bility of the component. It may be mentioned that R is of greater interest than
just in reliability since it provides a general measure of the difference between
two populations and has applications in many areas. For instance, if ¥ is the
response for a control group, and X refers to a treatment group, R is a measure
of the effect of the treatment. As Wolfe and Hogg (1971) point out, this mea-
sure is one that incorporates similar information to (ux — py)/o, but is easier
to interpret. The function P(X < Y) — P(Y < X) is of practical importance in
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many situations, including clinical trials and genetics. For more applications of
R, see Halperin et al. (1987), Simonoff et al. (1986), Reiser and Farragi (1994)
and Bamber (1975). In fact Bamber (1975) gives a geometrical interpretation of
A(X,Y)=P(X <Y)+ iP(X =Y) and demonstrates that A(X,Y’) is a useful
measure of the size of the difference between two populations. The problem is
to find an estimator of this probability when X and Y have specified probability
distributions. Birnbaum (1956), Church and Harris (1970), and others have given
practical uses of the results.

Church and Harris (1970) derived the maximum likelihood estimator (MLE) of
R assuming that X and Y are independent normals and that the distribution of X
is completely known. They also obtained a confidence bound for R and compared
with those of Govindaranjulu (1967). Mazumdar (1970) derived the minimum
variance unbiased estimator (MVUE) of R when the stress distribution is known
and the variance of the strength Y is either known or unknown. Downton (1973)
obtained the MVUE of R in the case of independent normals with the parameters
of X also unknown. Reiser and Guttman (1987) obtained a predictive estimator
of R and compared it with the MLE and MVUE through a simulation study. In a
separate study Reiser and Guttman (1986) presented two approximate methods for
obtaining confidence intervals and an approximate Bayesian probability interval
without the assumption of common coefficient of variation. In addition to the
normal case, the problem has been extensively studied for many other models
including exponential, gamma, Weibull and Burr distributions; see Constantine et
al. (1986) for the gamma case, McCool (1991) for the Weibull case and Awad and
Gharraf (1986) for the Burr case.

Owen et al. (1964) discussed the normal case for equal standard deviations
and presented non-parametric confidence limits for this problem. In this paper,
instead of assuming equal standard deviations, we assume equal coefficients of
variation. This is because the coefficient of variation represents a measure of
relative variability and groups can have the same relative variability even if the
means and variances of the variable of interest are different. The assumption
of homogeneous coefficients of variation is a valid assumption in many types of
agricultural, biological and psychological experimentation, because many times
the treatment that yields a larger mean also has a larger standard deviation; see
Lohrding (1969a). Our assumption of equal coefficient of variation will imply that
the two means are of equal sign. Thus, in the context of our problem, we can,
without loss of generality, assume that the two means are positive. Moreover, since
the coefficient of variation is, in general, assumed to be positive, it is desirable to
assume that the means are positive, see Sinha et al. (1978). More specifically,
we assume that X and Y are independent with normal distributions having equal
coefficients of variation and study the problem of estimating P(X < Y'), which is
given by

R:P(X<Y)=q>(%)
RAVA il

where pq, po (assumed positive) are the means of X and Y, respectively, and vy
is the common coefficient of variation. The assumption of equal coefficients of
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variation can be tested by the tests described by Gupta and Ma (1996).

In Section 2, we derive the maximum likelihood estimators (MLE) of the
parameters up, po and <y under various conditions on the data and obtain the
information matrix. These estimators and the information matrix are then used
to derive the MLE of R and its asymptotic variance. In Section 3, we assume that
« is known and obtain MLE of R and its variance and in Section 4, we present
Reiser and Guttman’s (1986) method of constructing a confidence interval of R
without the assumption of equal coefficient of variation. An example is presented,
in Section 5, to illustrate the procedure. Finally some simulation studies are
carried out to study the coverage probability and the lengths of the confidence
intervals. In particular lengths of the confidence intervals are compared with and
without the assumption of common coefficients of variation. It is observed that
our assumption, when valid, results in considerably tighter intervals.

2. Maximum likelihood estimation

Let X;, X5, X3,...,Xn, be a random sample of size n; from a normal pop-
ulation with mean p; and variance u24? and let Y1,Y2,Ys,...,Y,, be a random
sample of size ny from a normal population with mean puy and variance p3y? so
that the two populations have the common coefficient of variation v. We wish to
estimate the parameters u;, o and -y by means of maximum likelihood assuming
the two samples to be independent.

The log likelihood function of the strength stress model is given by InL =

—(n1 + n2) In(v2my) —nalnpy —nglnpo

(2.1) _Z(mz ,“1) /27 Hl Z(yz K2) /272 %

i=1

The likelihood equation for p; reduces to
(2.2) piy? + Zp — (] +3%) = 0.
Similarly the likelihood equation for us is
(2:3) 3y + gpa — (s5+9°) =0

where T and ¢ are the sample means from the first and the second populations
and s? and s3 are the sample variances and are defined by

8% — i (mi '“ :E)2 and Z (yz

- ™
The likelihood equation for v is given by

i (222) B () o - -

i=1
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In order to solve these equations, we proceed as in Gerig and Sen (1980) and
Lohrding (1969a) and obtain

R | R N . . . . .
¥ = —[i ny (@3 (1 +4%) — @) + g *na(p3(1 4+ 4%) — f2d)].

The above equation reduces to

(2.4) n= Mm% n2y
i fi2

where n = n; 4+ ny. From this and equation (2.3) we get fi; and 42 in terms of jio
as
(2.5) 1 = niZpa(njs —nog) !
(2.6) ¥ =iy *(s3 + 9 = Gika)-
Now from (2.2) and (2.3) we get
27) %= (st +2° — 2n)/pf = (3 + ° — Gia) /33,
which enables us to get a quadratic in fiy as
(2.8) (43— 2naC2+ (20— )[fiia + [3(CE+1) —n3(CF+ DlgPn~" = 0,

where C? = s%/z% and C? = s3/3? are the squares of the sample coefficients of
variation of the first and second random sample.

Thus the maximum likelihood estimate of the parameter ps can be obtained
by solving (2.8). This estimate, in turn will yield fi; and 4. This set of estimators
indeed solves the set of likelihood equations. To check that the joint estimators
fi1, iz and 4 define a maximum, we refer to the Appendix.

Case 1. Equal sample size C; # Cs. In this case the non-negative root of
(2.8) is given by

_ 9+ +203)/(1 +2C8)]

(2.9) f2 5

Remark. As noted in Lohrding (1969a), using the root with minus sign (of
the quadratic in (2.8)), one gets the value of the likelihood function as zero under
our assumption. The root using the plus sign may give a negative estimate of s,
although under our assumptions, the probability of i < 0 tends to zero as the
sample size tends to infinity.

It is easy to determine fi; and 4 since they are expressed in terms of fiy (see
equations (2.5) and (2.6)).

Case 2. Now consider the case when the sample sizes are different i.e. ny #
ny and C; # Cs. In this case equation (2.8) is

(2.10) (RCE4ng)iiZ—(2neCE+(2n2—n1))gla+(n3(CE+1)—ni(Ca+1))g*n~ ' =0
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whose nonnegative root is given by

a+b
c

f2 =
where

a = {(ning + 2n2 — n?)7? + 2na(ny + n2)st}y
b=mn1vn +noz

. \/(nl + 1) 2252 + 4n1 7257 + 4naZ2s3 + 4noZ2s3 + 4(ny + n2)s?s?

¢ = [2(n1 + n2){n2Z® + (n1 + n2)si}.

Note that we take only the positive root in front of the radical sign in the numer-
ator because of the assumption that the population mean is positive. Once jig is
obtained, it is easy to determine fi; and % as they are functions of fi9, Z, ¥, Ci
and Cs. That this solution defines a maximum of the likelihood follows from the
negative definiteness of the matrix A = [%] evaluated at the above solutions,
where 8; = u1, 02 = uo, 03 = v; see Kendall and Stuart (1967). The negative

definiteness of the matrix A is investigated in the Appendix.
The estimators fi1, iz and 4 will be used in estimating R of our model.

Asymptotic variances and covariances of the estimators
The Fisher information matrix denoted by [ is given by

- O%L 8%L 8%L 1 [ nl(l + 2’)’2) 0 211 7
op?  Ouidus  Ou Oy v2u? Y
o’L 0°L 2L na(1+292)  2ng
I=-F 5 = 0 ———a —
Ouzdpy  Ous  Opgdy v2us Yp2
82L o2L 2L 20y 2ny 2n
L 90 OvOus ovy? s Y1 YH2 72

The asymptotic variances and covariances of the estimators fiq, fi2 and % are
given by A = I~ where

Y pd(ni(1 + 29%) + ny) 27 1 —7’m
n1(1 +29?)(n1 + n2) (1+29%)(n1 + n2) (n1 +n2)
_ 294 pa e Pigna(1+29%) +m)  —pe
(14 272)(n1 + n2) na(l+29y2)(n1+n2)  (m1+n2)
-7 3 p2 Y3(1 + 29?)
(n1 + na) (n1 + na) 2(ny + ng)

In the above matrix, the diagonal entries give the asymptotic variances of ji1, fi2
and 4 and the off diagonal entries give the covariances of (fi1,fi2), (fi2,7) and

(ﬂlv'?)'
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The asymptotic variances and covariances of the estimators i1, fi2, and % will
be needed to find the variance of the estimator of the reliability function R. The

variance of R will be obtained by using the delta method, see Cassela and Berger
(1990).

The MLE of the reliability function is given by R = @(7—\/“‘(27——’:—2)) In order

to construct a confidence interval for R, let us find confidence interval for S =
—2_LL_ The MLE of S is given by S = o

YV #1+Il»2 YV i a2+in3
The Variance of S is obtained as follows

For convenience let Sy = ap , Sp = 3“2 and S; = as eva.luated at (u1, pu2,7)-

Var(8) = S? Var(i;) + S2 Var(jiz) + S2 Var(¥)
+ 285182 Cov(jis, fi2) + 25253 Cov(fiz, ) + 25153 Cov(fiq,%)-

Let us now derive the expression for Var(S). It can be verified that

S, = _ (Bt p2)u2 _ b + po)

) = M1 — U2
Y(u? + p3)3/%’ (3 + p3)3/?

and Sy = A1 FZ__
v (i + pui)'/?

Thus the variance of S is given by
Var(5) = St ui(m(1+29y%) +na) | S3y°u3(na(1+29°) +ma)

n1(1 + 292)(ny + na) n2(1 +279%)(n1 + n2)
2 1 2 2 2 4
527( + ’Y)+251.S’2 Y 2

% 2(n1 + ng) (n1 + n2)(1 + 272)
3
'7 H2 —T
+ 28583 ——~ + 25153 ———.
2231 + ng) ¥ny + na)

An estimate of Var(S) can be obtained by using the MLE’s /i1, fi2 and 4. Once an
estimate of the variance is obtained, it is easy to set up a 100(1 — a)% confidence
interval for S by assuming asymptotic normally of S. Since ®(-) is an increasing
function of S, one can construct a confidence interval for R.

3. Estimation of reliability function when 7y is known

In the previous section we estimated the parameters uq, pe and . Now we
consider the case where 7 is known. Here we have to estimate only the parameters
p1 and pa.

In this case the log likelihood function is given by

(3.1) L= —(ny+ny) ln(\/ﬁ'y —ny In(pr) — na In(pus)

- Z; — 12 22
_Z( 2u2) Z(y pi2)

=~ 27 vy 27213
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It can be verified that the MLE’s [i; and iz are given by

=T+ /T + 451 + 7Y

iy = d
(3.2) " i h
- Si VP 453 + )
H2 = o2 .
2
Proceeding as before the information matrix is given by
[ 11 (1 + 279?) ]
2.2 0
I = By )
na(1 +2v%)
0 —
L K37y J
whose inverse is given by
[ u® ]
A= n1(1 + 2v2) s s
0 K2y
L na(l +279?) |

The diagonal entries give the asymptotic variances of fi; and fi and the covariances
are given by the off diagonal entries which turn out to be zero. So we can use the
same method as described in the last section to determine the variance of S by
the delta method.

4. Estimation of reliability function without the assumption of common coefficient
of variation

Reiser and Guttman (1986) presented confidence intervals for P(X < Y)
without the assumption of a common coefficient of variation. Their method is
presented below for comparison purposes.

R=P(X <Y)=8(6),

where 8 = (ug — p1)/\/0} + 03.

Let 6 = 3’— where

s =1/8% + s3, s%zZ(ml—E)z/(nl—l) and

s5= (vi—9)°/(n2 = 1).

Let 2, 2 2, (2
+ . - sy + s
M= 2—01—%——, with M= —5——2—.
o2/ny + 03 /ng s2/ny + s5/n2
Again let
e (o + 03)? with f= (st +53)°

ot/(n1 — 1)+ 03/(nz — 1)’ st/(n1 — 1)+ s3/(n2 = 1)
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Then the two sided 100(1 — )% confidence interval for § is given by
6Fa

and the confidence interval for R is

(®(6 —a),®(6 + a))

AN\ 172
1 62 /
a = —~+ — Za/?
M 2f

and Z, /5 is the upper o/2-th percentile of the standard normal distribution.

where

5. An example

The data in Table 1 are taken from Nelson ((1990), p. 115) and represent
the hours to failure of 20 motorettes with a new class-H insulation run at 240°
and 220°C. It has been observed by Nelson (1990) that lognormal distribution
adequately fits at the two temperatures.

Table 1.

X(240°C)* Y (220°C)*

1 7.0690 7.4753
2 7.0690 7.7981
3 7.3271 7.7981
4 7.3582 7.7981
5 7.3883 7.7981
6 7.4176 7.7981
7 7.4176 8.0417
8 7.4460 8.0417
9 7.4736 8.0417
10 7.5771 8.0417

*Note that X and Y denote the natural logarithm of the failure times. We thus
assume that the above data come from independent normal distributions.

We now briefly outline the score test developed by Gupta and Ma (1996) to
test the equality of the coefficients of variation.
We want to test the hypothesis

Hy:01/p1 =o02/pe =+  (unknown)

against
H, 101/#1 # 02/#27
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where o2 and o3 are the population variances. Then the test statistic is given by

ro P02 (4 )

2 ny N9
where
ni (.’l) A
% ﬂl) m
ay = 523 &
; w4
and
no ~ 2
(yi — fi2) 2
az = —35aa — — -
?;: 353 q

Under Hy, T has a chi-square distribution with 1 degree of freedom. In our
example, using the results of Section 2, the maximum likelihood estimates are
given by fi; = 7.354238, fi; = 7.863381, and 4 = .021644. The computed values
of a; and ag are

a; = —16.04, ay=15.06.

The observed value of the test statistic T = .0113. Hence the null hypothesis is
not rejected and the p value of the test is almost one.

Remark. It is well known that not rejecting Hy does not necessarily mean
that the two coefficients of variation are equal. However, in this case such a high p
value would indicate that the null hypothesis is true and, therefore, the procedure
of this paper would be applicable.

Using the estimates obtained before, the MLE of R is given by R = .9854.
The variance-covariance matrix of the estimators is given by

2532 1.268 —-3.728
1.268 2895 —3.986
-3.728 -3.986 11.72

Note that the above entries should be multiplied by 1075, These give Var(S) =
.2188 and the 95% asymptotic confidence interval for R as (.898,.999). The length
of the interval is .101. The length of the interval, as presented in Section 4, without
the assumption of equal coefficients of variation is .124. Thus the assumption of
equal coefficients of variation results in a gain of 23%.

6. Simulation studies

In this section simulation studies are carried out to study the distribution
of R, the coverage probability and the mean length of the confidence intervals
(C.1.) assuming equal coefficients of variation and without assuming equal c.v.s.
10,000 observations were generated for parameter values p; = 0.5, p2 = 0.8 and
for various values of v between .2 and 2 for each of the four cases (i) n; = 30,
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Fig. 1. Distribution of 8. p1 = 0.5,
p2 = 0.8,y =0.5.
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Fig. 3. Distribution of 8. p1 = 0.5,
pu2 = 0.8, v = 1.5.
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Fig. 5. Coverage probability. p1 = 0.5,
p2 = 0.8.
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Fig. 2. Distribution of 5. y; = 0.5,
p2 =08, vy=0.28.
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Fig. 4. Distribution of S. p1 = 0.5,
p2 = 0.8, vy = 2.0.
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Fig. 6. Coverage probability. p1 = 0.5,
p2 = 1.5.

ng = 32, a = .05, (i) ny = 30, ng = 32, a = .10, (iii) ny = 20, np = 25, a = .05
and (iv) ny = 20, ng = 25, a = .10. The results are presented only for case (i) for
the sake of brevity because the others are similar.
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Fig. 7. Coverage probability. puy = 1.5,
p2 = 1.0.
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Fig. 8. Coverage probability. 1 = 2.0,
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Fig. 10. Length of the confidence interval
for R. p1 = 0.5, pu2 = 1.5.
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Distribution of S. The distribution of 3, for values of y = 0.5, .8, 1.5 and 2.0,
is shown, in Figs. 1-4. It is observed that the distribution of S is approximately
normal. In fact it has been noticed that the distribution of R is also approximately
normal.

Coverage probabilities. In all cases, the coverage probabilities are close to
the nominal value (.95). The length of the C.I. is less for small and large values of
~. For y3 = 0.5 and s = 0.8, the length is decreasing for v > .5 and for y; = 0.5
and puy = 1.5, the length starts decreasing for values of v > 1 (approximately).
Overall both the coverage probability and the length of the C.1. are good.

Figures 5-8 also contain confidence bands for the coverage probabilities. These
confidence bands have been obtained, to give a measure of error to the estimated
coverage probabilities, by computing 95% C.1.’s based on the binomial.

Comparison with Reiser and Guttman. The lengths of the C.I. were com-
pared by using our assumption of equal C.V. and by not using this assumption.
The results are shown in Figs. 9-12. In all the cases, the lengths are much larger
by Reiser and Guttman’s method. In fact, in some cases, the length of the C.I
is more than double (by using Reiser and Guttman) the length obtained by using
the results of this paper.

7. Concluding remarks

The simulation results, in this paper, indicate that assuming homogeneous
coefficients of variation the new C.I.’s are better than the Reiser and Guttman
(1986) results. One way to test the homogenity of coefficients of variation is to
use Gupta and Ma’s (1996) procedure. However, not rejecting the null hypothesis
by Gupta and Ma test does not guarantee that the properties shown for the new
procedure holds. A better comparison would be to compare the two methods when
the coefficients are close but different. It would be useful to know how different the
coefficients can be before the proposed method becomes suitable. This robustness
issue is quite involved and requires further research.
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Appendix

If the matrix
olnL an a12 a13
A= |7 =laan ax a
96,6, | 5
az1 asz ass

where 6 = p1, 02 = pg and 63 = v, is negative definite, then the point estimators
fi1, fr2 and 4 define a maximum, see Kendall and Stuart (1967).
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In our case A is of the form

air 0 a3
A = 0 Qg2 Q93
ai3 a3 ass

Using a result of Rao (1965), p. 34, it can be verified that the above matrix is
2 2
negative definite if (1) a;; < 0, (2) a2 < 0 and (3) az3 < 243 4 223

a1l agz2”
In our case _

n,'y2;4f+2n|a‘:—32z? o 2unE — 2% x}

¥iu Yu
a = o Y ul + 20,5 -3y 2pmy — 23X y?

Y s iy

2pm T — 221? 2uaneg — 2% yf (i + "2)’72 - 33 (zi — ltl)2 -3 (y; — H2)2
Yui Yiud v

where the matrix A is evaluated at ({1, fi2, ).

Proceeding as in Lohrding (1969b), after considerable manipulation of in-
equalities, one can show that the matrix A is negative definite. The details are
omitted.

REFERENCES

Awad, A. N. and Gharraf, M. K. (1986). Estimation of P(Y < X) in the Burr case: a comparative
study, Comm. Statist. Simulation Comput., 15(2), 389-403.

Bamber, D. (1975). The area above the ordinal dominance graph and the area below the receiver
operating characteristic graphs, J. Math. Psych., 12, 387-415.

Birnbaum, Z. W. (1956). On a use of Mann-Whitney statistics, Proc. Third Berkeley Symp. in
Math. Statist. Probab., Vol. I, 13-17, Univ. of California Press, Berkeley.

Casella, G. and Berger, R. L. (1990). Statistical Inference, Brooks/Cole, Pacific Grove.

Church, J. D. and Harris, B. (1970). The estimation of reliability from stress-strength relation-
ship, Technometrics, 12, 49-54.

Constantine, K., Tse, S. and Karson, M. (1986). Estimation of P(Y < X) in the gamma case,
Comm. Statist. Simulation Comput., 15(2), 365-388.

Downton, F. (1973). The estimation of P(Y < X) in the normal case, Technometrics, 15,
551-558.

Gerig, T. M. and Sen, A. R. (1980). MLE in two normal samples but unknown population
coefficients of variations, J. Amer. Statist. Assoc., 75, 704-T08.

Govindarajulu, Z. (1967). Two sided confidence limits for P(X < Y) based on normal samples
of X and Y, Sankhya Ser. B, 29, 35—40.

Gupta, R. C. and Ma, S. (1996). Testing the equality of coefficients of variation in k normal
populations, Comm. Statist. Theory Methods, 25(1), 115-132.

Halperin, M., Gilbert, P. R. and Lachin, J. M. (1987). Distribution free confidence intervals for
P(Xy < X32), Biometrics, 43, 71-80.

Kendall, M. G. and Stuart, A. (1967). The Advanced Theory of Statistics, Vol. 2, Hafner
Publishing, New York.

Lohrding, R. K. (1969a). A test of equality of two normal means assuming homogeneous coeffi-
cients of variation, Ann. Math. Statist., 40(4), 1374-1385.

Lohrding, R. K. (1969b). Likelihood ratio tests of equal mean when the variances are heteroge-
neous, Ph.D. Dissertation, Kansas State University, Manhattan, Kansas.

Mazumdar, M. (1970). Some estimates of reliability using interference theory, Naval Res. Logist.
Quart., 17, 159-165.

McCool, J. I. (1991). Inference on P(Y < X) in the Weibull case, Comm. Statist. Simulation
Comput., 20(1), 129-148.



584 RAMESH C. GUPTA ET AL.

Nelson, W. (1990). Accelerated Testing, Wiley, New York.

Owen, D. B., Craswell, K. J. and Hanson, D. L. (1964). Nonparametric upper confidence bounds
for P(Y < X) and confidence limits for P(Y < X) when X and Y are normal, J. Amer.
Statist. Assoc., 59, 906-924.

Rao, C. R. (1965). Linear Statistical Inference and Its Applications, Wiley, New York.

Reiser, B. and Faraggi, D. (1994). Confidence bounds for Pr(a’z > b'y), Statistics, 25, 107-111.

Reiser, B. and Guttman, I. (1986). Statistical inference for P(Y < X): normal case, Techno-
metrics, 28, 253-257.

Reiser, B. and Guttman, I. (1987). A comparison of three point estimators for P(Y < X) in the
normal case, Comput. Statist. Data Anal., 5, 59—66.

Simonoff, J. S., Hochberg, Y. and Reiser, B. (1986). Alternative estimation procedures for
Pr(X < Y) in categorized data, Biometrics, 42, 895-907.

Sinha, B. K., Rao, B. R. and Clement, B. (1978). Behrens-Fisher problem under the assumption
of homogeneous coefficients of variation, Comm. Statist. Theory Methods, 7, 637-656.
Wolfe, D. A. and Hogg, R. V. (1971). On constructing statistics and reporting data, Amer.

Statist., 25, 27-30.



