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Abstract. We summarize properties of the saddlepoint approximation of the
density of the maximum likelihood estimator in nonlinear regression with nor-
mal errors: accuracy, range of validity, equivariance. We give a geometric
insight into the accuracy of the saddlepoint density for finite samples. The
role of the Riemannian curvature tensor in the whole investigation of the prop-
erties is demonstrated. By adding terms containing this tensor we improve
the saddlepoint approximation. When this tensor is zero, or when the num-
ber of observations is large, we have pivotal, independent, and x? distributed
variables, like in a linear model. Consequences for experimental design or for
constructions of confidence regions are discussed.
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1. Introduction
We consider a nonlinear regression model with normal errors

(1.1) y=n@)+e 0€0O
e~ N(0,021)

with y € RV, and with a p-dimensional parametric space © C RP. The usual
regularity assumptions are made: the mapping 7(-) is one-to-one, and the matrix
J(#) with entries

81]1(0

Jii(0) = —55-
2

is of full rank on Int(©).
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In model (1.1) neither the moments nor the probability density of the maxi-

mum likelihood estimator (the least squares estimator)
6 = arg min ||ly — 1(0)||°
gmin |ly —n(6)]

can be expressed explicitly. The familiar normal approximation gives both of them,
but the level of approximation is often not sufficient. Higher-order approximations
can be obtained for the moments, but they are cumbersome yet for moments of
order two, and they are only “local approximations”. Curiously, a much better
approximation has been obtained for the probability density of the estimator,

namely the so-called saddle-point (or “flat”) density (abbreviated SPD in this
paper). The SPD is equal to:

— det[Q(8, )] ex' R T AV N
(1.2) q(0l0)—(2ﬂ)p/20p aet 2 (0] p{ 5,2 I (0)[n(0) n(O)JH}

where @ is the true value of 6,
M(0) = JT(6)J(6)
is the Fisl’ler information matrix for o = 1,
P(6) = J(O)M1(6)JT(0)
is a projector, and
Qi5(8,0) = Mi;(6) + n(6) — n(9)]"[I — P(O)1H;;(6)
is a modified information matrix having a meaning by its own. We denoted

0?0k (0)

k —
H506) = Zo.06, -

The name “saddlepoint density” is justified by the fact that (1.2) can be derived
by the saddlepoint technique (cf. Hougaard (1985) for this derivation and for an
asymptotic justification). The saddlepoint approximation technique in general
gives powerful tools for “non-local” approximations (cf. Jensen (1995)), which is
for example important when the stress is on the tails of the density. However,
another non-local method to obtain the SPD is the geometric method presented
in Pdzman (1984), where the density (1.2) has been published for the first time. An
independent derivation, which in a preprint form probably influenced Hougaard
(1985) has been presented in Skovgaard (1985). This approach has been extended
in Skovgaard (1990) to more general models. Another geometric proof has been
presented and explained in detail in Pdzman (1993b). Later, it has been also found
(cf. Pdzman (1990)) that the properties of (1.2) are especially good if model (1.1)
has a “zero Riemannian curvature tensor” (see below). Since such models are
called “flat” in differential geometry, the approximation (1.2) may be called “flat”



SADDLEPOINT APPROXIMATION IN REGRESSION 465

as well. In this paper we prefer the geometric approach, since it gives a better
insight into the approximation for a small number of observations.

The aim of this paper is to summarize some properties of the SPD. In Sec-
tion 2 we present some elementary properties. In Section 3 we derive the proper-
ties of the gradient of (1/2)||n(8) — n(6)||2, which, under the assumption that the
model is flat (or under the assumption that N is large), and under the validity
of the SPD, allow to prove that the random variables o=2|P(6)[n(8) — n(9)]||>
and o~2||[ — P(8)][y — n(9)]]| are x? distributed and independent, like in linear
models. Interesting is also the role of the covariant derivative of the mentioned
gradient as it appears in Proposition 1. The geometric insight into the SPD given
in Section 4 shows how important it is for the accuracy of the SPD, that the prod-
uct of the intrinsic curvature and of ¢ is small, i.e. that the probability given in
the right-hand side of (4.2) is much smaller than 1. Under this assumption one
can even improve the SPD, as shown in Section 4. This improvement consists of
adding to the SPD further terms depending on the Riemannian curvature tensor.
These terms disappear quickly with o tending to zero, which explains why the
SPD is asymptotically so good.

The presented investigation is essentially theoretical, in that it explains some
properties of the SPD. A part of the results have been presented by the author
elsewhere, spread in different papers. Here we summarize them, and we present
proofs and argumentations, which are more straightforward, and we also extend
some statements. In Section 6 we discuss briefly the possibilities of practical
implementations. The SPD allows to “see” the properties of the estimator € before
performing the experiment, which can be important in experimental design or in
the diagnostics of the model. The derived pivotal variables allow to check the
validity of the standard likelihood confidence regions, or to construct new regions.
An example is given in Section 6.

2. Elementary properties of the SPD

(i) The approximate density (1.2) can be easily computed “point by point”
because (1.2) contains just first and second order derivatives of () and requires
some matrix manipulations.

(ii) The expression (1.2) is “equivariant” (in contrast to the normal approxi-
mation, which is not), i.e. to obtain (1.2) for a reparametrized model we have just
to multiply the expression (1.2) by the Jacobian of the reparametrization.

(iii) The density (1.2) is exact and normal in linear models. It is also exact
in intrinsically linear models, since the last can be obtained from linear models by
suitable reparametrizations.

Accuracy. For large N the error term in the approximation is of order
O(N~1), while for the normal or the Edgeworth approximations it is of order
O(N~/2) (cf. Hougaard (1985), Barndorff-Nielsen and Cox (1979)). In general,
simulations demonstrated very good coincidence with simulated densities for small
samples. As mentioned, for the particular case of “flat” models considered below,
the SPD has especially good properties.
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Range of validity. The expression (1.2) is non-negative as long as the deter-
minant of Q(6, §) is non-negative. A sufficient condition to ensure that the matrix
Q(0,0) is positive semidefinite, is the inequality

(2.1) 1[I = P®)[(6) - n(@)]ll < 1/Kine(6).

Here Kint(f) is the measure of intrinsic nonlinearity (= curvature) of Bates and
Watts (1980) for ¢ = 1. (See Pdzman (1993b) Proposition 4.2.1 for an explicit
expression for Kj,(6). The proof of (2.1) follows from the first lines of the proof
of lemma 7.1.1.b in the same reference.) In those points where (2.1) does not hold,
the expression

exp { ~ 5 IPOn) - (@I}

should be negligible when compared to 1, to ensure that ¢( | 8) is close to zero.
Another limitation of validity of (1.2) is due to the possible overlapping of the
expectation surface of model (1.1),

{n(0) : 0 < ©}

over itself. In terms of the expression (1.2) this means that the expression
| P(8)[n(6) — n(6)]] may decrease although the distance | — 6|| is increasing.
As a consequence we can have false peaks of the function § — g(# | §) given by
(1.2). This is related to the fact mentioned in Skovgaard (1985), that in general

the expression (1.2) is not the density but the intensity of f. This however has
practical consequences only if there is overlapping.

Flexibility. By geometrical methods the SPD can be modified, to adapt to
the case of weighted least squares, or to the case of the maximum posterior estima-
tor. In particular, this allows to take into account the probability distribution on
the boundary of the parameter space ©, etc. (cf. Pazman (1993b) for references).

3. Some small sample properties of the SPD

Let us consider the random vector
v(d) = —-Iln(0) n(@)|1> = JT(0)[n(6) — n(9)).

As shown in Proposition 1 given below, if 6 is distributed according to the SPD
(1.2), then the random vector v(6) is “locally normal” in a certain sense. This has
two statistical consequences presented below: Firstly, v(é) is normally distributed
when the information matrix M (6) does not depend on 6. Secondly, in any model
with a zero Riemannian curvature tensor (see (3.3)) the random variable

£9) = o 2| PO)(6) — n(@)I



SADDLEPOINT APPROXIMATION IN REGRESSION 467

is distributed as a truncated x? with p degrees of freedom (like in a linear model
with a bounded parameter space). In particular, any model with dim(f) = 1 has
this property (cf. Pdzman (1990)).

Geometry. As known (cf. e.g. Amari (1985)) the parameters 6 correspond
to the coordinates of a manifold (the coordinates are denoted by z in the classical
book on differential geometry by Eisenhart (1960)). The matrix M (6) corresponds
to the Riemannian metric tensor (denoted by g(z) in Eisenhart (1960)).

According to Eq. (11.3) in Eisenhart (1960), the covariant derivative of any

vector function v(f) is defined as a matrix with components

(3.1) {D U(O)} _ ) _ vT(O)T;;(8).

DérT 99,

Here T%; (9) are the Christofell symbols of the second kind as presented in Eq. (7.2)
in Eisenhart (1960) (or the components of the affine connection in Amari (1985)).
In case of the geometry of a nonlinear regression model with normal errors we have

(3.2) TE(0) =Y (M1 (0)}r. I (0)H;;(6).

PROPOSITION 1. The SPD (1.2) can be expressed in the form

det[Dv(§)/ D7)

q(6 | 0) = (2m)P/20P det'/2[ M (6)]

exp {—%UT(é)M(é)v(é)} .

Proor. From (3.1), (3.2) we obtain after some rearrangements that
Dv(6)/D8T = Q(6,8). To obtain the new expression in the exponent, we have just
to rearrange the terms in the expression ||P(6)[n(#) — n(6)]||? using the definition
of P(6). O

COROLLARY 1. If the information matriz M(0) does not depend on 6 (i.e.
M(0) = M), then the covariant derivative is an ordinary derivative (cf. Eisenhart
(1960), Section 1.11). Hence from Proposition 1 we obtain directly that in this
case v(f) is distributed normally N(0,02M) on int(©). Since the range of v(8) is

~

bounded, one can say that v(0) has a “truncated” normal distribution.

The Riemannian curvature tensor. In the Euclidean geometry, which cor-
responds to model (1.1), the Riemannian curvature tensor (cf. Eisenhart (1960),
Section 1.8) is a 4-dimensional tensor R(#) with components:

(3.3) Rniji(6) = Hy;(0)T[ — P(0)| Hix(0) — Hi(6)"[I — P(8)]H;(6).-

(See Section 1 for the definitions of H(f) and P(8).) There is no direct statistical
interpretation of R(6), and also its geometric interpretation is not quite direct.
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However, it is fundamental to the Riemannian geometry, and we shall show below
that it is closely related to the properties of the SPD. We note that R() is of
some interest also for the normal approximation of the density of 6, since R() =0
(identically) implies that there is a reparametrization of model (1.1) making the
asymptotic variance matrix of the new parameters constant (cf. Hougaard (1986)).

COROLLARY 2. If@ is distributed according to (1.2) and R(0) = 0, then £(6)
is distributed as a “truncated” x2 variable with p degrees of freedom.

PROOF. According to a result of Riemann (cf. Eisenhart (1960), Section
1.9.), the condition R(f) = 0 is necessary and sufficient for the existence of a
reparametrization 3 = () such that M(8) = M does not depend on 3. Here by
M (B) we denoted the information matrix in the reparametrized model y = v(8)+e,

with v(8) = 7[6(8)], and by v(8), and P(B), etc. we denote other expressions
corresponding to this new model. We can apply Corollary 1, which implies that
vT(B)M~1v(B) is distributed x? with p degrees of freedom. Further we have
evidently

¢(8) = a2IP@)[n(6) — n@)]I* = oI PB)w(B) — v(BII* = v" (B)M v(B)

and to finish the proof we use that v(8) is distributed N(0, M). However ¢(§) may
have a truncated x? distribution, since in the general case, the set © may not be
equal to RP. O

4. The geometric insight into the small-sample accuracy of the SPD and the im-
provements of the SPD

Let us denote by w(®), ... w(N=P) an orthonormal set of vectors, which are
also orthogonal to the expectation surface at the point 0, i.e.

P@w®(@) =0; i=1,...,N—p.

Since 9(y) is defined uniquely with probability one, one can introduce new coor-
dinates (6,b) of y where

b = bi(y) = ly — @) wP@W)); i=1,...,N-p.
We have B o A X B
y—n(0) = Z biw®(8) + P(6)[n(6) — n(d)]

since P(§)[y — n(9)] = P(6)[n(8) — n(F)]. Hence, according to the Pythagorean
relation, in terms of the new coordinates one can factorize the density of y as
follows

F@ 18) lymy(s.5)= constexp{~[[b]*/(20°)} exp{— || P(§)[n(8) — n(B)]I|*/(20°)}.
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Evidently, if b would not depend on 8, this factorization would demonstrate the
sufficiency of . This is not the case, however, still the dependence of b on 8 is
sufficiently weak to make the new coordinates useful.

For further use we need the Jacobian of the mapping y — (é, b). A direct
derivation is presented in Pdzman (1993b), Proposition 7.1.1b, but essentially the
result must be similar as in Barndorfl-Nielsen (1980), who, for another purpose,
used the approximate ancillary statistics a;(y) = [y—n(6)]Tw® (§) instead of b;(y).
The Jacobian is equal to

‘ det ( dy Oy )‘ ¢ | det(observed inform. matrix);_,|
€ Ty i = .
ogT’ obT det!/ 2(expec‘ced inform. matrix);_,

Since [y — n(6)] = [I — P(0)][y — n(0)], the observed information matrix can be
written in the form

Phfylo) | _ 5 ; o
6,00, |,_; = M)+ 0O~y H,0)}
= 072(Q(6,0) + D(b,0)];
where
N-p
Dy;(b,0) = — Y belw® (9)]"H;;(6).
k=1

The joint density of (9, b) is then
ps(8,b) = f(y | ) ly=y(4,5) ¥Jacobian

and the exact density of é (or more precisely the exact “intensity” if there is an
overlapping) is obtained after some rearrangements

Qeaact(6 ] 8) = / pa(6,b)db = (6| HI(9,0)
D(6)
where ¢(8 | §) is the SPD, where
1(0,8) = det™1[Q(8, )] / _ det[Q(8,8) + D(b,)|¢(b)db
D(6)

and where ¢(b) denotes the N — p dimensional normal density N(0,02I). The
range of integration, D(6), is given by
D(0) = {b: Q(4,8) + D(b,8) is positive definite}

since a solution of d|jy — n(#)||2/80 = 0 is a minimum iff 82|y — 77(0)”2/6080?
(= the observed information matrix) is positive definite. The shape of the set D(6)
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may be very complicated. What is proposed here, is to approximate D(é) simply
by RN7P, i.e. to take

(4.1) 1(8,6) = det™'[Q(6, §)| E{det[Q(6,8) + D(b,8)]}

where E denotes the mean with respect to ¢(b), and 8 is fixed.

To justify this approximation we start from the fact that for any solution 6*
of the equation 8|y — n(6)||?/88 = 0, such that ||y — n(6*)||* < 1/Kin(6*) (= the
radius of curvature), the observed information matrix at § = 6* is positive definite.
On the other hand we have evidently

42)  Po{y:lly—nO)] = 1/Kns(8)} < Pyly : |y — n(0)l > 1/Kins(6)}
=Pr{xk_, 2 1/I0°K5.(0)]}

and this probability can be neglected if the product o - Kint(é) is “sufficiently
small”. Then the approximation (4.1) can be applied.

To compute the mean in (4.1) we use the decomposition of the determinant
(we omit to write the symbols 6 and 6):

det[Q + D(b)] = det[Q] + Y _ Y _ det[K(U)].

s=1Ue€lJ,

Here J; is the set of all s-point subsets of {1,...,p}, and K(U) is the p x p matrix
with the i-th column equal either to the i-th column of D(b) (if i € U), or to the
i-th column of @ (if ¢ ¢ U). Using now the Laplace decomposition of det[K(U)]
over the columns corresponding to U we obtain

det[K(U)] = Y +det[Dy,v(b)] det[Qu-v-]
Veld,

where U* = J,\U, and where Dy v (b) is a submatrix of D(b) with row and column
subscripts taken from U and V.

Now if U,V € Js and s is odd, then E{det[Dy v (b)]} = 0, since D(b) is linear
in b. On the other hand, if s is even, then E{det[Dy v (b)]} is a polynomial in the
components of R and Q. Indeed, D(b) is linear in b, and det[D(b)] is a homogeneous
polynomial in the components of D(b). Hence the mean E{det[Dyy(b)]} is a
linear combination of moments of D(b) of order s. But the components of D(b)
are normal variables, hence E{det[Dy v (b)]} can be expressed through the second
moments, more exactly through terms like

o5 (oo, ) ) ="

In the last equality we used the fact that

N-p
Z W =1-pP
i=1
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(cf. Pazman (1993a) for technical details). So we obtained the following theorem.

THEOREM 1. If the probability (4.2) can be neglected, then the exact proba-
bility density of 0 is expressed in the form

Gezact (0 | 0) = q(8 | 8) x (polynomial in the components of Q(8,0) and of o2R(6)).
The absolute term of this polynomial is equal to 1.

COROLLARY 3. If R(0) = 0 and the probability (4.2) can be neglected, then

the SPD q(0 | 6) is the exact density (called “almost ezact” in Pdzman (1993b)
because the probability (4.2) is not zero). In particular R(6) = 0 in any model with
dim(f) = 1, or e.g. in the two-dimensional classical Michaelis-Menten regression
model.

COROLLARY 4. The SPD can be improved in models with R(6) # 0 by adding
further terms of the polynomial. In particular, for dim(6) = 2 we have

det[Q(é, 6)] + o2 Ri212(0) o
2ra? detl/Z[M(é)]

Geract(91 ) = s {~ ez PON® - @I}

If dim(6) = 3 we have

det[Q(8,9)] + o2 Z?,j:l(—l)i+jQij (B)Rit1,i+2,5+1.5+2(0)
(27)3/203 det/2[ M (8)]

X oxp {—2—3,;||P<é)[n(é) - n(9)]ll2}

qezact(é | g) =

where the sums are modulo 3. (Cf. Pdzman (1993a), Eq. (2.5) for the case that
dim(@) > 3. Notice, that we have to put r = oo into the formulae given there,
since we suppose here that the probability (4.2) can be neglected.)

5. The asymptotic accuracy of the SPD, and pivotal variables

An analogy to the Edgeworth expansion. Since the terms of the polynomial
in Theorem 1 are successively of order O(1), O(c?), O(c?), etc., asymptotically
(for replicated experiments, i.e. for 0 — 0) one obtains that in the general model
(1.1)

Gezact(9 | 0) = q(6 | O)[1 + O(c?)].

So the relative error of approximation is O(N~!) as obtained by the saddle-point
method. We can obtain also higher order aproximations if we take into account
further terms in the polynomial. Notice that such higher order improvements
are related to the SPD like the Edgeworth expansion is related to the normal
approximation. However, while in the Edgeworth expansion the coefficients in the
correcting terms are rational functions of the moments of the exact density, here
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these coefficients are polynomials of the components of the generalized information
matrix Q(6,¢) and of the Riemannian curvature tensor R(#).

A pivotal variable. In nonlinear models one use for the estimation of o2 the
maximum likelihood estimator

s =y - n(é)llz/(N - ).

It is well known that it is consistent. However, in intrinsically nonlinear models it
depends statistically on #, and it is not distributed x2, hence it is biased for finite
N.

Here we shall consider alternatively the properties of another random variable

¥3(y) = IllI = PO)]ly - n@)]I*/(N —p) = |b]*/(N - p)

which is equal to s? in intrinsically linear models, but which maintains the “linear”
properties of s? also in intrinsically nonlinear models. This is formulated in the
following theorem, which extends the properties of 15(y) presented in Piazman
(1991, 1993a). We present a proof which is simpler than the earlier proof.

THEOREM 2. If R(f) =0 and the probabilities (4.2) can be neglected, then
i) ¥s(y) and 6 are independent random variables,
it) (N — p)vg(y)/o? is distributed x* with N — p degrees of freedom,
iii) the mean of ¥a(y) is equal to o2.
If R(6) is arbitrary, then the conditional cumulative distribution function of
(N —p)vs(y)/o? given 8 is the X% _p cumulative distribution function, plus a term
of order O(c?).

PROOF. Let us consider the conditional density hg(b | §) of the variable b
with components b;(y). We have

hO_(b | é) = pé(é7b)/qezact(é | é)

Using results of Section 3 we obtain
ha(b | B) = detlQ(9, 8) + D(b, 6)(b)/ /D 5, 0et1C0.0)+ Db, D)

So, supposing that the probability (4.2) is negligible, the conditional ¢.d.f. of (N —
p)¥a(y) = [Ibll?, given 8, is equal to

F(z) = Py{y: Ib@)|*> < = | 6}
- / det]Q + D(b)|$(b)db/ / det]Q + D(b)|6(b)db.
[[6l|2 <z Ib

[I2<o00

The second of these integrals has been expressed in Section 3, and the first one
can be handled exactly in the same way. Just realize that it can be written as
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the mean E*{det[Q + D(b)]} with respect to the density ¢(b) restricted to the set

{b:|b]|? < z}, instead of the mean with respect to the non-restricted density ¢(b).
By the arguments of Section 3 applied to both integrals we obtain when R(6) =0

Fz) = /” o, SO

ie. (N —p)yg(y)/o? is distributed x%_,, independently of f (cf. Pazman (1993a)
for technical details). When R(6) is not zero, one obtains

F(z) = [det[m [, OB+ 007 /deti@) + 0

which is the X?V—p c.d.f. up to the term O(c?). O

Confidence regions. Unfortunately, despite of its good statistical properties,
similar to the properties of s? in linear models, the variable 15(y) is not an es-
timator of o2, since it depends on §. However, as a pivotal variable it can be
used, at least in principle, for the construction of confidence regions, where it is a
substitute for an estimator of o. Indeed, a corollary of Theorem 2 is that, when
the probability (4.2) can be neglected, the random variable

_ IP@)n(®) - n@)II*(N - p)
I = PO)]ly —n(O)]lI”p

is distributed Fp, n—p (exactly if R(6) = 0, or approximately if R(#) # 0 and o is
small). This allows a construction of a confidence region for ¢

75(y)

(5.1) {0 €0 :m(y) < Fn_p(1 - a)}

where F,, n_p(1 — @) is the 1 — a quantile of the F,, y_, distribution. However,
this region may be incorrect when overlapping occurs. To avoid it, one can put an
additional condition to obtain the region

(5.2)  {60€0:74(y) < Fpn—p(l —a) and [[9(6) — n(6)|| < Kin(9)}

which has been presented in Pdzman (1991). However, to use (5.2) one has to be
sure that the probability (4.2) can be neglected. This may be difficult to verify,
since one has no good estimator of ¢ in highly curved models. But in the general
case, one can relatively easily compare (5.1} with the standard likelihood region,
and if the two regions differ very much, one can be sure that the likelihood region
is wrong, as discussed in the example in Section 6. The region (5.2) may still be
correct, but at least some approximate verification of (4.2) is necessary.

6. Discussion

Although the presented paper is essentially theoretical, the obtained results
have some practical consequences.



474 ANDREJ PAZMAN

a) The use of the SPD for the comparison (design) of experiments

Once the experiment is performed (i.e. y is known), one has the likelihood
function for inference, which is much easier to compute than the density of 6.
However, in problems like the design of experiments we do not know y beforehand.
Then experiments, which use least squares, are to be compared according to the
distribution of #. The covariance or the mean square error matrices of 6 would
be certainly useful here, but there are no simple and efficient approximations
of them available. (Cf. Clarke (1980) to see how complicated a second order
approximation can be.) Therefore, instead of using moments, the solution here is
the use of the approximate density of 6. The graphical presentation of the SPD
or its improvement has priority here. This can be done without difficulties when
dim(6) < 2. When d1m(0) > 3, one has to plot the crossections of q(d | 8): one
fixes all components of § but one or two, and plots q(6 | 8) as a function of the
free components. Up to a norming factor, this is the conditional density of the
free components under the condition that the values of the other components are
given.

Another use of q(0 | ) in experimental design is to express explicitely the
dependence of q(0 | 8) on the experimental design, and to compare experiments
according to the value of the mean square error

/ a0 1 818 — 6]2d8.
(5]

One can also compute iteratively the optimum design minimizing this expression
(cf. Pazman and Pronzato (1992) for details and a numerical example).

b) Confidence regions for 0
When the normal approximation of the density of 6 can be accepted, the
(approximate) confidence ellipsoid or “linear confidence region”

(6.1) {6:(0—0)TM(6)(6 —0) <ps®’Fpn_p(l— )}

is correct. However, e.g. in Bates and Watts ((1988), p. 65) the authors “...
warn the reader that linear approximate regions can be extremely misleading”.
In general, much better are the likelihood regions (cf. Bates and Watts (1988),
Chapter 6.1.1) {0 : |ly — n(®)|12 — lly — 7(O)|]> < ps®Fpn—p(1 — @)}, which for
intrinsically linear models can be written in the form

(6.2) {6 : In(8) — (@)1l < ps®Fp,n—p(1 — )}

While both regions coincide and are exact in linear models, the likelihood region
remains exact also in nonlinear models, which are still intrinsically linear. (By
“exact” we mean that the confidence level is exactly (1 —a).) In order models the
likelihood region is only approximate as well. The regions (5.1) or (5.2) given in
Section 5 coincide with the likelihood regions when the model is at least intrin-
sically linear, but they remain to be “almost exact” in a larger class of models,
namely with R(#) = 0 and with a negligible probability (4.2). To evaluate (4.2)
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one needs an estimate of o2, but in the case that the model is intrinsically curved,
the estimator s> may be wrong. What still simply can be done in particular
experiments, is to compare the region (5.1) with the likelihood region (5.2).

The numerical computation of the contour of the region (5.1) is essentially
no more difficult than for the likelihood region (6.2). Notice that P(f) in (5.1)
is fixed, so what is changing along the contour is just the expression 7(f), which
appears in both regions. In the example below we present a simple technique how
to obtain points of this contour numerically. When we only want to check the
correctness of (6.2), it is sufficient to make the computation just for a few points.

Example. Consider the observation of the biochemical oxygen demand
(BOD) discussed largely in Bates and Watts (1988), p. 41, with observed data
given on p. 270, the L.S. estimator 6 and s2 on p. 51, the “linear” confidence
ellipsoids plotted on p. 55, the likelihood regions on p. 64, 202, 211. The response
in the model

n(6,z) = 01(1 — exp{—622})

has been observed independently in N = 6 points
z1=1, 29=2, z3=3, x4 =4, z5=5, ¢ =T
with the results
y1 = 8.3, y2 =10.2, y3=19.0, ys =16.0, y5s = 15.6, ys = 19,8.
The L.S. estimator is

6, =19.143, 6, = 0.5311
and
s% = 6.498.

We note that a similar example is considered in Seber and Wild ((1989), examples
3 and 4, p. 111), but with different data. In both cases the model gives likelihood
regions which are far from the confidence ellipsoids, and which can even have
infinite boundaries. This can be explained by a large parameter effect curvature
of the model. Here we compare these regions with (5.2), and the difference may
be explained by the intrinsic curvature.

Denote

and
w = (3,252,323 45 ,53° 757\ T.

We can write

n(6) = 61(1 - v), n®) _s, O

90, oo, L1V
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This allows to obtain directly the 2 x 2 matrix M(#) and the 6 x 6 matrix P(6).
To obtain points of the contour of (5.1) we use the polar coordinates p, ¢, centered
at 6 (spherical coordinates when dim(6) > 2):

6 — 0 = p(cos ¢,sinp)7.

We fix the angle ¢ and specify p which is on the contour of (5.1), i.e. which is the
solution of

_ 2h(p) _ B
(6:3) 0= Gy =i a0
where
ti(p) = pcos (1 — e"”"”Si“?); i=1,2,...,6
and

h(p) = [y — t(p)|"P(B)ly — t(p)].

The simplest way is to plot the left hand side of (6.3) as a function of p (see Fig. 1).
This allows to omit the verification of the restriction [|7(8) — n(6)|| < Kine(d) in
(5.2) since we simply take as the solution of (6.2) the first passage of the graph
through the level F 4(1 — ).

To compare, we plot also the graph of the function

Ap) = [In(®) — t(p)I?/(25%).

The first passage of this graph through the level F; 4(1 — «) gives the point of the
contour of the likelihood region (6.2).

These graphs given in Fig. 1 have been obtained with the help of S-plus for 3
different values of the angle ¢. The full lines correspond to A(p), the dotted lines
to 7(p). The horizontal lines indicate the levels F» 4(0.9) = 4.32 and F5 4(0.95) =
6.94. When ¢ = 1.1 and (1 — &) = 90%, the point of the contour is common for
(5.2) and (6.2), which does not hold when (1 — @) = 95%. When ¢ = 2.2 the
regions have different points of contour even for (1 —a) = 90%. For (1 —-a) = 95%
the region (5.2) is infinite, whilst the region (6.2) is finite, but for larger (1 — a) it
would be infinite as well. Further intersections of the graphs with the horizontal
lines come from overlapping, and can not be taken into account. One can conclude
that the likelihood region on the 95% confidence level can not be considered being
reliable in the direction ¢ = 2.2. Finally when ¢ = 6.25 both confidence regions
are infinite (for both levels of confidence).

Drawing those figures for 20 angles ¢ (which is a rather quick procedure in
S-plus) we obtained that for each ¢ the confidence region (5.1), resp (5.2) is equal
or larger than the likelihood region. On the 95% level there is a difference between
the two regions when 0.47 < ¢ < 0.87, and 1.987 < ¢ < 1.998%. For any other ¢
there is a coincidence of both regions. This means that the likelihood confidence
region is slightly too optimistic, but up to small intervals of the angle ¢, the
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Fig. 1. Graphs of A(p) (full lines) and 7(p) (dotted lines). For the angles ¢ = 1.1,

¢ =22and ¢ = 6.25.
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95% likelihood confidence region is correct despite of the intrinsic curvature of the
model. The situation may be worse for higher confidence levels.
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