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Abstract. In non-Bayesian statistics, it is often realistic to replace a full
distributional assumption by a much weaker assumption about its first few
moments; such as for instance, mean and variance. Along the same lines in
Bayesian statistics one may wish to replace a completely specified prior dis-
tribution by an assumption about just a few moments of the distribution. To
deal with such Bayesian semi-parametric models defined only by a few mo-
ments, Hartigan (1969, J. Roy. Statist. Soc. Ser. B, 31, 440-454) put forward
linear Bayes methodology. By now it has become a standard tool in Bayesian
analysis. In this paper we formulate an alternative methodology based on
the theory of optimum estimating functions. This alternative methodology is
shown to be more readily applicable and efficient in common problems, than
the linear Bayes methodology mentioned above.

Key words and phrases: Bayes methodology, conditioning, estimating func-
tions, linearity, optimality.

1. Introduction

To extend the theory of optimum estimating functions to semi-parametric
Bayesian models we need a generalized version of a theorem of Godambe and
Thompson (1989). We first very briefly state the theorem and then give the
needed generalization.

Deemphasizing mathematical details, let X = {z} be an abstract sample
space, P = {p} a class of probability distributions on X. Further 8 = (64, ...,6.)
is an m dimensional parameter with real components 6, defined on P; @ = {8(p) :
p € P}. The estimating function theory provides estimation of the unknown
parameter 8, on the basis of the data x as follows: We define elementary estimating
functions h; as real functions on & x Q such that, under the distribution p € P,
the expectation of h; conditional on some partitioning X of the sample space
X, Eh;j | &) =0,j5 =1,...,k. Here and subsequently, for brevity, a o-field
generated by a partition is simply referred to as a ‘partition’. Thus h; is said to
be unbiased conditionally on &;. Now let

Ly g9=1(91,--,9m)
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be an estimating function such that

k
gr =D _hjasr
=1

where a;, are any functions of (z,6) which are measurable w.r.t. x;, j =1,...,k,
r=1,...,m;
(1.2) Gg={g}

Further we introduce the estimating function
(1.3) 9 =(97,--,9m)
where

k
* 2 : *
9r = h‘ja‘jr
=1

with a},. = E{(Oh;/00;) | X;}/€E {(h3) | X;} assuming the derivative exists, r =
1,...,m. Note the estimating function g* € G in (1.2). Denoting hjaj, by hj the
elementary estimating functions h;, 7 = 1,...,k are said to be mutually orthogonal
if E(hjrhj | X;) = 0,3 # 3, 43,7 =1,...,k r,r" =1,...,m. Now with the
estimating function g in (1.1) we define two matrices:

J= “g(grgr’)u’ H= I]g(agr/aar’)“’

r,7’ = 1,...,m. Similarly with the estimating function g* in (1.3) we have matri-
ces J* and H*. With the usual notation if A7 and A" denote the transpose and
the generalized inverse respectively of matrix A, Godambe and Thompson (1989)
theorem, can be stated as follows.

THEOREM 1.1. If the elementary estimating functions h;, 5 = 1,...,k are
‘mutually orthogonal’, in the class G in (1.2), the estimating function g* given by
(1.3) is optimal in the sense that the matriz

(1.4) J—HH)YJ(H*T)THT
s positive semidefinite, for all g € G.

The estimate of @ is obtained by solving the equation g* = 0 for the observed
value of z.

A generalization of the above theorem is obtained when the parameter 8 has
a distribution; now p denotes a joint distribution of (z,8). Again P = {p}. In this
new setup the partitionings X; (of the sample space X) of the original theorem are
to be replaced by the partitionings of X x 2; all the ‘expectations’ being replaced
by the ‘expectations w.r.t. the joint distribution p of (z,6)’. Of course when a
partition of X x Q is given by ‘holding @ fixed’, £(- | 8) reduces to the expectation
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in the original theorem. It is now understood that some elementary estimating
functions hj, j = 1,...,k would be exclusively functions of the parameter 8. The
‘new setup’ implies further extentions (E) below:

(E) The estimating functions g in (1.1), including g* of (1.3) are now obtained
from functions h;, with coefficients ‘aj,.’ that are measurable functions w.r.t. the
partitionings of X x Q corresponding to h;,j =1,...,k; 7 =1,...,m. Accordingly
we have the definition of orthogonality of the estimating functions hj, j = 1,...,k.
As before in (1.2), the class G = {g}. However now, the matrices corresponding
to J and H of the preceeding setup are denoted by J; and H; respectively for the
clarity of presentation.

Now we have the following generalization of the previously stated Theo-
rem 1.1.

THEOREM 1.2. Assume the interpretation of estimating function g*, the
class G, the orthogonality and the matrices J; and Hy as in (E) above. Now
if the elementary estimating functions h;, j = 1,...,k are mutually orthogonal
then in G, g* is optimal in the sense that the matriz

Jy— Hy(H) P (HT ) HT
is positive semidefinite for all g € G.

The proof of Theorem 1.2 is along the same lines as that of the previous
Theorem 1.1; followipg is an outline. It is easy to check

I1€(3g-/06:)1 = 1E(grgr)l, 7' =1,...,m,

because of the orthogonality of the estimating functions h;, j = 1,...,k. The
above equality, as shown in Godambe and Thompson (1987) implies positive
semidefiniteness of the matrix J; — Hy(HF)tJy(HyT)* HT hence the proof. As
before the estimate of @ is obtained by solving the equation g* = 0 for the given
T.

In case of a scalar parameter @ = 6, the optimality of the estimating function
g* = ¢g* in Theorem 1.2 is equivalent to the inequality,

w o) ()

for all distributions p € P and estimating functions g € G in (1.2). The inequality
(1.5) has interesting implications: Let for the joint distribution p of (z,9), p(6 | =)
denote the posterior density of 8 given z = (z1,...,%,). With certain restriction
on the class P = {p} and the class of estimating functions G in (1.2), yet covering
the illustrations of Section 2, we have the following theorem.

THEOREM 1.3. If the estimating function g* is optimal, that is if it satisfies
the criterion (1.5), then
(1) Corr*{g*,dlogp(6 | x)/86} > Corr*{g,dlogp(f | z)/06},
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(2)€{g* — dlogp(0 | z)/00}* < E{g — Ologp(d | z)/36},
for all distributions p € P and estimating functions g € G.

The proof of the above theorem is given in the Appendix. It is along the lines
of similar previous results of Godambe and Thompson (1987) and Godambe and
Heyde ((1987), p. 232). Further comments on Theorem 1.3 above are given in
Section 3.

We have formally introduced optimal estimation via estimating functions,
through Theorem 1.2. Before illustrating its applications for semiparametric mod-
els, we here very briefly introduce the linear Bayes method in common use.

For a scaler parameter @ = § and the sample space X = R", z = (z1,...,%n),
the linear Bayes method (Hartigan (1969), West and Harrison (1989, p. 136)) can
be described as follows. The estimate

n
0=ay+ E a; x;
i=1

of 4 is said to be linear Bayes if

n 2
(16) ') (9 —ag — Z aixi) s
i=1

is minimized for the variations of a; at a; = a}, ¢ = 0,...,n; the expectation in
(1.6) being taken w.r.t. the joint distribution of 6 and z;,i=1,...,n.
The two methods of estimation, one the linear Bayes, just described and the
other obtained via optimal estimating functions would be compared in Section 3.
The examples in Section 2, illustrating the applications of the optimal esti-
mating functions for parameter estimation also illustrate how they can be used for
forecasting or predicting future observations.

2. lllustrations

Here the sample space X = R™, z = (z1,...,Z,) and @ = R!. The class
P of distributions p on X x 2 is given as follows. For every fixed 6, the variates
Z1,...,Z, are independently distributed with common mean 6 and variance o2(f),
a known function of 6. This is the case in generalized linear models (McCullagh
and Nelder (1989)). Further we assume that 6 is so distributed that its mean and
variance are fixed (known) namely 6y and vg.

The elementary estimating functions h in the present case are given by x; — 8,
i=1,...,n and # — 6. The partition of X x Q in case of z; — 6 is generated by
‘9’ i=1,...,n and for 8 — §y it is X x § itself, i.e. no partition. Thus

E{(z;—0) |8} =0, i=1,....,n; E(6—8) =0.

Note that the functions z; — 6, ¢ =1,...,n and # — 8y are ‘mutually orthogonal’.
Hence the optimal estimating function for € in the present case is given by

(21) 9 == {Z iZ(_a)e} = ;090‘

i=1
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On the other hand if 02(6) is ‘not known’ but £{0?(6)} = 02 is ‘known’ we could
use for each of the functions z; — 6,4 = 1,...,n and 6 — §, the partition X x (2, i.e.
no partition. Note again the functions ; — 8,7 = 1,...,n and § — §y are ‘mutually
orthogonal’ and the optimum estimating function for 8 is given by

(2.2 5= {Z o "} + 20,

=1

In the above illustration if z; is a binomial variate, equations (2.1) and (2.2)
will be equivalent to

Z?:l (xi - 0) 9 — 00

(23) 9 =- 6(1-6) + Vo ;

n
(2.4) gy ==& b
8o(1 — o) — vo vo

It is easy to see that the solution of the estimating equation gj = 0 obtained
from (2.4) coincides with the posterior erpectation 6 conditional on z,...,Z,,
E@ | z1,...,z,), in case § comes from a conjugate family of distributions. More
generally the solution of the estimating equation g§ = 0 obtained from (2.2) would
coincide with the ‘posterior expectation’ £(0 | z1,...,z,) provided we restrict to
a class of distributions P = {p} for which the following conditions hold. (i)
Conditional on 8, x4, ..., z, are independent with common mean # and variance
0%(#). (ii) The distribution of 6 is such that £(0) = 6y, £{0?(0)} = o2 and
E(8 — 60)? = vy, 6o, 00, Vo being all known. (iii) The posterior expectation of 8
conditional on z1,...,z, that is £(6 | z1,...,2,) = aZ + 3 where Z is the mean of
Z1,...,Zn, &, being independent of z’s. This general result follows from Ericson
(1969). The conditions (i), (ii), (iii) would be satisfied for instance, if z1,...,2,
came from a one parameter (6) exponential family with mean 6 and  comes from
a corresponding conjugate family of distributions (Diaconis and Ylvisaker (1979)).
Of course there could be many other distributions than the ones just mentioned
satisfying conditions (i), (ii), (iii) above.

Finally we consider an illustration from stochastic processes. Again as before
the sample space X = R™ and the parameter space ! = R!. Let x1,%o,...,Z, be
a branching process with z9 = 1. Here z; can be written as a sum of z;_; variates
which conditionally on z;_; are independently and identically distributed as x;.
Assuming E(z; | 6) = 6, we have E(x; | z1,...,2i-1,8) =0z,_1,t1=1,...,n. Now
our elementary estimating functions h are given by (z; — 0z;—1),i=1,...,n and
@ — 6y, where as before g is the known mean of the prior distribution of 8. The
partition of X x €, for the function (z; — 0x;_1) is generated by (zi,...,zi—1;6),
i =1,...,n and for (0 — ) it is X x § itself. As said before by ‘partition’
we mean the o-field generated by the partition. Note the elementary estimating

functions (z; — 0z,-1); i = 1,...,n, (6 — 6y) are mutually orthogonal. Now let
E{(z1-6)% | 8} = 0%(0), E(0—6p)? = vo where as before 0 is a known function of 6
and v is known. In the present case £{(z; —0z;_1)* | z1,...,%i-1,0} = 02(8)z;_1.

Hence the optimum estimating function for @ is given by

_ zn: (z: ;2?;3)1—1) L@ ;090).
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The above estimating function excluding the Bayesian factor {(f — 6o)/vo} was
obtained previously by Godambe (1985).

The Theorem 1.2 given in Section 1 can also be used for forecasting a future
value of a random variate. This is briefly illustrated with the example of branch-
ing process discussed in the preceeding paragraph. Suppose one is interested in
forecasting a future value say Z,41, on the basis of the observed previous values

(sample) z1,...,Zn. To do this, one just has to write elementary estimating func-
tion h = Zp41 —0%,, in addition to those previously mentioned namely, z; —0z;_1,
i=1,...,n and @ — 6. These provide two jointly optimum estimating functions

for estimating @ and Z,,41:

* _ - CL‘i—OCBi_l 0—0().. *_.’En+1—0(lﬁn
91 = Z 0,2(0) + Yo ) g2 = 0_2(0)

i=1

Let gf = g* + g3. Then the estimate or forecast for 2,1 is given by &n41 = bz,
where 6 is given by the solution of the equation g* (é) = 0, for the observed values
of x1,...,Zn-

The elementary estimating functions h considered above are linear in z’s and
6. For nonlinear functions h, let in the above illustration of the branching process,
the mean of the distribution of z; be known, say u, and the unknown variance (for
the consistency of notation) be 8. Now to estimate 6, h; = (z; — puzi_1)? —0z;_1,
i =1,...,n. Here, as in Godambe (1985), the optimum estimating function g*
depends on the skewness of the distribution of z;.

3. A comparison with linear Bayes estimation

As stated at the end of Section 1, the linear Bayes estimate is obtained by
minimizing the expectation in (1.6)

n 2
£ (9 —ap — Zam,—)
=1

for variations of a;, i = 0,...,n. The above expectation is w.r.t. the joint dis-
tribution of z1,..., %, and §. Let this joint distribution be such that conditional
on #, z; =1,...,n are independent with common mean # and variance 02%(#) and
marginally for 8, £(8) = 6y, £(8 — 6p)? = vo and E{c?(0)} = 03, bo, vo, 00 be-
ing all known. For this distribution the linear Bayes estimation (Hartigan (1969,
p. 448)) coincides with the solution of the estimating equation g5 = 0 obtained
from (2.2). This estimate, as noted in the preceding section, actually equals the
posterior expectation £(6 | z1,...,%,) for a class of joint distributions of § and
z’s.

The distinction between the two methods of estimation, one given by the
linear Bayes and the other by the optimal estimating functions is best brought
about by the estimating function g* in (2.1). When 0%(8) is a known function
of 0 and when E{c%(0)} = 02 is also known, according to the optimal estimating
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function theory, estimation given by g* = 0 is to be preferred to estimation given
by g = 0 where g* and g} are given by (2.1) and (2.2) respectively. For, when
0%(#) is a known function, as stated in Section 2, the estimating function g~ is
‘optimal’ in the class of estimating functions G in (1.2). Particularly g* is better
than g§ for g € G. Below we elaborate on this optimality criterion.

The properties (1) and (2) of Theorem 1.3 of Section 1 clearly suggest that
the optimum estimating function g* in “some sense” is closer than any other
estimating function g in the class G, to dlogp(8 | z1,...,2z,)/06. For an intuitive
illustration let p be a distribution such that conditional on 6, the distribution of
Z1,...,Zn belongs to an exponential family with mean 6, 7(8) being the marginal
distribution of #. Now the term {-} of ¢* in (2.1) is the ‘score function’. This
however is not true about the term {-} of g3 in (2.2). Further

dlogp(d | z1,...,%n)/06 = {score function} + dlog 7 (6)/06.

In each of the estimating functions g*, g¢ and dlogp(@ | z1,...,z,)/06, for large
sample size n, the term {-} would generally dominate the remaining term. Hence g*
is ‘closer’ than g§ to 8logp(f | z1,...,Zn,)/00. That is generally the solution of the
equation g* = 0 would tend to approximate the mode of the posterior distribution
p(6 | z1,...,Z,). On the other hand, as seen in the preceeding section, for a
restricted class of distributions P = {p}, the solution of the equation g5 = 0
would provide the mean of the posterior distribution.

The score function played a central role in the theory of estimating func-
tions, right from its inception. In recent years the theory was directed to find
appropriate substitutes for the score function, in case of nuisance parameters and
semiparametric models through conditional and quasi-score functions (Godambe
(1976, 1985); Lindsay (1982)). Along the line, it is natural that the theory be
directed to find appropriate substitute for the posterior score, for semiparametric
Bayesian models.

Now for an estimation problem of primarily decision theoretic nature, the
‘mean’ rather than the ‘mode’ of the posterior distribution of the parameter
could be more relevent. As seen before the former is approximated by the linear
Bayes methodology while the latter is approximated by the estimating function
methodology. Apart from this distinction we also note that as an immediate upshot
of the Bayesian methodology follows the principle of ‘conditioning on the entire
data z’ and using exclusively the posterior distribution p(é | z) for estimation. In
respect of conditioning, the estimating function theory is in a sense more flexible.
The different elementary estimating functions are conditined on different partitions
of X xQ. As such, conditioning on the entire data z, is not of much relevance here.
Yet under appropriate conditions, the optimal estimation is based ‘exclusively’ on
the posterior distribution p(# | z), as in case of the Bayesian methodology. This
is illustrated by the following very simple, though rather extreme example.

Let the joint distribution p of (z,8) be such that conditionally on &, the
density of z is f(z | 6) and the prior density of 6 is 7(8). Suppose further that we
start with elementary estimating functions

dlog f(z | 9) B — calogﬂ(e)
00 ’

(3.1) hi = a(6) = e
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where o is any function of # and ¢ is any constant. Granting some conditions

(Ghosh (1993)) on the prior density 7(¢) and the conditional density f(z | 6), we
have

E(h2)=0; E(h1|6)=0

8{610g7r(0)}2 _ ¢ {8210g7r(0)};

and

00 062

(3.2) , ;
g{<6log£§x|0)) 0}=_£{<a 1oga£gx|o)> ‘9}

Thus the partition of X' x  obtained by holding ‘6 fixed’ in case of h; and &' x {2
itself, in case of hy yields the optimum estimating function

« . E(0h,/00]8) £(Ohy/09)
. o =m=gaey M e
__Ologf(z|6) dlogm(6)
el a6

because of (3.2). If as before p(@ | x) denotes the posterior density of 6 given «,
then from (3.3) we have

. Ologp(8|z)

(34) -9 50

Note that the equation (3.4) will not follow if in case of the elementary estimating
function h;, the partitioning given by ‘0 fixed’ is not used and 8 is allowed to vary.
For instance let f(z | ) = exp{fz — ¥(8)} and 7(0) = exp{ub — vi)(0)} where ¢ ‘
is a known function of § and u,v are known constants. In this case we may start
with the elementary estimating functions

hy = a(@){z —¥'(0)},  ha=c{u—vy'(6)}

as in (3.1). Note £(h1 | ) = 0 and E(h2) = 0. The optimum estimating function
in the present case is given by

—g* = (z+p) - (v+1)¢¥(8)
_ Ologp(6 | z)
o0

as in (3.4).
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4. Efficiencies and confidence/Bayes interval estimation

In this section initially the efficiencies of the estimating functions ¢g* and gj
in (2.1) and (2.2) are compared. Subsequently, confidence/Bayes intervals based
on the estimating functions ¢* and gg are defined. The ‘lengths’ of these intervals
are related to the efficiencies of g* and gg.

As usual the efficiency of an estimating function g is given by the inverse of
the r.h.s. of (1.5):

_ {&(89/06)}*
Eff(g)—-——zaﬁy——.
Thus
@) e = [ne {UZLW)} ; v—lo] e = (5 s).

Now since 02 = £{0?%(6)}, and since £{c?(8)}£{c%(F)} ! > 1, we have in (4.1)
Eff(g*) > Eff.(95), a conclusion also implied by the optimality of the estimating
function g*. For large sample sizes n, from (4.1), the ratio

EFf(e)  anf 1
(42) Effle) ~ 7¢ {02(0) } '

If the parameter € has a completely specified prior distribution and the ran-
dom variate z conditional on # has a specified parametric distribution, Bayes
shortest intervals for € could be obtained, conditional on the observed value of
z (Godambe (1961)). These intervals are of course, based on the posterior dis-
tribution of the parameter 8, conditional on x. In the present case, since no
completely specified prior distribution for €, nor a parametric distribution for x
given 6, is assumed, the posterior distribution for @ is undefined. Hence we define
confidence/Bayes intervals, based on Chebyshev’s inequality as follows.

The variances of the estimating function g* and gg in (2.1) and (2.2) with
respect to the joint distribution p of (z,8) are given by

1

(4.3) v(g") =ne{a%w)} R G R

Further, by Chebyshev’s inequality, with sufficiently large (z, #)-joint probability,
hold the two inequalities,

g . 96
@4 )VW?FSh ' @

for an appropriately large k. If the inversion of the two inequalities in (4.4) provides
intervals for 8, they are called confidence/Bayes intervals based on the estimating
functions ¢* and g§ respectively.

Now the length £ of the confidence/Bayes interval based on the estimating
function g3 is directly obtained from (4.3) and (4.4), as £ =
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2k(n)~1/2[€{0?(0)}]'/2. Further, applying one step Taylor expansion to two func-
tions ¢g* + k{v(g*)}'/?, and using (4.3), provide for large sample sizes n, the
length of the confidence/Bayes interval based on the estimating function g* as,
0* ~ 2k(n)~1/2[€{1/5?(8)}]'/20%(6); this depends on 6. Here replacing {1/0%(6)}
by its expectation, £{1/0%(0)} as an approzimation leads to the ratio

(4.5) (€5/€7)? = [E{o*OINIE(L/o*(0)}]-

The approximation just mentioned would appear to be adequate for #’s with high

prior probability, under a sharply defined prior distribution. This is supported by

the illustrations in the next paragraph. Now it follows from (4.2) and (4.5) that
* *\2 . gf f (g*)

(49 Gl = e

As noted before, since g* is the optimum estimating function, in (4.6), r.h.s. > 1. It

then follows that the length of the interval £* based on g* is often shorter than £,

the length of the interval based on g}. However, to compute the confidence/Bayes

interval based the estimating function g* one has to know £{1/52(6)}.

To illustrate the above confidence/Bayes interval estimation, let the joint
distribution p(z,8) = f(z | 8)7(0) where as before f is the conditional distribution
of z given # and 7 is the marginal (prior) distribution of . Further let z =
(z1,...,Zn) be n variates which conditionally on @ are iid as Poisson with mean
6, () being a gamma distribution with shape parameter a and scale parameter
B. For this distribution p, 02(8) = 6, £{02(8)} = (a/B) = 0}, E{1/0?(8)} =
{8/(a — 1)}. Now the approximation {1/02(f)} ~ £{1/0%(8)} is required to
derive inequalities (4.5) from (4.4). However for the present distribution p, the use
of the approximation just mentioned is unnecessary. For now the two inequalities
in (4.4) themselves, for large samples, imply

z-—0

k 3 1/2. ) E /a\?
FlerEn) raswm )

respectively. If as before £* and £ are lengths of the confidence/Bayes intervals
based on the estimating functions g* and g respectively, from (4.7)

Now the modal value of the predictive distribution of Z is (a—1)/8. Further for this
predictive distribution the standard deviation around the ‘mode’ is approximately
vo + (1/62), vo as before being the variance of 6; vo = (a/8?). Thus when g
is small and 3 is large, Z would be within a short interval around the ‘mode’
with a large predictive frequency. (Actually for o = 1.01, 8 = 1, the predictive
frequency with which Z takes values in a small neighbourhood of the mode, namely
{(a—1)/B} = .01, is > 0.95.) For such values of Z, the ratio of the lengths of the
confidence/Bayes intervals in (4.8),

(&)=(:5)=

(4.7)
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implying [¢*| < |£5]. Further from (4.2), in (4.9), {(a — 1)/a} = {Eff.(g)/

€ff.(¢7)}, hence (53)2 Eff(9%)

e Eff(g5)

as in (4.6). Similar results are obtained, if ‘z’ instead of having a Poisson dis-
tribution as in the above example, has a binomial distribution; now the prior
distribution gamma, is replaced by a beta distribution.

For simplicity of presentation the above illustrations are restricted to single
parameter cases. But general arguments can be easily extended to multiparamet-
ric situations. For an interesting multiparametric application of the ‘generalized
version’ of Godambe and Thompson (1989) theorem given in Section 1, we refer
to Naik-Nimbalkar and Rajarshi (1995). These authors also provide a generalized
version of the theorem within the context of state-space models. Within the fully
parametric Bayesian model, the optimality of the estimating function given by
{Ologp(0 | z1,...,2,)/00} that is the derivative of the logarithm of the posterior
density was previously established by Ferreira (1982) and Ghosh (1993).

5. Empirical Bayes setup

Again, as in Section 2, let the random variates z;, 7 = 1,...,n be distributed
independently, this time not with a constant mean #, but with means 6; and
variances 02(6;); with @ = (64, ...,6,),

(5.1)  E(zi—6;|0) =0, E{(zi—0:)%|0}=0%6;), i=1,....,n

As before 02(6) is a known function of 6. Further let 6;,...,0, themselves be
distributed independently with mean 6y and variance vy;

E(6; — 6y) =0, 5(0,;—00)2=’Uo, i=1,...,n.

For the moment we assume 6y and vy to be known. As in Section 2 the elementary
estimating functions h are given by x; — 6; and 6; — 60y, i = 1,...,n. The partition
of X x Q in case of z; — 6; is generated by 8 = (61,...,60,),i=1,...,n and for
0, — 6 by X x Q itself, i = 1,...,n. These functions h are mutually orthogonal.

Hence the jointly optimal estimating equations for estimating 6;, 7 = 1,...,n are
given by

; — 0; 6, -0
(5.2) (@ —0) (Bi-6)_,

a2(6;)  wo

Now consider the case when 6y and vg in (5.2) are unknown. To estimate
6 and vo we have from (5.1), the estimating functions z; — o, (z; — 60)? — vo —
E{0?(6;)},i=1,...,n. Note E(z; —bp) = 0 and E[(x; —6p)% —vo —E{0(6;)}] = 0.
Further the two sets of estimating functions are mutually orthogonal if for i =
1,...,n, (i) &{(z;—0:)? | 6;} = o2, independent of 8;, (ii) £{(z;—6;)% | 6;} = 0 and
(iii) £(8; —6o)® = 0. Of these three assumptions (i) and (ii) are satisfied if given 8;,
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z; are normal; an assumption often made in the investigation of Empirical Bayes
or James-Stein type estimation. The assumption (iii), together with a further
assumption (iv) £{(z; — 6;)* | 6;} = constant independent of i provides jointly
optimal estimating equations for 6y and v in a particularly simple form:

n

(5.3) D (@i —60) = 0; Z{ —80)? —wvp — 02} =0.

=1

From (5.3) we obtain the estimates of 6y and v as,

(5.4) 6o = in/n; T = {2:(:10Z - éo)z/n} —
i=1 i=1

where o2 is assumed to be known. Further, substitution of the estimates 6o and
7o given by (5.4) in (5.2) provides for i = 1,...,n the estimates

5o ZT; éo 1 1
(5:5) Ol‘{aﬁ@o}/{a?“‘ﬁo}'

For large values of 9o, 0; ~ z;. The estimators 6; are clearly Empirical Bayes or
James-Stein type estimates.

It is important to note the conditions underlying the estimates 6; in (5.5).
The assumptions (i), (ii), (iv) above are satisfied by any distributions of z; such
that under 6;, (z; — 6;) are iid and symmetric around ‘0’ for i = 1,...,n. The
assumption (iii) is generally satisfied by a distribution of & symmetric around its
mean. Now for a given 6y and vy equations (5.2) are jointly optimal for 6;, ¢ =

1,...,n, so also equations (5.3) are jointly optimal for 6y and vo. Yet the equations
(5 2) (5.3) together may not necessarily be jointly optimal for the parameters 0;
(i =1,...,n), o and vo. For, the elementary estimating functions (z;—6;), (6;—6o)

are not orthogonal to estimating functions (z; — o), {(z; — 60)? — vo — 0%}. This
however need not be a serious concern, for the optimal estimating functions for
6o and vo namely the left hand sides of the equations (5.3), are approximately
‘orthogonal’ to the left hand sides of the equations (5.2), for large sample size n.
Hence substitutions of the estimates 6y and 9o in the equation (5.2) affect the
latters’ optimality only a little (Godambe (1991)). This provides justification for
the estimates 6; in (5.5), for large samples 7.

An obvious generalization of the estimates 6; in (5.5) to a situation when we
have for ¢ = 1,...,k, observations z;;, j = 1,...,n; is given below. Let under
6;,zi;, j =1,...,n; be distributed independently with the common mean 6; and
variance o2. Here the estimates in (5.5) are replaced by

A i—i é . ].
=) /(s
o o c Do
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where

k n; k k n; k
Bo = szij / Zni; U = ZZ(xij - 90)2 / Zni -0
1 1

i=1 j=1 i=1 j=1

Note for large n; or 9, 6; ~ z,.

For a previous discussion of mutual relationships between James-Stein es-
timation and estimating function theory, an interesting reference is Liang and
Waclawiw (1990).
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Appendix

To prove Theorem 1.3 of Section 1, in addition to the usual regularity assump-
tions such as existence of the required derivatives we impose following restrictions
on the class of distributions P = {p} and the class of estimating functions G in
(1.2):

(a) p(z,80) = f(z | )7(0), f being the conditional density of = given € and
7 the marginal density of . For some numbers a and b, b > a, 7(6) = 0 for 8 > b,
f<aand 7(f) > 0as @ —aorb

(b) Any estimating function g € G can be written as g = g, + g» where go is
exclusively a function of 8; g2 = g2(9).

(c) For all distributions p € P, and all estimating functions g € G, £(g1 |

6) = 0.
The conditions (a), (b), (c) above are satisfied in most applications including the
illustrations in Section 2.

To prove part (1) of the theorem, we note that because of the conditions

(a)—(c),
dlogp(f|x)\ Olog f Ologm
_ oq1 on
= - (5?) + /| g2 %da
Now using the condition (a), intergration by parts, gives

or 992 . 092
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Thus from (A.1) and (A.2) above we have

(A.3) £ (g___alogg((f | “’)) =€ (%) .

Equation (A.3) above and (1.5) imply part (1) of the theorem.
To prove part (2) of the theorem we note that because of conditions (a), (b),

(c),
ay  e(s-CmOlA) g (, 2bsseloy;
v (o - 2@y

Now let g} be the optimum combination of the elementary estimating functions
h, which are essentially functions of z and possibly also of §. Similarly let g5
be the optimum combination of the elementary functions h, which are exclusively
functions of 8. Further because of the mutual orthogonality of the elementary
estimating functions h we have, the optimum estimating function ¢g* = g7 + g3.
Now in the r.h.s of (A.4) the first term is minimized for g; = gf (Godambe and
Thompson (1987)). To minimize the second term in the r.h.s of (A.4) we note that

| dlogn 2__ 9 dlogm dlogm 2
(A.5) S(gg— 50 ) =E&(g;) — 2 (92 20 +& 50 .
As before using condition (a), integration by parts, gives
Ologm\ 092
a0 ¢ (n257) - e (22).

Now let go = 5~ ah where a’s are some constants. From (A.6) it is easy to see that
for variations of a’s, (A.5) is minimized at a = a* = £(%2)/E(h?); that is (A.5) is
minimized for g, = g5. This proves part (2) of the theorem.
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