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Abstract. TFor the product of two population means, the problem of con-
structing a fixed-width confidence interval with preassigned coverage probabil-
ity i3 considered. It is shown that the optimal sample sizes which minimize
the total sample size and al the same time guarantee a fixed-width confidence
interval of desired coverage depend on the unknown parameters. In order to
overcame this, a fully sequential procedure consisting of a sampling echeme and
a stopping rule are proposed. It is then shown that the sequential confidence
interval is asymptotically consistent and the stopping rule is asymptotically
eflicient, as the width goes to zero. Furthermore, a second order result for the
difference between the expected stopping time and the (total) optimal fixed
sample size is established. The theoretical results are supported by appropri-
ate simulations.

Key words and phrases: Coverage probability, fully sequential procedure, sam-
pling scheme, asymptotic consistency, asymptotic efficiency, uniform integra-
bility.

1. Introduction

A sequential procedure for the fixed-width interval estimation of the mean
of a single population was investigated in Chow and Robbins (1965) and Starr
(1966). In a seminal paper, Robbins et al. (1967) considered an analogous proce-
dure for estimating the difference of the means of two populations. Then, Srivas-
tava (1970), Mukhopadhyay {1976}, Ghosh and Mukhopadhyay (1980) and, more
recently, Mukhopadhyay and Liherman (1989) (also see references therein) and
Mukhopadhyay and Sriram (1992) have considered sequential estimation of linear
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combination of means of multiple populations. While there is substantial litera-
ture on the interval estimation of linear combhination of means, there is very little
kanown about the sequential fixed-width interval estimation of non-linear functions
of means of multiple populations. One simple and interesting non-linear function
is the product of means. The purpose of this paper is to construct a sequential
fixed-width confidence interval for the product of means of two populations.

The literature on estimation of product of means using Bayesian and frequen-
tist methaods is somewhat extensive. See, for instance, Harris (1871), Berry (1977),
Page (1985, 1987, 1990, 1995), Rckab (1989), Berger and Bernardo (1989), Sun and
Ye (1995) and Hardwick and Stout (1992). The estimation of product of means
ariscs, most obviously, in situations of determining area based on measurements of
length and width. Tt also arises in other practical contexts, however. For instance,
in gypsy moth studies, the hatching rate of larvae per unit area can be estimated
as the product of the mean of egg masses per unit area times the mean number of
larvac hatching per egg mass; see Southwood (1978). Also, in many environmental
applications, such as exposure assessment and risk modelling, the estimation of
product of means is desired. An example discussed in Sun and Ye (1995} and
Yfantis and Flatman (1991) deals with the assessment of risk due to exposure to
radiation or various pollutants. Here, it is assumed that the dose per unit time,
the units of time per day, and the number of days during which an individual is
exposed are three independent normal random variables. 'T'he total exposure is the
product of the threc means. Applications of product mean estimation also arise
in the area of reliability, economics and quality control.

Recently, Noble (1992} considered the problem of point estimation of product
of two means under a total sample size constraint. He proposed a two-stage pro-
cedure (different from a Stein’s two-stage procedure) and studied its asymptotic
properties, Zheng et al. (1996a) independently considered the problem of sequen-
tial point estimation of product of two means under a total budget constraint.
They proposed a Stein’s two-stage procedure and established its asymptotic prop-
erties. Furthermore, Zheng ef al. (19965) have also extended their sequential point
estimation results to the product of two or more population means.

The problem considercd here can be described as follows. Let X, Xo,... and
Y1, Ya,... be two independent sequences of i.i.d. random variables with unknown
mean and variance (i1, 0%) and (o, 03), respectively. We want to construct a
confidence interval T of width 2d and with coverage probability =~ 1 — 3 for the
parameter piuz(# 0), where 0 < d < oc and 0 < 3 < 1 are preassigned constants.

To this end, we could proceed as follows. Take m observations on X and n
observations on Y, and let

(1.1) Km=m™' > X Y, =n 'Y Y
i=1 i=1
and
1 T
(12) Slz,m = m_l Z(Xt - Xm)zﬂ Sjn - n_l Z(}/ﬁ - ?n)g
i=1 i=1

be the respective sample means and variances. Then, by the multivariate central
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limit theorem

\/'th(Xm - n”'l)

2 2
(1.3} \/%gjl,m Ma)l) EN(Q,E), as m,n — 0o,
n T H2

\/E(S%,n - U%)

provided EX* < oc, EY* < oo, where

of a3 x 0 0
4
H3,x  Hax — 01 0 ]
3 = ? ?

(14) - 0 0 o3 Usy

0 0 pay  (pay —o3)
with g x = E(X — p)*, pay = E(Y — p2)® pax = B(X — i}, pay =
E(Y — pa)*.

i

(1.5) I = [Xm¥y —d, XY + d]

is the interval of width 2d centered at X, Y5, then

(1.6)  P(pipa € Ig) = P(|XnYn — papn| < d)
- P (I(Xm - )ul),UJQ + (Y/n - .UQ),UJI + bmml < dl)

VOoiia/m + ot /n

where by, = (X — 0){Yn — t2) and dy = d/\/o3u3/m + o5p3 /n. Note that

Xm ] }_,n — P 4 Xm - T
‘( ' r)nu'l)( : ru'Z)i < \ﬁl ) ullIYn_u2|£>07
Voipi/m+eiui/n o1 |p2|

as m,n — oo. Assume for large m and n that m/n = oypa/oap. Then,

(Xon — p11)pia + (Vo — pa)ina n
Voludfm+ odpi/n

Therelore, row (1.6) we have

N0, 1), as  m,n — .

d

— -1+ a(l),
Votus/m+ aéuf/n)

where ® is the standard normal distribution function. Let a be a number satisfying
®(a) = 1 — 3/2. Now, minimize t = m + n subject to

(17) P(,ullplz c L,:) — 26 (

2 9 2,2 2
o aius  o; d m g
(1.8) Tika abr _ = and — = Gikz

m 1n a n ool
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It is easily seen that the constraint m/n = opus/oop is redundant. The optimal
pair {m*,n*) which satisfies (1.8) and for which t = m + n is minimum is given by

2 2
a“g a“o

(19) m = S0, w2 TR,
where A = o5 + o9pi;. For this pair

mt oz

n*  oapy’
and the total sample size is

2

(1.10) t=m*+n* = —(C%,/_‘\Q_

When oty and oy are unknown, the optimal fixed sample sizes {m*, n*) cannot
be used in practice. For this case, we shall now give a sequential procedure for
determining m and n as random variables in such a way that (1.9) (and hence
(1.10)) will hold approximately with probability one. The procedure consists of (1)
a sampling scheme which tells us at each stage whether to take the next observation
on X or Y, and (ii) a stopping rule which determines m and n and therefore Iy
by (1.5}.

The rest of the paper is organized as tollows. In Section 2 we describe the
fully sequential procedure and state the main theorems. In Section 3 a simulation
study is presented. The proofs are given in Section 4.

2. Sequential procedure and its asymptotic optimality

Now, we use the notations in (1.1) and {1.2} to define a sampling scheme and
a stopping rule. For the rest of the paper, we assume without loss of generality
that py > 0 and poe > 0.

(i) Sampling Scheme: We take an initial sample size ng = ca® /d%>, for
some suitable ¢ > 0 and 0 < a < 1, on X and Y. Then if at any stage we have
taken i observations on X and j on ¥V with £ = ¢ + 7 > 2np, we take the next
observation on X or on Y according as

(2.1) : 1% 0 3 > ‘S:] ’)f“’ .
J 7 82X 7 52X
This procedure generates an infinite sequence of ohservations and dees not depend
on the value of 3 or d.

(ii) Stopping Rule: The stopping time T = M + N is the first integer T'(>
9ny,) such that, if M obsorvations on X and N observations on ¥ have been taken,

with M + N =T and

2
(2.2) M> %

2
— ~ 4} _ -
e SimYnApn, and N2 ESQ,NXMAM,Na
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where B
Ay n =S, m¥n + SonXur.

When we stop sampling, we compute Xs; and Yy and propose the confidence
interval I; by (1.5) with (m,n} replaced by (M, N).

The problem considered in this paper can he extended to three or more pap-
ulations for which a similar sampling scheme and stopping rule can be defined.
This will be done clsewhere. Next, we state the main theorems of this paper, the
first of which cstablishes the asymptotic consistency of the sequontial confidence
interval and the asymptotic efficiency of the stopping rule.

TrEoREM 2.1. For the fully scquential procedure defined in (2.1) and {2.2),
as d — 0, the following hold:

(2.3) T/t* — 1,  almost surely (a.s.).

If EX? < oc and EY? < o0, then

(2.4) }!iil[l)P(Nlm ely)=1-8 (asymplotic consistency).
If B|1X (%% < oo and B|Y|27¢ < oo for some ¢ > 0, then

(2.5} }ili% ET/t* =1  (asymptotic efficiency),
where t* is the optimal total sample size defined in {1.10).

The next two theorcms concern the list and second order properties of the

stopping rule T defined in (2.2).

THEOREM 2.2. Suppose EX* < ov und EY* <t oo, Then, for the stopping
time 1" defined in (2.2) the following hold:

T -t p .
2.6 = N(D,~%),
(2.6) N (0,%%)
where

o _ Aotol + doyosjups x + palpax — of)
N O'ZEMQA
+ doto] + doyoyppsy + iy — 03)
ESTTRAN

with A defined as in (1.9), and p3.x, pa.x, g3y and pay defined as in (1.4).
Furthermore, if EX'% < oc and EY'® < o0, and o tn (2.1) is such that 3/4 <
o < 1, then for sume dg 2> 0

a2
(2.7) {(T\/; ) N<d< do} ig uniformly integrable.
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Table 1. CV = 1.0,
o no A d i* KT p ET —t*
475 5 3.38 0.8 175.03 168.83 (0.735) 0.947 (0.0071) —6.20
6 450 06 311.17 306.17 (0.883) 0.953 {0.0063) —5.00
& 540 0.5 448.08 444.00 (1.028} 0.047 (0.0071) 2.00
12 675 0.4 700.13 698.65 (1.299) 0.952 {0.0068) —1.48
8/9 5 338 0.8 175.03 170.80 (0.688) 0.949 {0.007Q) —4.23
& 4.50 0.6 311.17 307.22 (D.866) 0.955 (0.0086) —3.95
11 540 0.5 448.08 444.75 (1.002) 0.964 (0.0059) —3.33
16 6.75 0.4 700.13 695.76 (1.307) 0.950 (0.0069) —4.37
16/17 5 338 0.8 17603 169.36 (DL6YL) U.Y43 (ULDUTS)  —bby
9 450 06 311.17 305.64 (0.884) 0.938 (0.0076) —5.53
13 5.40 0.5 44808 443.53 (1.068) 0.955 (0.0066) —4.55
19 6.75 04 700.13 696.99 (1.330) 0.958 (0.0064) —3.14
32/33 5 3.38 0.8 17503 170.22 (0.731) 0.954 (0.0066) —4.81
9 450 0.6 311.17 307.02 {0.877) 0.953 (0.0067) —-4.15
14 540 0.5 44808 442.56 {1.054) 0.951 (0.0068) ~—5.52
21 675 0.4 T700.13 697.07 {1.254) 0.939 (0.0076) —3.06
64/65 5 3.38 0.8 175.03 169.91 (0.721) 0.934 (0.0079) —5.12
10 4.50 0.6 311.17 308.00 (0.875) 0.945 (0.0072) —-3.17
14 540 05 44808 444.16 (1.055) 0.952 (0.0068) —3.92
22 6.75 0.4 700.13 694.68 (1.363) 0.953 (0.0067) —545
Consequently,
- w2
(2.8} E (l\/t_j ) =% 4+ o(1).

THEOREM 2.3. Suppose EX'6 < 0o and EY'® < 0o and « is as in Theorem
2.2. Then, for T defined in (2.2)

o2 (A + arps) o1 (A + gop)

2.9 ET =1t - 3,X — 3.Y
(2.9) o H I H
o0
_#4,;(?#4,4Y+2_ 192 4 o4+ o(1)
g1 G2 H1LH2

as d — 0, where U < Cy < 2 15 a constant.

Remark. Assertions (2.7) and (2.8) in Theorem 2.2 are of interest mainly
because they are used in the proof of Theorem 2.3.

The proofs of the above three theorems are given in Section 4. Next, we
support the theoretical results stated above through simulations for normal pop-
ulations.
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Table 2. CV =2/3.
P o A d e FT P ET —t*
4/5 5 450 0.8 216.09 212.48 (0.788) 0.948 (0.0070) —3.61
6 6.00 0.6 384.16 380.47 (0.987) 0.944 (0.0073) —3.69
8 T.20 0.5 55319 547.52 (1.165) 0.954 (0.0066) 5.67
i2 9.00 0.4 864.36 860.92 (1.475) 0.947 (0.0071) ~3.44
8/9 5 450 0.8 216.00 211.37 (0.785) 0.948 (0.0070) —4.72
% B.00 0.6 384.16 379.46 (0.993) 0.949 (0.007T0) —4.70
11 720 0.5 553.19 548.51 {1.185) 0.951 {0.0D68) —4.68
16 9.00 04 864.36 860.25 (1.483) 0.942 (0.0074) —4.11
16/17 5 450 08 21609 212.44 (0.796) 0.944 (0.0073)  —3.60
9 600 06 38416 379.54 (0.995) 0.961 (0.0061) —4.62
13 720 0.5 553.19 540.84 (1.169) 0.949 (0.0070) —3.35
19 9.00 0.4 $64.36 861.00 (1.454) 0.954 (0.0066) —3.36
32/33 5 450 0.8 216.09 210.87 (0.764) 0.952 (0.0068) —5.22
6 600 0.6 384.16 380.14 (0.974) 0.934 (0.0079) —4.02
14 7.20 0.5 553.10 551.02 (1.203) 0.948 (0.0070) —2.17
21 0.00 0.4 864.36 862.18 (1.432) 0.964 (0.0059) —2.18
64/65 5 450 0.8 216.09 211.38 (0.784) 0.952 (0.0068) —4.71
10 600 0.6 384.16 379.81 (0.969) 0.957 {0.0064) —4.35
14 720 05 553.19 551.21 (1.224) 0.942 (0.0074) —1.98
22 0.00 0.4 864.36 860.39 (1.449) 0.954 (0.0066) —3.97

125

3. Simulation study

It is difficult to try to find exact values of P(u g2 € Ig) by analytic methods.
Instead, we present the results of an experiment using pseudo-random normal

deviates {that is, the populations are assumed to be normal) for the values (see
displays (1.8) and (2.1))

1-8—005 a=196 =10 ng = [max{5, ca®™/d**}]
and o o
cv =T\ 7
20325 d

for which (1.10) becomes
t* = [1.96MCV + 1))
Values o = 2, 2, 32, §2, & d = 0.8, 06, 0.5, 0.4; CV = L, 3 i
(y = o = 3, (o1,02) = (0.9,0.9), {0.8,1.2), (1,2), (0.6,2.4)) were used, and

1,000 sequences of X and Y were generated for each combination. We denote by
P the coverage frequency of I using the stopping rule 7' in (2.2) and by ET the
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Table 3. CV =1/2.

ET

o 110 X d t* P BT _ ¢+
4/5 b 750 0.8 486.20 482.69 (1.232) 0.954 (0.0066) —3.51
6 10.00 0.6 864.36 861.07 (1.652) 0.954 (0.0066) —3.29

8 12.00. 0.5 1244.68 1241.96 (1.896) 0.252 (0.0068) —2.72

12 15.00 0.4 1944.81 1942.48 (2.345} 0.959 (0.0063) —2.33

8/9 5 750 0.8  486.20 482.81 (1.197) 0.943 (0.0073) —3.39
10.00 0.6 864.36 863.81 (1.562} 0.954 (0.0066) —0.35

11 12.00 0.5 1244.68 1241.59 (1.996} 0.957 (0.0064) —3.09

16 15.00 0.4 194481 1939.00 (2.353} 0.955 (0.0066) —5.81

16/17 5 7.50 0.8 486,20 481.46 (1.238) 0.946 (0.0072) —4.74
9 1000 0.6 864.36 861.40 (1.626} 0.953 (0.0063) —2.96

13 12.00 05 1244.68 1239.97 (1.812) 0.852 (0.0068) —4.71

19 15.00 0.4 1944.81 1939.65 (2.446} 0.945 {0.0072) —5.16

32/33 5 7.50 0.8 486.20 482.37 (1.167) 0.951 (0.0068) —3.83
9 1000 0.6 864.36 859.55 (1.604) 0.947 {0.0071) —4.81

14 12,00 0.5 1244.68 1242.56 (1.943) 0.954 (0.0066) —2.12

21 15.00 0.4 1944.81 1942.89 (2.406) 0.940 {0.0075) —-1.92

64/65 5  7.50 0.8 486.20 480.99 (1.225) 0.951 {0.0068) —-5.21
10 10.00 0.6 864.36  860.80 (1.569) 0.957 {0.0064) —3.56

14 12,00 0.5 1244.68 1242.64 (1.852) 0.947 {0.0071) —2.04

22 1500 0.4 10644.8F 193852 (2.363) 0.947 {0.0071) —6.29

average value of I". The following tables give the coverage frequency and average
value of T (with standard error), and the difference £7" — t* for various values of
a, ng, A and d when CV =1, 2/3, 1/2 and 1/4, respectively.

Remark 1.

(i) From the simulation results it seems that the sequential procedure is
successful in keeping the coverage frequency close to 0.95 for small values of d.

(ii) The tables also confirm that the difference BT -- #* is bounded. Also,
it is interesting to note that the difference ET — t* is always negative. This is
surprising since, after all, the stopping rule 7" in (2.2) is obtained by mimicking
the optimal fixed sample sizes (see (1.9) and (1.10)). Despite this, the simulated
expected value of T could be lower than the total fixed sample size. Note that
there are other instances in the literature where it has been observed that negative
regrets using stopping rules are possible. See. for instance, Martinsek (1983, 1990),
Sriram (1991, 1992) and Takada (1992).

Here, for the normal poepulations (chosen in the simulation), the theoretical
bound for ET — 1% is

a1 (A + o2p1)
LETTITAN

A+ o1 i)
(3.1) A

s, X~ #3,y
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Table 4. CV = 1/4.

127

[2" ne A d [Ad ET P ET ¢~
4/5 5 0.00 0.8 48620 480.73 (1.142) 0.952 (0.0068) —5.47
12.00 0.6 864.36 860.05 (1.574) 0.948 (0.0070) —4.31

8 14.40 0.5 1244.68 1239.0T7 (1.792) 0.948 (0.0070) —5.61

12 18.00 0.4 1944.81 1943.82 (2.280) 0.942 (0.0074) —0.99

8/9 5 9.00 0.8 48620 482.68 (1.135) 0.939 (0.0076) —3.52
1200 U6 86436  857.87 (L.555) 0.934 (0.0076)  —6.49

11 14.40 0.5 1244.68 1240.64 (1.779) 0.951 (0.0068) —4.04

16 18.00 0.4 1944.81 1940.99 (2.271) 0.953 (0.0067) - 3.82

18/17 5  9.00 0.8 48620 480.09 (1.162) 0.941 (0.0075) —6.11
12.00 0.6 864.36 861.51 (1.517) 0.956 (0.0065} —2.85

13 1440 0.5 1244.68 1240.36 (1.850) 0.954 (0.0066) -4.32

19 18.00 0.4 194481 1940.12 (2.259) 0.945 (0.0072) —4.60

32/33 5 9.00 0.8 486.20 484.16 (1.164) 0.948 (0.0070) —2.04
9 1200 0.6 86436 860.32 (1.543) 0.958 (0.0064) —4.04

14 1440 0.5 1244.68 1243.83 {1.871) 0.951 (0.0068) - 0.85

21 1800 0.4 1944.81 1937.30 (2.317) 0.960 (0.0062) —7.51

64/65 5 9.00 0.8 486.20 481.65 {1.161) 0.963 (0.0060) —4.55
10 12.00 0.6 864.36 861.24 (1.603) 0.943 (0.0073) —3.12

14 1440 0.5 1244.68 1237.77 (1.842) 0.959 (0.0063) -6.91

22 1800 0.4 1944.81 1941.87 (2.248) (.943 (0.0073) ~2.94

_EX B L o T192 4 g4 o1)
oy T, Lo
= —4— 22 4 0y +0(1)
AL pe2

where 0 < Cyy < 2. Clearly, the right side of {3.1) is negative for any value of 1,
Ha, 0y and ¥Fa.

4. Lemmas and proots

The following inequalities will be used throughout the paper. Suppose M > ny
and that just before the AM-th observation on X there were (M - 1) observations
on X and J observations on Y. Then, by the sampling scheme (2.1),

M1
4.1 < S .
(4.1) J T 50X

This implies that on [M > ng]

2
: n? .
(4.2) M < Ebl,M—IYJAM—l,J+1
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for otherwise we would have (from (4.1))

7200 g

2

(JI —_ ~
> ﬁsz,JXMqAM—l,J

and hence (by (2.2)) sampling would have stopped at (M — 1, J) stage. Similarly,
let I be the number of observations in X just before the N-th observation is taken
from Y. Then, once again by the sampling scheme (2.1)

{4.3) > -

and on [N > ng|,

2
(4.4) N< %SQ,N_IX;A,,N_l +1 and I<M

The positive integer-valued random variables I, J considered above play a crucial
role in the analysis given below. Incidentally, the idea of introducing I and J is
duc to Robbins ef al. {1967).

Proor oF THEOREM 2.1. For the assertion {2.3), it is easy to see that ag
d — 0, M — oo and, hence, from (4.1), we have J — 00. L'herefore, from {4.2)

. M
limsup — <1  as.,
d—o m*

where m* is defined as in (1.9). The reverse inequality for the liminf is obvious
from {(2.2). Hence, as d — 0

{4.5) M/m* -1 as.
Similarly, as d — 0
(4.6) N/in* =1 as,
which, together with (4.5) implies (2.3). Assertion {2.4) can be proved using (1.3),
arguments leading to (1.7) and the Anscombe’s theorem. Finally, for (2.5}, note
from {4.2) that

M

m* =

< Ko[sTy® + s1ysez] + K,

(4.7)

KU[SiM,lf’} + 81 a1 Y58 1 Xl + Ky
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where

i

m_l ZX‘

si=supm ™'Y (Xi—m)?, z=sup

m21 i—1 mz1 =1
T n
21 2 _ 1
sf=supn! Y (Vi —p2)?,  y=supn 'Y Y,
= im1 n=1 i=1

and Ky and K| are constants not depending on d. By independence and Theorem
10.3.3 of Chow and Teicher (1978)

(4.8) Esh? = EsiEy? < 0,

provided E|X|?T¢ « oo and E|Y|? < oo. Similar argument with the Cauchy-
Schwarz inequality shows that

{4.9) Es ysax < oo,

provided EIX|?T¢ < oo and E|Y|?T¢ < oo. Therefore, from (4.5), (4.7), (4.8),

(4.9) and the dominated convergence theorem
EM/m* -1 as d—0.

Similarly,
EN/m*—1 as d—0.
From these we have (2.5). Hence the theorem. O

In order to prove Theorems 2.2 and 2.3, we need some lemmas, the first of
which concerns the lower tail probability rate of N and M defined in (2.2).

LeMMa 4.1, Assume EjX|?P < oo, E|YI?P < oo, for p > 2. Then, for the
fully sequential procedure defined in (2.1) and (2.2), o in (2.1), and 0 < e < 1

(4.10) P(N < (1 — On*) = O(dP™),
(4.11) P(M < (1 - ¢)m*) = O(dP?),

as d — 0, where m* and n* are defined as in (1.9).

PROOF. For 0 < ¢ < 1and & > 0, let D;(8) = [0? — 6,02 + 8] and H,(8) =
(i — 6, + 81, ¢ = 1,2. Then, by (2.2), for some 8 > 0

(4.12) PN <{l-€n") < P(Sg‘NXMAM‘N < (1 — 6)02#1A)
< P(|SonXpBpr v — oo A > eoapn A)

< P(SE s & D1(60)) + P(S3 v & D2(é0))
+P(Xp & Hi(b0)) + P(Yn & Ha(b0)).
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Consider the first term on the right side of (4.12). Note that

Zi\il(Xi - XM)2

P(Sf,M ¢ Di(6)) =P ( 1% - Uf > 60)
M (X — )2 5
SP(Zz_I(M Ju’l) —0’% >§)
+P((Xar — p1)?] > 80/2)

= (1) + {id).
Observe that

{Z[(X% — )~ il /m,m > ng}

i=1

is a reverse martingale with respect to Gp = 0{Zm,Zmy1,...} where Z, =
Ef:] [(Xi — p1)? — o}]/k. Therefore, by the maximal inequality for reverse sub-
martingales (see Chow et al. (1971), display (4.39) and Stout (1974), {second)
Lemma 3.3.1)
8y
> —_—
3)

S (X — )? = o]

(i)gP(sup

m>ng m
| S ) o)
>~ g .
= O(n(;p/z)i

where the last equality follows from Marcinkiewicz-Zygmund Inequality (see Chow
and Teicher (1978), Corollary 10.3.2) and the assumption that £|X|?? < oo for
p = 2. Similarly, (ii) = O(nap/z). Since ng = ca?®/d*® (see (2.1)), the required
result in (4.10) follows from the above arguments. Argue as for (4.10) to show
(4.11). 0

The rest of the lemmas also concern the integer-valued random variables [

and J introduced in (4.1) and (4.4}.

Lemma 4.2.  Under the assumptions of Lemma 4.1, the following hold for I
and J defined in (4.3) and (4.1), respectively, as d — 0:

(4.13) Pl < (1—em’) = 0@@™)
(4.14) P(J < (1 -€n*) = O(d)

for 0 < e <1 and o as defined in (2.1). Furthermore, asd — 0

{4.15) — =1 as and — —1 as.
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Proor. First we will show (4.14). Then, (4.13) will follow in a similar way.
Observe from {4.1) that

. N M—1 __ S .maY; ) *]
JL(1—e€)n”| = L == J<{l—¢en
[ _( ) } |: J _Sz,jXM41 ( )

Sim-1Y.
c [M_lg(l_e)m*(fizﬂl LM -1 J]

Oyt Sz X1
C M < (1= €)m | U[SF 4y 1 & D1{0)] U [Xar—1 & Hi{8o)]

U [83, 5 & Da{60)] U [V & Ha(b0)}:
for some €' € (0,1) and 8 > 0. Now argue as for the right side of (4.12) and use

(4.11) to get the desired result in (4.14). As for the first assertion in (4.15), it
follows from (4.3} and (4.6) that

L I . 5 ]ny_,l N-—1
liminf — > lim 5 = =1
d—0 m* T d—0 9, y 1 X7 ™t

&.8.

Since § < M (see (4.4)), by (4.5}, limsupy ,,4/m™ < 1 a.s. Hence the first
assertion in (4.15). The second assertion in (4.15) follows similarly. Hence the
lemma. O

For the rest of the lemmas let
{4.16) L=M o I and H=N or J
where M, I, N, and J are random variables defined as in (2.2), (4.1) and (4.3).

LEMMA 4.3. Assume that EX® < oo, EY® < oo for p > 1. Then, for
some dy € (0,1)

(4.17) {(L/m*Y*";0<d<dy} and {(H/n*)*;0<d<dp}

are uniformly integrable (u.1.). Furthermore, if E|X|? < oo, EY|?? < oo for
p> 2 and o in (2.1) is such that o > 3/4, then for some dy € (0,1)

(4.18) {(m*JLYP/%0 <d<dp} and {(n*/H)*®?*0<d<d}
are u.i.

PrOOF. Since by definition I < M and J < N, it suffices to show that
assertion (4.17) holds for L = M and H = N. We only show (4.17) for L = M.
The second assertion in (4.17) with H = N follows similarly. Now, from (4.7) for

p=1

(4.19) (M/m*}¥? < K, [s?pygp + sfpy“psgpm‘lp} + K3,



132 SHEN ZHENG ET AL.

where 5%, 22, 52 and y? are as defined in (4.7) and Kj, K3 are positive constants
not depending on d. Once again use independence, Theorem 10.3.3 of Chow and
Teicher (1978), the Cauchy-Schwarz Inequality and the moment assumption to
show that the right hand side of (4.19) is integrable. Hence, {(M/m*)?;0 < d <
do} is u.i. Hence, the assertion (4.17).

Next for (4.18), we show {(n*/H)3/?,0 < d < dy} is uniformly integrable.
Once again, since n* /N < n*/J, it suffices to show that {{n*/J)*/2,0 < d < do}
is uniformly integrable. Observe that for 0 < e < 1

XN dp/2 %\ 3p/2 * 3p/2
n n Tl
(4.20) (7) = (—j) flng<a<i-an + (7) fir>0-en)-

The second term on the right side of (4.20) is less than (1 — ¢)~37/2, For the first
term on the right side of (4.20), recall that rg = ca® /d? and use (4.14) o get

n* 3p/2 n* 3p/2
E(J) I{nowsue)w}é(no) P(J=<(1 on*)

— O(d*3p(1*a))o(dpa) .
= o(1),

as d — 0, since by assumption o > 3/4. That {(n*/J)?/2,0 < d < dp} is uni-
formiy integrable now follows easily trom (4.15) and the above arguments. Simi-
larly, {(m*/L)3?/?,0 < d < dy} is uniformly integrable. Hence the lemma. O

LeMmMma 4.4, The following hold for some dy > O:
(i) If E|X|{* < oo and E|Y|¥ < oo forr > 1, then

M 4r
(Z(-’Q - #1)) [m*? 0 < d < dy
=1

and
N 4r
(Z(Y; m)) /0 < d < do
=1

are uniformly integrable.

(i) If B| X[ < oo and E|Y|*" < oo forr > 1, then

4r

(Z[(Xa- —m) - a?]) Jm* 0 < d < dy

=1

and

N 4r
(Z[(K D i U%]) /0 < d < dy
i=1
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are all uniformly integrable. Furthermore, if E|X 87 < o0 and E|Y* < oo for
r > 1, then assertion (1) above holds with M and N replaced by the positive integer-
valued random variables I and J defined in {4.3) and (4.1), respectwvely. Also, if
E|X|Fr+2 < 0o and E|Y|*"+? < 0o for r > 1, then assertion (ii) above holds with
M and N replaced by I and J, respectively.

Proor. First we prove the uniform integrability of

Ar

M
(Z(sz - m)) /m*¥ 0 <d<dg

=1

This follows from Chow and Yu (1981) once we make the following observations.
Define o-nlgobras

Dn=U{Y1,Y2,...,Yn,Xi,7LZl}, n>1
and
fm:(f{xl,Xg,...,Xm,}/iz].,2-21}, m > 1.

Observe that the event {M = m} is measurable with respect to F, and
{3 (Xi — ), Frym > 1} is a martingale. Furthermore, it is possible to show
using (4.7) and arguments similar to (4.19) that {(M/m*}*",0 < d < do} is uni-
formly integrable, provided E|X|* < oo and E|Y|* < oo for r > 1. Therefore,
the first assertion in (i) follows from Lemma 5 of Chow and Yu (1981). The second
assertion in (i) and the assertions in (ii) follow similarly.

As for assertions (i) and (i) for M and N replaced by the positive integer-
valued random variables [ and J, respectively, first note that / and J are not
stopping times This means that it is not possible to use Lemma 5 of Chow and
Yu (1981) for I and J. But, from Theorem 2 of Chow et al. (1979) and (4.17)
of Lemma 4.3 above, it follows that assertation (i) holds with M and N replaced
by I and J, under the assumption that EIX|8 < oo and ElY[®" < oo for 7 > 1.
Assertion (it) for I and J follows similarly. Hence the lemma. O

Remark 2. In order to prove assertions (i) and (i) in Lemma 4.4 for [ and
J one needs finiteness of 8 and (87 + 1), r > 1, moments, whereas for M and N
one only necds finiteness of 4r and 8r moments. As indicated in the proof, the
increase in woment assumptions (for I and J) is due to the fact that (a) I and
J are not ncecessarily stopping times, and (b) for positive integer-valued random
variables, Theorcm 2 of Chow et al. (1979) requires {(/ Jm*)¥;0 < d < do} and
{(d/n*¥*0 < d < dg} to be uniformly integrable, which hold (by Lemma 4.3)
when E|X|¥ < oo and E}Y ¥ < 0o. Consequently, the next lemma and Theorems
2.2 and 2.3 require more moments,

The next lemma is somewhat similar to the Theorem in Ghosh and
Mukhopadyay (1980). However, our proof for it is a bit more complicated than
theirs for the following reasons. Qur stopping times M and N defined in {2.2) are
very different from the ones considered in Ghosh and Mukhopadhyay (1980} in
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that the stopping boundaries (see (2.2)) depend on both populations, whereas for
the stopping rules defined in Ghosh and Mukhopadhyay, the stopping boundaries
depend only on one population. Due to this reason, a sampling scheme is not
necessary in their analysis, whereas a sampling scheme (see (2.2) and also, (4.2)
and (4.4)) is absolutely necessary for our analysis. See proof below.

LEmMMA 4.5. For L and H defined in (4.16) the following hold: If EX'® < 0o
and EY'% < 0o and o in (2.1) is such that 1 > a > 3/4 then for some dy > 0

{(L —m*)?/m*,0 < d < do}
and

{(H-n*)?/n*,0<d < do}
are uniformly integrable.

ProOF. We only prove that {N — n*)2/n* and (J — n*)?/n* are uniformly
integrable. 'I'he rest of the assertions can be proved similarly. Note from (2.2) and

(4.4) that

az _ R az — A
ESZNXMAM,N -n*<N-—n'< 3552,1\'-1)(131,1\1—1 ="+ 14 ol y=n,

which implies for some generic constant K (not depending on d)

N = n*)2
(121) - )
< %(SQ,NXMAM,N — oy )’
+ %(52,N—1XIAI,NW1 — a1 A)?
nZ
+ KN ) + K
< Km*(S y —oD)' + Km* (87 — o)* + Kn*(S3 y — 03)"
+ Kn*{(S3 n_y — 03)* + Km™ (87 p — 07)* + Km™ (5T — 07)°
+ Kn* (82 —ofY + En* (83 y 1 —03)° + Km" (Xpr — u1)°
4+ Km*(Xpr — p1)' + Em™{(Xp — 1) + En™ Yy — p2)®
+ Kn* (Y — po)* + Km* (Y — p2)? + Km* (X7 — m)®
+ Km*(X; — p)t 4+ Km~(X; — 1)+ Kn*(Yy | — /I.Q)S
+ Kn*(Yy 1 — po)t+ En (Y1 — p2)? + Kd2 D Iy,
+ K + Km*B,
where

(422) B = (32,N - 0'2)2(XM - [J;;)2(81‘M - 0'1)2
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(Son — 022 (Xpr — 1)* (Y — p2)?
(Sl,M - 0'1}2(XM - JU‘I)Z(YN - UZ)Q
(So,n — 02 (Y — p2)*(S1,m — o1)?
(So,n-1 — 02)2(151 - #1)2(%,1 - 01)?
(Sa.nv—1 — 02)* (X1 — u)* (Yno1 — u2)”
(Sl,f - 0'1)2(XI - Hl)z(YNq - #2)2
(San—1—02)" (¥v_1 — p2)"(S1r —o1)”

(Sonv — 02 (Kar — p1) (S, — 00)2 (Vv — po)?
(San 1— )2 (Xr — p)2 (810 — o1 (Y 1 — p2)?

+ 4+ + + o+
%!

Observe that

_ . m*‘Z ﬂﬂ X 1 2
m"(XM- . m)z - M2 [Zlml(mi* H ” .
By the Cauchy-Schwarz Inequality and Lemma 4.4 we have that {m*(Xu —
11)%,0 < d < do} ie uniformly integrable. Also observe that

*3 A 4
‘"5 m [ (X — )]
mt (X — )t = G =

* M
m™* [0 (X — )]
ng m*?

M
— O(d8=9)) 2o (Xi — )]4.
m*?

[ A

Since 3/4 < @ < 1, by Lemma 4.4 we have that
{?Tl*(XM - jA1)4,0 <d< dg}
is uniformly integrable. Also observe that from (4.10} of Lemma 4.1
Ed(v4a+2)I[N:n0] _ d(74a+2)o(d4a)
=o(1)
as d — 0. Therefore,
{d 4 [Ny 0 < d < dp}
is uniformly integrable. Next, consider the first term of m*B. By (4.22)
m*(Sa.n — 02)2(Xar — 111)*(S1nr — 01)* < Km* (Xpy — 1) (So,n — 02)*
-+ Km*(Sl,M — 0'1)4
< Km*( Xy — m)*(San + 02)
+ Km*{(Sf pr — o)yt
Using the arguments above and Lemma 4.4 {ii), it can be shown that
{m*(Xar — ) (S5 5 +05);0 < d < do}
and
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{m*( SlM—O'l) 0 < d<dy}

are uniformly integrable Similarly, we can show that all the remaining terms in
{(4.21) and {4.22) are uniformly integrable. Hence, we have the uniform integra-
bility of {{N —n*)?/n*,0 < d < dg}.
To show (J n*)?/n* is ui., observe that
(J —n*)? < (N —n*)? . (J—n*)?
nx - n* n*
It suffices to show that
{(.] - n*)zf[j<n*]/n*;0 <d< do}

I[‘]<nt] B

is u.i. Now,

(4.23) EM
"

*

& 6]
L ycns _pumm gans] = 2[3 tPL < n* — v, J < n'ldt

+ B?PlJ < n* - BVn*,J <n*.

Note that J > ng and n* — ty/n* > ng implics 0 < d < K/, for some constant
K > 0. By (4.1) and arguments in Lemmas 4.1 and 4.2, we have that there exist
By(= K/dp) > 0 and &y > 0 such that for any t > B > By,

PlJ <n* —tvn*,J <n*] = P[ng<J<n —tvn*, J < n¥|

<P lng < J<n*—tvn, M(M—l)<J]
| Sy 1Y

|(M - ].)SQ,JXM_.l — N Sl,M-—l?Jl]

A Vvn*

+P[Y; & Ha(6o) or 87 a1 &€ D1(60)]

<P [tKy <

[ (M —1)S2 s Xn-1 — 1" S M—137J|]
< K < B ]
<Pt o
+ O(d*®)
lm*Sa g Xar 1+ — n*Si s 1VJ|]
<PIKjt < : :
= [ v N
|(M — it - I)Sg JXM_ll:\ A,
+ P K t< : + (A
[ 1& == \/TF ( )
loypaS2, s X a1 — 0241151 m—1Y4|
P | Kt < p

M—m*
+ P [Kzt < L\/ﬂ——*—l—l} +O(d4a)
m

<P [th < |SZ,JXM71 - 02.!1;11]
< 3t < P
L P [th < (S m-1Yg — 0'1#2|]
v d

+P [th < LALJ_ZT"J] + O(d)
m*
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where Ky, K7, Ky and K3 are positive constants, D(6y) and H,(8;) are defined as
in the proof of Lemma 4.1. Using arguments similar to the ones in the proof of Lem-
mas 4.4 and 4.5, we can show that for € > 0, {(S2 s X1 — dop1)#7% /dZH9) 0 <
d < dg} and {(Sim 1Yy — oypt2) 219 /d24e) 0 < d < dy} are u.i. Therefore,

(4.24) PlJ < n* —tvn*, J < n*] < O(d™) +t2F90(1)
|M —m*|
P|Kyt< & —— 1.
A R e

Since sUPg« g« K /¢ d* = Ot~4), by (4.23), (4.24) and the uniform integrability
of {(M — m*)?/m*;0 < d < dy} we have that

{(J—n*Y/n*;0 < d < do}
is w.i. This completes our proof of the Lemma. O

LEMMA 4.6. Assume that EX* < 0o, EY* < 0o. Let (Z1,25,25,74) be a
multivariate normal vector with mean 0 and X defined in (1.4). Then for L and
H defined in (4.16), asd — 0

I i $1 VB ) (K )
B —a0Zi(01Z1 + azZs + ay s + a4 Za),
= dn* (0201 = S0 Xp AL ) (Vi — p12)
B boZa(b1Zy + baZa + baZa + baZs),
- dm* (G102 = S\ LYu AL w)(S} 1, — 01)

E, —():022(0.121 + a2Z2 + (I3Z3 + (1424),

avn*

d

(c2mA — Sy y XL AL g)(S5 4 — 03)

D b Za(b1 21 + by Zs + by + by Zy),

where

ao = 1// o102\, bo = 1/7/ oo A\,

ay = 0109047, b = (21110% + 0102112)\/02#1/\/01#2,
ay = pi + papoz /201, by = aapi pla /02t /201 \/O fia,

az = (2052 + 0102p1) /01 2/ /o2y, b3 = 010241,
4 = p 1201/ 112 /202,/T2 11, by = ,u‘f + o1 pa 205,
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Proor. By (1.3), (4.5), (4.6), (4.15) and the Anscombe’s Theorem

\/m*()SL — 'ulz)

v ?”*(31 L~ ‘7'1) D
4.25 - = N(0,%¥), as d-—0,
( ) v n*(YH — ,U,Q) (7 )

\/F(S%,H - U%)

where ¥ is defined as in (1.4). The required results now follow from routine
calculations. O

LEMMA 4.7 Assume that EX'® < 0o, EY' < 0o and o in (2.1) is such
that 3/4 < o < 1. Then for L and H defined in (4.16), as d — 0

(1.26) Ez—z(glz,b o3) = aglaips,x +az(pax —ol)) + o(1),

@20)  BY(Fa o) = 0ibamsy + balsy o) +olL),

(4.28) E;—E(XL — ) = —aj(a10? + azp3.x) + o(1),

(@29) B (P — pa) = bibaod + bussay) + o(1),

where the constants ao. ..., a4 and ha, ..., hy are as defined in Lemma 4.6. Fur-

thermore

. a2 a2 — _
(4.30) E@(SEL ~al) (53— o8) — Eos(Xp — p) (Y — p2) = o(1)
a? ~ a’ -
(431)  E— (87, —of) (Vi — ) = E- (835 — o3)( X1, — 1) = o(1)
2
[#

d?

(82, — o) (XL — ) = L2 4 o(1)

4.32 K
( ) oA

o a? . > H3 Y
.33 ~ (82, — g2 — - = 1
(433)  Bp(Shm = oh) (T — ) = e+ o(1)

und the expectations of all the third and fourth order crossed-product terms are

o(1).

Proor. We only prove (4.28) for L = I. The rest of the assertions can be
proved similarly. Observe that

a? 1< 1 Y (Xo—p) (m— Dm*
— (X =) = X, — )+ i=1 —.
d2 ( [ ,J’i) GI#ZA g( y‘l) J]H-QA an'* /‘Tn,* I

By Wald’s Lemma and Lemma 4.4 we have

1 EZL&X’- — ) {m* = Nm*
T1i2A vm* N

2
(4.34) E%(){} ) = +o(1).
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By the inequality 2|ab| < (a® + b?}, (4.18), Lemma 4.4 and Lemma 4.5

(4.35) { S (Xi— ) (m* = I)m?

i Jm Jmr T

is w.i. for some dy > 0. To compute the expectation in {4.34) it remains to find
the limit distribution of the r.v. in (4.35). Since I < M, by {4.2)

O<d<d0}

{(m* - 1) (m — M)

(4.36) >
Vvt N
= tm* = a‘zsl”M_lyJAn”[_laJ/d‘Z —-1- TLOI[M:R()])
) e
@ — A
= W(muazﬁ - S1amr 1 YrAr_1,5)

1
—==Iipron
(\/_ VT~ °1)
= dm(mﬂz/—\ S1m- IYJAM 1,7) + on(l).
On the other hand, by (4.4)
(m* - I) < m* — (N — 1)5]_,1}7N_1/82,N,1X[

4.37
( ) vm* vm*
Sis¥n-o1 a I
* — 5 v XA _
< m R aNXarDpyw . G Vms 1
- vm* So N1 X1 v/m*
a2
N m* — (__f?ql Yo 1AM N
B Ve
S A San X
. 2 MNF( o, N M’)
O'hugﬂ SQN 1Xr
Siu¥no1 1

San-1X1 vm*

1 _ -
= Vmr(oqpad — Sy YnotApn) + D+ oy(1).

O'“LQA

As for D in (4.37), write

(4.38) D= ;L‘;ZNs;sﬂfévf Vm* (San_1Xp — Sa.v X ar)
= Dn/_.[(.SQSN 1 — o) + (X7 — pp)es
— (San — o) — Xy — #1)02]
+ 0p(1)

= Divm*((Se,v—1 = Sa. vt + (Xy — Xag)oa] + 0p(1)
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where D1 = Sl][?N_lAM’N/ASYQ,N__]_X-]J]_.UQA 23'1/0'2;1,1. By (4.5), (4.6), (4.15)
and the Anscombe’s Theorem, it can be shown that

(4.39) Dl\/;ﬁn:[(SZN_] — Sg,N),U:l + (X[ — XM)O'Q] = Op(l).

Using similar arguments, one can show that

4] —
(44{}) m(ﬂ'lﬂgA - Sl,M_1Y_]AM_1’J)
1 _ -
= UpoA \/m*((,fl#gA - S])]YNﬁlAM,N)
| op(l).

By (4.36), (4.37), (4.38), (4.39) and (4.40) we have that

m* — 1 1 _ “
(4.41) NG = N vm* (o1l = S1 YN Ay n) + op(l).
Let
1 _ .
(4.42) A= vl Y m* (1A — S1 YN 1Awmn)-

From (4.41) and the first assertion in Lemma 4.6 it can be shown that

S (X — ) (m* — D) m*
vm* vmc 1
= vVm (X — 11)A + 0,(1)

(F1pad — 81 Vn 1A N X T — )

(4.43)

SYTDTAY
+ 0p(1)

4
2 —CL(%Z] Z aiZ.i,
i=1
where Z!s are as defined in Lemma 4.6. Therefore, by (4.34), (4.35) and (4.43)

2
a _
E5(X1— ) = ~aja B2 - agarEZ1 2y + o(1)
= aé(alaf | azusx) | ofl)
as d — 0. Hence the proof of (4.28). The rest of the assertions follow similarly
with a fair amount of work. Hence the lemma. O

PRrROOF OF THEOREM 2.2. Recall that "= M + N. For (2.6), by the sam-
pling scheme (2.1, stopping rile (2.2), (4.2) and (4.4)

2 a2

2
a - a —, -~ — ~
(4.44) EAiA’,N T < d—gsl,M—lyJAM—l,J + ﬁSZ,NAXIAI,me

+ 2+ r"1[)(][}!1/[:7“)] + I[N—_—HO])'
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Write the left hand side of (4.44) as

(;—QA?W,N - t*) IV = (Bun/A+ 1)§(AM:N - A).

Note that A ‘
Ay N A
Moreover, by (4.25)
o, a a
E(AM,N -A) = E(SI,M — o1 lpe + E(SZ’N — o9)

a. - a, -
+ E{XM - )02 + E(YN — p2)o1 + op(l)
 peVm (8 — of) N Ve (83 y — 03)
2010112 203\ 0201 A
L2 m*(Xar — 1) n oVt (Yn — p2)

VAT N SR
S w22 1144 VA + o143
201Vo1ped 2000 VoA VoA
~ N(0772/4)’

where 72 is as defined in (2.6). Hence

(12

(4.45) =l

A3y — )V B N©, ).

Similarly, we can show that for the right hand side of (4.44}

0',2

d2

a?

(4.46) =

51,M—1?JAM—1,J + SZ,N—la}Z'IAI,N—1

+24 ﬂo(I[M:nn] + I[N:no]) - t*] /‘/F
EN(O,'YQ)-

Hence, (2.6) follows from (4.44), {4.45) and (4.46).

The uniform integrability of {(T — t*)2/t*,0 < d < do} follows from Lemma
45 since T = M + N and #* = m* + n*. From (2.6}, (2.7) and Theorem 4 of
Billingsley (see Billingsley (1968) p. 32), we get (2.8}. This completes the proof
for Theorem 2.2. 0

PrROOF OF THEOREM 2.3. By (2.2) and (1.9)

2 — ~
(4.47) E(T —m*—n") > %E(S],I\/IYNAM,N AV ZTAY)
2
72

2

a _ .
+ p; E(SonXmApn — oap1A)
= (i) + (i1).
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As for (¢} in (4.47), write

, 7} P - — .
(1) = EE[ASI{MYI% + St mYnSonXur ~ otps — oipacai]

a’ 2 a’ o2 o o @ 2 2\ 72 2
= E(S] pp — o) tr (YN“ )Uler*E(SLM—fH)(YN*HQ)
2
+ E(SJ M — O1)ap 02 + 2 E(bz N~ 02)01 gl
a2 -
+ SEYN - p2)oioam

dz

2
Fe) _
+ = 2 E(XM — p1)o1o2ps + EE(SI,M ~ o) (X — p1)oapin

2
a _
+EE(SZ,N a2) (Y  pz)ogpr ¢ o(1),

where we used (4.30), (4.31) and the last line of Lemma 4.7. Use (4.25) and (4.29)
of Lemma 4.7 to get

a’ - a’
djE(YN pa) = ZMQ—E(YN — 2) + E(Yn ~ pa)?
2

U
aap A

= ——2#258(530’% “+ bq,Ll,g,y) +

+o(1).

Similarly, by (4.25) and (4.26)

2

1 a? 2 1 242
EE(SI,M*UI) 5ot dgE(f’ ~o7) — pe ngE(31M o1)” + o(1)
adlaaps x + az{pa, x — ob)]
20’1
T 1ol ZAE[V (S}.M_Ul)] + (1)
_aglaipax +az(pax —of) (pax —of)

1
20y 4ot o),

and by (4.32)

E(slM—al)(XM m)—i“ E(S2,; — 0%)(Xag — ) + o(1)

M'}X
v ~ u 1 -
20 paA +oll)

Similarly, by (4.27) and (4.33)

a* balbatta,y + ba(pay —a3)]  (pay — o)
Z_FE(8. N — Q B B 2 - s 2
d? (S2n = 02) 204 4o A

+0(1)
and
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2
a o M3y ;
— FE(5 — T (Y — = = o(l).
7 (San — 02)(Yn ~ pi2) el +o(1)
Collecting the terms from above
. 2 4 4 2,4 2 aioh
(1) = — paaglaps,x + aalpa,x — o1)] — 2p2076(bsoy + baps x) +
oapi1 A
T aplaips x + aslpax — ot | (pax —of)
201 4qu2A
 ise bilbapay + balpay — o) | {pay — 0f)
Bt 209 4031 A
: 13,
— ,ulalagbg(b-dag + 54,!1.3,)/} - ,ugcrlagag(alaf + ag,u.g,)() + 0-2”2[;7)(
20’1,&2&
H3.Y
gy E3Y 1).
+ T QG%I,LlA + O( )
Similar arguments yield
.. 274 4 2 4 2 U?"%
(id) — — pibglbrps,y + ba(pay — 03)] — 2posag(arc] + azpg x) +
UuU«QA
4 4 4
aglarps,x + a2(pa,x —o7)l  (pa,x — o1)
Hif2T2 |: 20, + 40%;;2:5
e | Bolbsrsy + balpay —a3)] | (pay — 03)
HLpa 209 dofp A
— 1010265 (b303 + bapray ) — pao102a5(aro; + asps x) + U2M2P‘;37'X
207 oA
H3,y
_ e 13,
+ o141 ZUS.UJiA + o(1)
Hence by {4.47) and calculation
oA + o1p2) o1(A+ oapy)
4.4 Yy > ey L el . S
448y E(T —m" —n*) > N ; PN "3y
01 Fe
_ H4,4X _ #4,41* Lo J102 1 o(1).
Ty T3 Hip2

For the reverse inequality, wuse (4.44) and similar arguments with
(St,m-1Y7ApM 1,7 — o1p24) and (So n_1 X7Af y_1 — 0211A) to show that

. I o2(A + o1p2) o1(A + o)
4.49 El-m"—n)y < - — 5 — = - —
(4.49) ( )< I : = TN
JBaX Y L oL DT g4 (1)
g3 ) M1

From {4.48} and {4.49) we have (2.9}. Hence the theorem. O
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