
Ann. Inst. Statist. Math. 

Vol. 48, No. 4, 789-806 (1996) 

ON A WAITING TIME DISTRIBUTION IN A SEQUENCE 
OF BERNOULLI TRIALS 

M. V. KOUTRAS 

Department of Mathematics, University of Athens, Panepistemiopolis, 1578,~, Greece 

(Received June 27, 1995; revised November 6, 1995) 

Abs t rac t .  In the present article we investigate the exact distribution of the 
waiting time for the r-th non-overlapping appearance of a pair of successes 
separated by at most k - 2 failures (k > 2) in a sequence of independent 
and identically distributed (rid) Bernoulli trials. Formulae are provided for the 
probability distribution function, probability generating function and moments 
and some asymptotic results are discussed. Expressions in terms of certain 
generalised Fibonacci numbers and polynomials are also included. 
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1. Introduction 

Let X1, X 2 , . . .  be an infinite sequence of independent Bernoulli trials with 
constant  success and failure probabilities p = P ( X i  = 1), q = P ( X i  = O) = 1 - p 

respectively, i = 1, 2, . . . .  In the present paper we conduct a systematic s tudy  of 
the waiting time distr ibution for the r - th  appearance of two successes which are 
separated by at most  k - 2 failures (k _~ 2, r _> 1 are given integers). In coin 
tossing terminology, we may  restate the problem as follows: If a p-biased coin 
is repeatedly tossed, and we place a marker each t ime we observe two heads in 
the last k (or less) successive flips, what  is the probabili ty to take n trials (tosses) 
until  the placement of the r - th  marker? It should be stressed tha t  the enumerat ing 
scheme employed here is a non-overlapping one, in the sense tha t  no success (head) 
contributes to more than  one counts (markers). As an illustration, consider the 
sequence of outcomes H T T H T H H T T H H H T H T T H H H H  and k = 3. Then,  
the first 5 markers are placed at trials 6, 11, 14, 18 and 20 as shown below 

1 2 3 4 5 

H T T  H T H  H T T  H H  H T H  T T  H H  H H .  

For k = 2, r = 1 we are in fact looking for the first success (head) run of 
length k = 2. The origins of this problem (in its more general form of success 
runs of length k > 2) should be a t t r ibuted  to De Moivre (see Todhunter  (1965)). 
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Feller (1968) derived the probability generating function of the distribution as 
an application of the theory of recurrent events. For the last 15 years the term 
geometric distribution of order k (coined by Philippou et al. (1983)) has prevailed 
in the very extensive literature on this subject; more details can be found in 
Johnson et al. (1992). 

For general r > 1 and k = 2 we have a special case of the negative binomial 
distribution of order k = 2 (see Philippou et al. (1983), Phil ippou (1984) and 
nirano (1986)). 

If r = 1, k >__ 2 the distribution under investigation is a special case of the 
detection waiting time when a 2-out-of-k moving (sliding) window detector is em- 
ployed, Glaz (1983), Nelson (1978). Distributions of this type are of substantial 
interest in radar and safety systems, time-sharing computer networks etc. In 
reliability theory terminology, the respective tail probabilities are survival prob- 
abilities of consecutive-2-within-k-out-of-n reliability structures (see Chao et al. 
(1995), Papastavridis and Koutras (1993)). Also, the conditional tail distribu- 
tion given the number of successes, is closely related to the generalised birthday 
problem, Naus (1968), Saperstein (1972). Additional applications pertaining to 
quality control zone tests can be found in Greenberg (1970), Roberts (1958) and 
Saperstein (1973). 

The present paper is organised as follows. After the introduction of the nec- 
essary notations and definitions (Section 2), in Section 3 we conduct a systematic 
investigation of the waiting time distribution for the first occurrence (r = 1). Re- 
cursive relations are deduced for the moments and probability distribution function 
and its probability generating function is obtained. Moreover, the unimodality and 
the moment  parameter estimation are discussed. The waiting time till the r-th 
occurrence is treated in Section 4, where an asymptotic (Poisson convergence) re- 
sult is established as well. In Section 5 we examine the relation of the distribution 
to certain generalised Fibonacci-type numbers and polynomial. Finally, Section 6 
furnishes some illustrative examples where the developed theory can be immedi- 
ately applied whereas Section 7 states in brief a few results for the case of Markov 
dependent trials. 

2. Definitions and notations 

Let X1, X2, . .  • be a sequence of independent Bernoulli trials with success and 
failure probabilities p = P ( X i  = 1), q = P ( X i  = O) = 1 - p respectively and 
k >_ 2, r > 1 two positive integers. We shall denote by Tk,r the waiting time for 
the r - th  appearance of two successes which lie at most k places apart (separated 
by at most k - 2 failures). The probability distribution function and probability 
generating function of Tk,r will be denoted by fk,r and Ck: respectively, i.e. 

f k : ( n )  = P ( T k :  = n), n > 0 
o o  

n=0  

When no confusion is likely to arise we shall suppress the indices k, r using T, f ,  
¢ instead of Tk,1, fk,1, ¢k,1 and Tr, f~, Cr instead of Tk,r, fk,~, Ck,r respectively. 
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It is noteworthy that T can be formally defined as 

T = i n f  n > l :  X i > 2  . 
i=max(1 ,n-k  + l ) 

For a fixed number of trials n, let Nn,k denote the number of occurrences 
of a strand of k (at most) consecutive trials containing 2 successes, in the first n 
outcomes. Then the probability distributions of T,~,k and N,~,k are related by the 
obvious identity 

(2.1)  P(N,~,k >_ r) = P(Tk,r <_ n). 

Also, if Ln stands for the maximum number of successes appearing within 
any k consecutive trials in the first n outcomes, then 

P ( T  > n) = P(N~,k = O) = P ( L n  < 2). 

3. Waiting time for the first occurrence 

In this section the distribution of the random variable T is examined in some 
detail and several interesting properties of it are presented. Our first result pro- 
vides an efficient recursive scheme for the evaluation of the probability distribution 
function f (n ) .  

THEOREM 3.1. The probability distribution function f ( n )  = P ( T  = n) of 
the waiting time random variable T satisfies the following recurrence relation 

(3.1) f ( n )  = q f ( n  - 1) + p q k - l f ( n  -- k), n > k 

with initial conditions 

(3.2) 
f ( o )  = f ( 1 )  = o 

f ( n )  = (n - 1)p2q n-2, l < n < k .  

PROOF. The derivation of initial conditions (3.2) is straightforward. Let us 
next assume that n > k. Manifestly 

f ( n )  = P ( T  = n, X 1  = O) -~- P ( T  = n, X1 = 1) 

and 

P ( T  -- n, X1 = O) = P(X1  = O)P(T = n f X1 = O) = q f ( n  - 1). 

On the other hand, the event {T = n, X1 = 1} is equivalent to {T = n} n A with 
A = {X1 = 1 and X~ = 0 for all 2 < i < k - 1} and therefore 

P ( T  = n ,  X 1 = 1) = P ( A ) P ( T  = n I A) 
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which, on taking into account that P ( T  = n I A) = f (n  - k), yields 

P ( T  = n, Xl = I) = p q k - l f ( n -  k). 

This completes the proof of formula (3.1). 

For the special case k = 2, formula (3.1) reduces to 

f (n)  = q f ( n -  1) + p q f ( n -  2), n > 2 

which is the well known recurrence for the geometric distribution of order s = 2 
(see e.g. Shane (1973)). A by-product of the above is the alternative recursive 
relation 

f (n)  = f ( n  - 1) - p2qf(n - 3) 

which is mentioned in Aki and Hirano (1989). 
An immediate consequence of formula (3.1) is that the tail probabilities 

F(n) = P ( T  > n) = ~~x~__n+l f (x)  satisfy exactly the same recurrence relation 
as f(n).  A direct proof of this appears in Roberts (1958) for k = 3 and Greenberg 
(1970) for general k >_ 2. 

From (3.2) it is obvious that 

(3.3) f ( n  + 1) n 
f (n)  n -  1 q' 1 < n < k -  1 

and hence, for n _< k - 1 we have 

f ( n + l )  > f ( n )  for n < l / p  

f ( n ÷  1) < f (n)  for n > 1/p. 

On the other hand, (3.1), (3.2) guarantee that 

f (n)  >_ q k - l f ( n -  k + 1), n > k  

and rewriting (3.1) as 

f ( n  + 1) - f (n)  --- p ( - f ( n )  + q k - l f ( n  - k + 1)), n ~ k  

we get 
f ( n +  1) - f (n)  < O, n > k. 

Accordingly, the distribution of T is unimodal, obtaining its maximum value for 
no = [min(k - 1, l/p)] + 1. Figure 1 shows the graphs of f (n)  for some typical 
values of k and p. 

Using Theorem 3.1 we may also verify that f (n)  satisfies the strong unimodal- 
ity characterization of Keilson and Gerber (1971) 

f2(n) >_ f ( n -  1 ) f ( n +  1) 
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Fig. 1. Graphs of the probability distribution function f(n) = P(T = n) = P(Tk,1 -- 
n). 

for the range 2 < n < k. However, for n = k + 1 the inequality is reversed, a 
fact implying that the distribution of T is not strongly unimodal; therefore its 
convolution with other unimodal distributions is not necessarily unimodal. 

The probability generating function of T can be easily evaluated by manipu- 
lating over Theorem's 3.1 outcome. More specifically we have the next 

THEOREM 3.2. The probabi l i ty  genera t ing  f u n c t i o n  ¢(z) = ~~n=0~ f ( n ) z n  of 
T is g iven by 

(pz)2A(z) 
(3.4) ¢(z) = 1 - q z -  p q k - l z k '  Izl < 1 

where  

k - 2  

(3.5) A(z)  = ~ ( q z )  i -  
i = 0  

1 - (qz) k-1 

1 - qz  

PROOF. Clearly, initial condition (3.2) is equivalent to 

(3.6) f ( n )  = q f ( n  - 1) + p 2 q n - 2 ,  1 < n < k. 
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Writing ¢(z) as 
k 

¢(z) - -  ~ S ( n ) z  n + E S(n)zn 
n--2  n = k + l  

and substituting f ( n )  by (3.6) and (3.1) respectively, we get after some elementary 
algebra 

¢(z) = (pz)2A(z)  + qz¢(z )  + p z ( q z ) k - l O ( z )  

which proves the desired result. 

An alternative approach for establishing formula (3.4) is to derive first the 
probability generating function ¢(z) = )-~n°°=0 F ( n ) z  n of the tail probabilities 
F ( n )  = P ( T  > n) and subsequently employ the well known identity ¢(z) = 
1 + (z - 1)¢(z). Two different methods for direct evaluation of (~(z) can be found 
in Greenberg (1970) and Saperstein (1973). 

The next corollary is an immediate by-product of Theorem 3.2. 

COROLLARY 3.1. The mean and variance o f T  are given by 

2 - qk-1 
# = E[T] - p(1 - qk-1) 

q qk-1 
= Var[T] = y + (2k - 1) ; (1  + 

p2(1 _ qk-1)2" 

PROOF. Both expressions result readily by evaluating the first two deriva- 
tives of ¢(z) at z - 1 and substituting in the well known formulae 

E[T] = ¢'(1), Var[T] = ¢"(1) + ¢'(1) - (¢'(1)) 2. 

The evaluation of higher order moments via the probability generating func- 
tion (3.4) becomes rather cumbersome. However, it is not difficult to establish an 
easy to use recursive relation by manipulating directly on Theorem's 3.1 outcome. 
More precisely we have 

THEOREM 3.3. The moments  of the random variable T about zero 

~'s = E[TS], s >> 0 

satisfy the next recurrence 

1 ]~'s -- p2 nSq n-2 + q pq k )]~ , s >> 1. p(1 - qk-1) (1 -+- k--2 s - i ,  , 

n = 2  i = O  
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PROOF. Substituting (3.6) and (3.1) in the expression 

k 

n ~ 2  n : k + l  

yields 

(3.7) # ' 8 = p 2 E n ~ q n - 2  + q E n S . f (  n - 1 ) + p q  ~-1 E n S f ( n - k ) "  
n : 2  n=2  n----k+l 

The second and third sums, in view of the binomial formula, become 

(3.8) 
E ( n  + 1)S/(n) = i #' 
n = l  i=0  

ks-  , 
E(n + k)~f! n) = ~i) #{ 
n : l  i : 0  

and the required result is easily built up by inplugging (3.8) in (3.7) and solving 
with respect to #'~. 

It goes without saying that the results of Corollary 3.1 could alternatively be 
derived by applying Theorem 3.3 for s = 1 and s = 2. We also mention that for 
k = 2 Theorems 3.2 and 3.3 give the probability generating function and moment 
recurrence relations respectively of the geometric distribution of order 2. 

Before closing the present section let us discuss briefly the problem of statis- 
tical estimation of the parameter p. Note first that the mean of T 

1[ 1 ]  
E[T] = p 1 +  1- - (1 - -p )k  = h(P) 

is a monotonically decreasing function in p, with 

lim h(p) = +oc, 
p--*0 

lim h(p) = 2. 
p---*l 

If T (1), T(2),..., T (N) is a random sample from this distribution, manifestly 

1 N 
: _> 2 

i:I 

and therefore the equation h(p) = T has a unique admissible root, which gives 
the moment estimator ~] of p. Regarding the maximum likelihood estimation of 
p, since no simple analytic expression for f(n) is available, the solution of the 
maximum likelihood equation has to be done iteratively. As mentioned by Aki 
and Hirano (1989) (in the parametric estimation problem for the class of binomial 
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distributions of order k) the most important thing to this end is to develop efficient 
techniques for an easy and quick evaluation of the probability distribution function 
and its first and second derivatives (with respect to the parameter). Fortunately 
Theorem 3.1 offers an efficient scheme for computing f (n) .  Yet, differentiating 
(3.1) and (3.2) two times yields equally simple recurrences permitting the fast 
numerical calculation of the first and second derivatives needed. The details are 
left to the reader. 

4. Waiting for the r-th occurrence 

We now turn our attention to the distribution of the waiting time T~ = Tk,~ 
for the r-th appearance of two successes separated by at most k - 2 failures. We 
recall that we enumerate in a non-overlapping fashion, that is to say, the calcu- 
lation procedure becomes anew each time a success gives birth to a count. With 
this in mind we may state that T~ can be decomposed in a sum of identical and 
independently distributed random variables with probability distribution function 
f (n) .  To become more specific, if rl denotes the waiting time for the first pair 
of successes lying k places apart, r2 the waiting time for the second one etc. it is 
evident that 

(4.1) T~ = 7] + T2 + - - -  +'r~ 

with ri being independent and following the distribution studied in the previous 
section. 

THEOREM 4.1. The probability generating function Cr(z) = ~n¢~--o fr(n) zn 
of Tr is given by 

[ (pz)2A(z)l 
(4.2) ¢~(z) = 1 - q z -  pq~-lzkJ ' Izl <- 1 

where A(z) is as in (3.5). 

PROOF. The foregone discussion reveals that  

T T 

= l - [  E[z 'l = l ]  = 
i=1 i=1 

and (4.2) follows manifestly by employing (3.4). 

The numerical evaluation of fr(n) can be easily achieved through the recur- 
rences 

min(n,k) 

f~+l(n) - q f ~ + ~ ( n -  1) - pq~- l f~+ l (n  - k) = p2 ~ f ~ ( n -  i)q '-2 
i=2 
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(convention: f r (n)  = 0 for n < 0, r > 1) and the initial conditions 

f ~ ( n ) = O ,  0 ~ n <  2r, r _ > l  

which are readily ascertainable from the obvious identity 

( 1 - - q z - - p q k - l z k ) ¢ r + l ( Z )  = (pz) 2 (i~=O(qZ)i Cr(Z)- 

By virtue of (4.1) and Corollary 3.1, the mean and variance of T~ are 

E[T~] = rE[T]  - r(2 - qk-1) 
;(1 q -l) 

rq rq k -~  
Var[T~] = r Var[T] -- ~-~ + (2k - 1) p(1 - qk-1)2  

rq 
+ 

p2(1 _ qk-1)2" 

It is perhaps unnecessary to point out that, as with the special case r = 1, 
there is a unique moment estimator of p whereas the numerical computations for 
its maximum likelihood estimator are highly facilitated from the aforementioned 
recurrences for fr(n).  

For k = 2 the distribution of T~ reduces to the negative binomial distribution 
of order k -- 2 which has been extensively studied recently after its introduction 
by Philippou et al. (1983). It is a well known fact that, if rq  --~ ~ > 0 as r --* oc, 

then this distribution (after being shifted to the support 0, 1, . . . )  converges in law 
to the Poisson distribution of order k = 2; the last one is a special case of the class 
of generalised Poisson distributions with probability generating functions 

¢(z) = ~b(z; )h, )~2, • • .) = exp - hi + )~iz i , )~i < c~ 

i=1 / i=l 

and probability distribution functions 

P ( Y  = i) = ~ e -  E~%~ ~¢ l-i}=1 ~ J  

l ~ = l  YJ! 

where the last summation is performed over all non-negative integers Yl, Y2,-.., Yi 
i such that ~'~s=l sys  -- i (see Aki et al. (1984)). 

The next theorem states that  T2,T is the only random variable within the 
family {Tk,r,  k > 2} which converges in law to a pure (hi > 0 for at least one 
i > 2) generalised Poisson distribution. 

THEOREM 4.2. A s s u m e  that  rq  ---* )~ > 0 as r ~ oc. I f  k = 2 the r a n d o m  
variable Tk,r -  2r converges in taw to the general ized P o i s s o n  dis tr ibut ion o f  order  2 
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with )~1 -~- "~2 = /~, otherwise (k > 2) it is asymptotically distributed as an ordinary 
Poisson random variable with parameter 2.~, i.e. 

{ e_2;~ (2A) ~ f o r k > 2  

lirn P(Tk,~ - 2 r =  x) = e -2~ E Am+u2-- f o r k = 2 .  

yl+2y2=~ Yl!Y2! 

PROOF. The probability generating function of the random variable Y = 
Tk,r - 2r is given by 

C y ( z )  = Z - 2 r C r ( z )  = 
(1 - qz - pqk- lzk)r"  

But, under the assumptions made, we have 

(%( lim p2r  = 1 - q)r = e - 2 ~  
F - - + ~  

lim r(qz + pqk- l zk )  = )~(z + 5k,2 zk) 

lim A r ( z )  = exp(-- /~Sk,2z  k -1  + / ~ z )  
~" ----+ O(? 

with 6~j being Kronecker's delta (i.e. 6ii = 1 and 6ij = 0 for i ~ j).  We can 
therefore write 

lim Cy(z) = exp(-A(1 - z)(2 + 6k,2zk-1)) 
7" ---~ OO 

or  { e -2~(1-z) = ¢(z ;2A,0 , . . . )  for k > 2 

li~m°c CY(z) = e -A(1-z)-)~(1-z2) = ¢(z;,~,,~, 0 , . . . )  for k = 2 

which establishes the required convergence. 

It is well known (see e.g. Johnson et al. (1992)) that the shape factors 

~1 ---- 012 3, ~2 = OZ4 

of a Poisson distribution obey the simple relation ~2 - ~1 - 3 -- 0. For comparison 
reasons, in Table 1 we have listed the differences ~2 -~1  between the shape factors 
of Tk,r for a variety of r, p and k (k > 2) values. The closeness of the (~1, ~2) 
points to the "Poisson line" ~2 - ~1 = 3 is quite remarkable especially for large r 
values, as expected from Theorem's 4.2 output. 

A further point of interest arising from Theorem 4.2 is that the asymptotic 
distribution of Tk,r, k > 2 is unimodal (as a matter  of fact Poisson is a strongly 
unimodal distribution). On the contrary, for k = 2 neither T2,~ nor its limit 
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Table  1. Differences f~2 - ~1 for the  shape  factors of Tk,r- 

p r k = 3  k----4 k----5 k---- lO k = 2 0  k - - 1 0 0  

0,5 2 4.0222 4.0835 4.1645 3.8394 3.5033 3.5000 

5 3.4089 3.4334 3.4658 3.3358 3.2013 3.2000 

10 3.2044 3.2167 3.2329 3.1679 3.1007 3.1000 

100 3.0204 3.0217 3.0233 3.0168 3.0101 3.0100 

1000 3.0020 3.0022 3.0023 3.0017 3.0010 3.0010 

0.8 2 4.4102 4.5329 4.1042 3.5024 3.5000 3.5000 

5 3.5641 3.6132 3.4417 3.2010 3.2000 3.2000 

10 3.2820 3.3066 3.2208 3.1005 3.1000 3.1000 

100 3.0282 3.0307 3.0221 3.0100 3.0100 3.0100 

1000 3.0028 3.0031 3.0022 3.0010 3.0010 3.0010 

0.9 2 5.1141 4.3966 3.7304 3.5000 3.5000 3.5000 

5 3.8456 3.5586 3.2922 3.2000 3.2000 3.2000 

10 3.4228 3.2793 3.1461 3.1000 3.1000 3.1000 

100 3.0423 3.0279 3.0146 3.0100 3.0100 3.0100 

1000 3.0042 3.0028 3.0015 3.0010 3.0010 3.0010 

0.95 2 5.9238 4.0640 3.5685 3.5000 3.5000 3.5000 

5 4.1695 3.4256 3.2274 3.2000 3.2000 3.2000 

10 3.5848 3.2128 3.1137 3.1000 3.1000 3.1000 

100 3.0585 3.0213 3.0114 3.0100 3.0100 3.0100 

1000 3.0058 3.0021 3,0011 3.0010 3.0010 3,0010 

0,99 2 7.0889 3.6308 3,5031 3.5000 3.5000 3.5000 

5 4.6356 3.2523 3.2012 3.2000 3.2000 3.2000 

10 3.8178 3.1262 3.1006 3.1000 3.1000 3.1000 

100 3.0818 3.0126 3.0101 3.0100 3.0100 3.0100 

1000 3.0082 3.0013 3.0010 3.0010 3.0010 3.0010 

0.999 2 7.4561 3.5135 3.5000 3.5000 3.5000 3.5000 

5 4.7824 3.2054 3.2000 3.2000 3.2000 3.2000 

10 3.8912 3.1027 3.1000 3.1000 3.1000 3.1000 

100 3.0891 3.0103 3.0100 3.0100 3.0100 3.0100 

1000 3.0089 3.0010 3.0010 3.0010 3.0010 3.0010 

799 

(Poisson distribution of order 2) are unimodal as the graphs in Hirano et al. (1984) 
reveal. 

An additional asymptotic result could be stated by taking advantage of the 
fact that Tr is distributed as the sum of r independent variables. More specifically, 
in view of (4.1) and Corollary 3.1, the central limit theorem asserts that  for fixed 
x we have 

lim P(Tr < r# + xav~)  = ~2(x) 
r - " ~  O 0  

where (I)(x) denotes the cumulative distribution function of the standardised nor- 
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mal distribution. 
Closing this section we give some results related to the number N,~,k of oc- 

currences of a strand of length (at most) k containing 2 successes in n Bernoulli 
trials. 

THEOREM 4.3. The double probability generating function of Nn,k 

oo  o o  

• (z, = Z P(Nn,  -: 
v=O n----2~" 

is given by 

1 + (p -- q)z - pqk- l zk  
(I?(z, w) = 1 -- 2qz + (q2 _ wp2)z 2 _ pqk-lZk + (q + wp)pqk-~Zk+l" 

PROOF. Clearly 

P(N, , k  = r) = P(N, , k  >_ r) - P(N, , k  >_ r + 1) 

and in view of (2.1) and Theorem 4.1 we may write 

oo 

E P ( N ~ k = r ) z ~ = ¢ r ( z ) l - ¢ ( z ) - -  
' 1 - z  

~ = 2 r  

Accordingly 
¢ ( z , w )  = 1 - ¢ ( z ) .  1 

1 - z  1 - w e ( z )  

and the required follows easily by substituting ¢(z) and carrying out some elemen- 
tary algebra. 

COROLLARY 4.1. The generating function of the means m n =  E[Nn,k] is 
given by 

(X3 

\ ~ - z ]  " l + ( p - - q ) z - - p q k - l z k "  
n=O 

PROOF. It suffices to observe that 

m n z  n = ~ ( Z ,  W 
n : O  w---- 1 

and make use of Theorem 4.3. 

For the special case k -- 3, the generating function formulae given in Theorem 
4.3 and Corollary 4.1 coincide with the ones derived (by a different approach) in 
Koutras and Alexandrou (1995). 
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5. Fibonacci-type numbers and polynomials 

For k _> 2 a fixed positive integer let us introduce the sequence of numbers 
{Fn,k}n>_O o r  simply {Fn}~_>o by 

Fo = F I  = 0  

(5.1) Fn = F~_, + 1, 2 < n < k 

Fn = Fn-I  + F~-k, n > k. 

Clearly {F~,2}~>0 is a shifted version of the usual Fibonacci numbers; therefore, an 
appropriate name for the sequence {Fn,k}~>0 would be k-step Fibonacci numbers. 

The next theorem expresses the distribution of Tk,~ in a symmetric sequence of 
Bernoulli trials (unbiased coin tossing) in terms of the k-step convoluted Fibonacci 
numbers. 

THEOREM 5.1. I f p  = q = 1/2 then 

F (r) 
(5.2) f r ( n ) -  2n 

where F (~) is the r-th convolution of the k-step Fibonacci numbers, i.e. 

n 

(5.3) F(i) X-~ m(i-1)~ _ = ~ . . ~ j  ~n-- j ,  i > 2 .  

j=O 

(Convention: F (1) - Fn.) 

PROOF. Applying Theorem 3.1 for p ---- q ---- 1/2 we can verify that  the 
sequence 2'~f(n) = 2nfl(n)  obeys exactly the same recurrences as {Fn}n>0. Ac- 
cordingly 

F n  
f ( n )  : - ~  

and the generating function of (F~}~>0 is easily shown to be (in lieu of Theorem 
3.2) 

2 v-~k-2 i 
Z 2--,/=0 Z 

= ¢ ( 2 z )  - - V 
n=O 

Now, the generating function of the r- th convoluted numbers {F(r)}n>0 will be 
given by 

r)z n = z n = Cr(2z) 
n----0 kn---0 / 

which can be restated as 

F(r) zn  
(5.4) Z 2 ~ - Cr(z)" 

n = 0  
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The required identity (5.2) results immediately by a direct comparison of (5.4) to 
(4.2) specialised for p = q = 1/2. 

So far we have touched only the probability distribution function of T for 
symmetric trials. Fortunately, the general case (0 < p = 1 - q < 1) can be easily 
captured as well, by introducing sequences of polynomials instead of numbers. To 
this end, let us define the k-step Fibonacci polynomials Fn,k(x) =- Fn(x) by 

(5.5) 

F0(~)  = F l ( x )  = 0 

Fn(x) = Fn_l(Z) + X 2, 2 < n < k 

F n ( x  ) -~ F n _ l ( X  ) q- x F n _ k ( X ) ,  n > k. 

By the definition, the n-th k-step polynomial is of order s + 2 where sk + 2 <_ 
n <_ sk + k + 1. As a consequence of recurrences (5.5) we get 

o~ (zx)2 Ei=0k-2 z i = g ( z ,  x) 
E F~(x)zn = 

1 - z - xz  k 
n = 0  

and the next theorem can be easily verified by following an exact parallel to that 
of Theorem 5.1. 

THEOREM 5.2. If  F(n ~) (x) is the r-th convolution of the k-step polynomials, 
i.e. n 

F(i)(x) = E FJ i-1)(x)Fn-j(x) '  i > 2 
j=o 

then the probability distribution function of T~ can be expressed as 

fr(n) --- P(T~ = n) = qnF(r)(p/q). 

(Convention: F 2  ) (x) - F~(x).) 

PROOF. Note first that  

E F ( r ) ( x ) z n =  Fn(x)z n 
n----0 n = 0  

= Fr(z ,  x) 

and make use of the fact that Fr(qz ,p/q)  coincides with Cr(Z) of Theorem 4.1. 

O. Applications 

When dealing with experimental trials with two possible outcomes (suc- 
cess/failure, good/bad, acceptable/not acceptable), it is of great significance to 
be able to develop criteria providing evidence of clustering of one of the two types 
of outcomes. Perhaps the oldest and most commonly used procedures of this type 
are the ones based on the concept of success runs. The random variable Tk,r 
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studied in the present paper is offering an efficient alternative test statistic in a 
variety of situations where the classical run criteria have been in use. A few specific 
examples related to applied work will now be discussed. 

A method to study spatial patterns (diffusion of species, spread of diseases 
etc.) in ecology is to sample over belt transects and analyse the registered sequence 
of outcomes. Assume that  we wish to study whether a certain disease is able to 
spread up to a k-step distance. Certainly, the observation of two infected trees 
lying k steps apart is not providing enough evidence for our suspicion; however, 
should r such pairs be observed, it is sensible to stop sampling and reject the 
null hypothesis if the waiting time Tk,r is reasonably large. Setting up the critical 
region as Tk,r > c, we can easily determine c so that a specific significance level 
is achieved, by making use of the theory developed in Sections 4 and 5. The 
aforementioned technique provides an alternative to the run-based procedures used 
in testing segregation between two species (see Pielou (1963, 1977)). 

In the same spirit, Tk,r could be used in educational psychology studies of 
transfer and learning to decide whether a particular treatment should be termi- 
nated or not. For details on related run and scan-based techniques on this subject 
we refer to Bogartz (1965), Glaz (1989, 1993), Fu and Koutras (1994), Koutras 
and Alexandrou (1995) and Koutras et al. (1994, 1995). 

Another interesting application is offered by the following simple variant of 
the moving (sliding) window detection problem appearing in Nelson (1978) and 
Glaz (1983). Consider a radar sweep with a quantizer transmitting to the detector 
the digit 1 or 0 according to whether the signal-plus-noise waveform exceeds a 
predetermined threshold. The detector's memory keeps track of the last k (at 
most) transmitted digits and generates a pulse when two Fs are observed. Should 
this happen, the contents of detector's memory are erased and the next transmitted 
digit is the first to be registered. The occurrence of the r-th pulse initiates an 
alarm. Manifestly, the results of the previous sections provide means for studying 
the waiting time for an alarm (in the case of iid transmissions). 

A final application comes from the area of statistical quality control. 
Greenberg (1970) and Saperstein (1973) examined zone tests in which a process 
is declared "out of control" if in a subsequence of k consecutive sampled items 
there exist at least s < k observations outside the zone (say, the three sigma limits 
about the mean). The material of the present paper (Sections 4 and 5) is closely 
related to a modified sampling plan which seeks an assignable cause whenever r 
disjoined pairs of defective items are spotted, with the elements of each pair being 
at most k places apart (i.e. separated by k - 2 good items). 

Closing we mention that Tk,r can be easily associated to certain start-up 
demonstration tests analogous to the ones introduced and studied by Balakrishnan 
et al. (1995) and Viveros and Balakrishnan (1993). Results on this topic will be 
reported in detail in a forthcoming paper. 

7. A Markov dependent model 

Recently, quite a few research work has been done on run-related problems in 
sequences of trials where the outcome of a trial depends on the outcomes of the 
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previous trials in a Markovian fashion, Aki and Hirano (1993), Balasubramanian 
et al. (1993), Hirano and Aki (1993), Uchida and Aki (1995). The methodology 
employed for the derivation of the results of Sections 3-4 is easily amenable for 
tackling the more general waiting time problem which arises by dropping the 
independence assumption and replacing the Bernoulli trials by a sequence of first 
order Markov dependent outcomes. In the sequel we are stating in brief some 
formulae which hold true under this set-up. 

Let X0, X1, )(2, . .  • be a time homogeneous two-state Markov chain with tran- 
sition probabilities 

p ~ j = P ( X t = j l X t _ l = i ) ,  t > l ,  O < _ i , j < l  

and initial probabilities P ( X o  = j )  = /i0,j, j = 0, 1. Retaining the notations 
of Section 2 for the waiting time random variable and the respective probabil- 
ity distribution (generating) function of the Markovian model we may state the 
following: 

1. The probability distribution function f ( n )  = P ( T  = n) satisfies the 
recurrence relation 

f ( n )  = P o o f ( n  - 1) + p m p m p ~ o 2 f ( n  - k ) ,  n > k 

with initial conditions 

by 

by 

f(0)  = f(1)  = 0 

f(n) (n 2)p lpl0p o = - + P m P l l P o o  , 2 < n < k .  

2. The probability generating function ¢(z) = y~n~__0 f ( n ) z  ~ of T is given 

k i 3 
~)( z ) : POI Z ~ l  l Z "~- RIOPOI Z2 Ei~-3  (POOZ ) - ] 

1 - Pooz - PolPloP~o-2z k ' [zl < 1. 

3. The probability generating function ¢,(z) = ~n~__0 f r ( n ) z  n of T~ is given 

Cr(z) = Cr(z), Iz] _< 1. 
4. If rpoo --~ A > 0 and rPlO --~ # > 0 as r -~ cx~ then for the probability 

generating function b y ( z )  of the shifted random variable Y = Tk,r - 2r we have 

lira by(z)  = exp( - (1  - z)[(A + #) + #~k,2zk-1]) 

o r  

{ e - ( ~ + ~ ) O - z )  = ¢(z; A +/~, 0 , . . . )  for k > 2 

l i m C y ( z )  = e -~(1- : ) - ' (1- :~)  = ~0(z; A, #, 0, . . .) for k = 2. 

Accordingly, for k = 2 the random variable T~,r - 2r converges in law to the 
generalized Poisson distribution of order 2 with )h = A, A2 = #, whereas for 
k > 2 it is asymptotically distributed as an ordinary Poisson random variable 
with parameter A + #. 

The proofs of (i)-(iv) are easily verified by employing exactly the same argu- 
ments as the ones used for the case of independent Bernoulli trials (see Sections 3-  
4); the technical details are left to the reader. 
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