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Abs t r ac t .  Let X = (X1, X2 , . . . ,  Xd) ~ be a random vector of positive entries, 
such that for some )~ = ()h, A2,.. . ,  Ad) t, the vector X (~) defined by X~ ~) -- 
(X~ ~ - 1)/),~, i = 1 , . . . ,  d is elliptically symmetric. We describe a procedure 
based on the multivariate empirical characteristic function for estimating the 
As's. Asymptotic results regarding consistency of the estimators are given and 
we evaluate their performance in simulated data. In a one-dimensional setting, 
comparisons are made with other available transformations to symmetry. 

Key words and phrases: Elliptically contoured distributions, empirical char- 
acteristic function, Box-Cox transformations. 

1. Introduction 

The family of elliptically contoured distributions is a natural  semi-parametric 
generalization of the multivariate Gaussian distribution. There exists a large lit- 
erature on the subject of elliptically contoured distributions. For an overview, 
we refer the reader to the book edited by Fang and Anderson (1990). See also 
Cambanis et al. (1981), Devlin et al. (1976), and Fang et al. (1990). Among other 
things, a theory for the distr ibution of correlation coefficients, sample covariance 
matrix,  Hotelling T 2, and other important  statistics, tha t  parallel the classical the- 
ory for the multivariate normal, is available for the family of elliptically contoured 
distributions. This, and the well known fact tha t  many statistical procedures 
yield superior performance when da ta  supports elliptical symmetry  (see Nelson et 
al. (1989)), motivates the consideration of t ransformations to elliptical symmet ry  
(instead of more general forms of multivariate symmetry) .  

* Adolfo Quiroz and Miguel Nakamura's research was partially supported by CONACYT 
(Mexico) grants numbers 1858E9219 and 4224E9405, while Dr. Quiroz was visiting Centro de 
InvestigaciSn en Matem~ticas at Guanajuato, Mexico. 
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Here we consider the problem of transforming a vector of positive entries 
X = ( X 1 , X 2 , . . . ,  Xd) t to elliptical symmetry via a multivariate version of the 
Box-Cox transformation family. For positive X and real A let 

f (x  - for A # 0, 
(1.1) X(:~) 

( l og (X) ,  for A = 0. 

For X as above and )~ = (A1, A2, . . . ,  £d) t E R d, let 

(1.2) X ('~) --(X[:~l),X(:~2),...,X(d:~d)) t. 

We will assume that  for some ~ E R d, X (~°) has a density f = f~o (with respect 
to Lebesgue measure, as usual) which is elliptically symmetric, that  is, for some 
real positive definite symmetric matrix A and vector/z E R d, and for some function 
g : [0, oo) ~ [0, oo), f is of the form 

(1.3) f(x) = g(llA(x - 

If EIIX(~°)II 2 exists, then the matrix A can be taken to be (by redefining g) the 
square root inverse of the covariance matrix E of X (~°), and # will correspond to 
the mean of X (~°). 

The case d = 1 has been addressed extensively in the literature. Estimation of 
the transformation parameter may be achieved by techniques based on the notion 
of residual skewness or other, more general measures of one-dimensional symmetry 
(Taylor (1985)), minimum distance ideas (Nakamura and Rupper t  (1990)), or by 
comparing residual means and medians (Hinkley (1977)). In the present paper, 
we discuss a method which is based on a characterization of elliptical symmetry 
through characteristic functions, which is defined from the outset for general d. 

Maximum likelihood for the transformation parameter when f is the multi- 
variate normal density, is considered in the work of Andrews et al. (1971), and 
Velilla (1993). The latter work compares maximum likelihood estimation and 
marginal estimation of each Ai obtained by treating each coordinate separately as 
a one-dimensional problem, showing that  the efficiency loss in the second method 
may be substantial when the components of X (~°) are correlated. The method 
which we propose is non-parametric in that  f is not assumed to be multivari- 
ate normal or even known, and is truly multidimensional in the sense that  no 
marginalization takes place in estimating the vector )~. The method is described 
as follows. 

Given an i.i.d, sample X1, X 2 , . . . ,  Xn from the distribution of X and A C R d, 
let 

(1.4) X~ = nl Z X:~)'  and S ~ -  n-1 1 E ( X : ~ )  - X~)(Xi(~) - ~:~)t. 
i=1 i=1 

Also let 

(1.5) ej( ) = s ; 1 / 2 ( x )  - 
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for j = 1 , . . . ,  n be the standardized residual vectors obtained by the transformation 
being set at A. We refer to ej ()~) as the j - th  )~-residual. The empirical characteristic 
function for the )~-residuals is given by 

where 

n 

1 E exp(iut ej(A)) exp(-iutS~l/2X.~)~,~,~(S~l/2u), 
~t 

j = l  

n 

1 E exp(ivtX()O)" 
= n 

j = l  

Our estimator )t of )to is the vector minimizing 

(1.6) Wn(~) =/R~2(exp(-iutS;1/2X~,)~,~,~(utS;1/2))w(u)du,  

where 3(.) denotes imaginary part and w(u) is a weight function to be defined 
below. The intuition for considering a statistic of the form (1.6), comes from 
the well known fact that, in the univariate case, symmetry of the distribution 
is equivalent to having a null imaginary part in the characteristic function. In 
the one-dimensional case, the statistic in (1.6) for any fixed A corresponds to the 
Feuerverger and Mureika (1977) statistic for testing a hypothesis of symmetry. 
For general dimension, our statistic is a member of (if w is chosen to be a radial 
function) the large family considered by Ghosh and Ruymgaart (1992) for test- 
ing the hypothesis of spherical symmetry (see also CsSrg6 (1986) and CsSrg6 and 
Heathcote (1987)). In the following section we discuss further analytical justifi- 
cation for this choice of estimator. Section 3 is non-technical, and contains a few 
examples and real data applications which illustrate the behavior of ~. Imple- 
mentation issues are discussed and empirical comparisons with other estimators 
are made. In Section 4, the consistency and v~-consistency of this estimator is 
established, using empirical processes results for U-statistics. The theory given 
in Sections 2 and 4 does not cover all the examples included in Section 3: the 
examples with "heavier tails" are not covered. Nevertheless, these were included 
in Section 3 for the sake of practical evaluation of the proposed methodology. 

2. The empirical characteristic function and transformations to elliptical symmetry 

A random vector X E R d with probability density f ,  is said to possess ellipti- 
cal symmetry when f can be written as in (1.3). Let us say that X has symmetry 
of marginals or marginal symmetry when for every u C R d, the random variable 
utX is symmetric (about some center), in the usual univariate sense. It is not 
difficult to prove that 

PROPOSITION 2.1. Elliptical symmetry implies symmetry of marginals. 

Denote by qa and qO~,x the characteristic functions of X and utX, respectively. 
Let It = E(X). For each coordinate Xj of X and k _> 1, let #j,k = E(X k) when 
this moment exists. We have 
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PROPOSITION 2.2. (a) The random vector X with density f ,  has symmetry 
of marginals if, and only i f  ~(~(u) exp(- iut t t ) )  = 0 for every u E R n. 

(b) If,  for each j <_ d there exists an aj > 0 such that 

(2.1) ~ < Vl l < 

l <k<oc  

then X has symmetry of marginals if, and only if  ~3(~(u)exp(-iut]~)) = 0 in a 
neighborhood of the origin. 

PROOF. Proposition 2.2(a) is well known, see, for instance, Section 12.4 
of Lo~ve (1955). The only fact which remains to be shown is the "if" part of 
2.2(b). Let u E R d. (2.1) implies that all moments of u t X  exist. Then, using 
the formula for moments in terms of derivatives of the characteristic function 
at zero, we conclude that all odd moments of u t ( X  - In) are zero. Now, for a 
distribution satisfying (2.1), Carleman's condition holds (Shohat and Tamarkin 
(1943) or Serfling (1980), Section 1.13) and therefore the problem of moments has 
a unique solution. That is, the distribution of u t ( X  - ~ )  is completely determined 
by its moments. Let Z be a variable with the same distribution of u ~ ( X - # ) ,  and let 
e be a Rademacher variable independent of Z. Then, elZ [ has the same moments 
of u t ( X  - ]$) and is clearly symmetric about zero. Thus, by the uniqueness of 
the distribution given by Carleman's result, u t ( X  -I~) is symmetric about zero, 
completing the proof. [] 

Another elementary fact, more directly related to the transformations we are 
currently considering, is the following. 

PROPOSITION 2.3. Let X be a random vector of positive coordinates, such 
that the support of the distribution of each coordinate Xi  (i < d) contains a non- 
degenerate (possibly infinite) interval, and let X O0 be as defined in the previous 
section. I f  there exists a )~ in R d such that X (~) is marginally symmetric, then it 
is unique. 

PROOF. Suppose that for )~, f~ E R d, )~ ~ ~, X (~) and X (0) are marginally 
symmetric. Since )~ ~ ~, then, at least for one coordinate, we must have hi ~/3i. 
Without loss of generality assume ~1 ¢ t31. Take u = (1 ,0 , . . . , 0 )  E R ~. It 

follows, by definition of marginal symmetry, that X} ~1) and r (Zl)  -- 1 are symmetric 
univariate variables. Thus, it suffices to show that if X is univariate with support 
in a non-degenerate interval, X (~) and X (~) symmetric implies A = ~. Suppose 
that for ~ ¢ t3 both X (~) and X (~) are symmetric. To simplify notations, without 
affecting the argument, assume that ~ -- 1. We will also assume /3 > 0. The 
other cases can be treated similarly. We have that X and X ~ are symmetric, with 
non-zero centers of symmetry. Let t and s be the centers of symmetry of X and 
X ~, respectively, and let 5 -- s - t. For r E R we must have, using the symmetry 
of X~: Pr (X ~ > s + r) = Pr (X ~ < s - r). For r > - s ,  this can be rewritten as 

(2.2) Pr (X > t + ((t + 6 + r) 1/f~ - t)) = Pr (X < t - (t - (t + 6 - r)l/~)). 
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By the assumption on the support  of X, there exist infinitely many values of r in 
an interval, such that  (t + 5 + r) 1/~ is an increasing point of the distribution of X. 
For each such r, (2.2) implies that  the equality (t + 5 + r)1//3_ t = t -  (t + 5 -  r)~/~ 
must hold, and this is an impossibility. [] 

Let X be, as above, a random vector of positive coordinates, such that  the 
support  of the distribution of each coordinate Xi (i _< d) contains a non-degenerate 

interval. Denote by ~)~ the characteristic function of X ()i). Let w : R d ~ [0, co) 
be a weight function such that  w(0) > 0, fR~ w(u)du is finite, and is continuous at 

the origin. Let A be a compact set in R d. Assume that  for ~o • A, X (~°) has an 
elliptically symmetric density. For each )~ • R d let/ t)i  and E)t denote, the mean 

and covariance matrix of X0~)  respectively. These are assumed to exist for all 
)i E A. The three previous propositions have the following key result as a corollary. 

PROPOSITION 2.4. (a) With the hypothesis of the previous paragraph, there 
exists only one value of )~ in A, namely Ao, such that 

(2.3) JR d ~2(exp(-iutE~l/21z)~)~o A (E~l/2u) )du -- O. 

(b) If, in addition to the hypothesis above we assume that the coordinates of 
X ()i) for )~ • A, satisfy the moment condition (2.1) (with constants aj possibly 
depending on )~), then there exists only one value of ~ in A, namely )~o such that 

(2.4) / v  ~32(exp(-iutE~1/21t~)~)~ (F,~l/2u) )w(u)du = O, 

where V denotes any neighborhood of the origin. 

PROOF. We only give proof of Proposition 2.4(a). 2.4(b) is obtained in the 
same fashion, using Proposition 2.2(b) instead of 2.2(a). By Propositions 2.1 and 

2.3, ~ is the only ), such that  X ('~) is marginally symmetric. For an invertible ma- 
trix such as E~ 1/2, it is easy to see that  E~ 1/2 (X (,k)_ #)~) is marginally symmetric 

if and only if X0~) is marginally symmetric. Now, an application of Proposition 
2.2(a) finishes the proof. [] 

Since the integral in (2.4) is being approximated by the integral of the )i- 
residual empirical characteristic function in (1.6), Proposition 2.4 justifies the 
proposed methodology. Proposition 2.4 will also be instrumental in Section 3 
in establishing consistency of the estimator. 

For computational reasons, in the applications we make a restriction to the 
context of Proposition 2.4(b) by setting the function w in (1.6) equal to zero 
outside a neighborhood of the origin. In general, certain care must  be taken in 
the choice of the function w in (1.6). Because of the Riemann-Lebesgue theorem, 
~)~(u) will always approach zero when Ilull --, oc, even in the absence of elliptical 
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symmetry. Thus it would not make sense to give much weight to large values of 
u. On the other hand, if integration were restricted to a very small vicinity of 
the origin, we could be loosing information present in data. We would also like to 
choose w in such way that the integral Wn(A) may be computed in closed form 
(see Section 3). These considerations (and some trial and error) have led us to the 
choice: 

(2.5) = 

where X denotes indicator function and B is a box I -A,  A] d, with the value of A 
to be specified in Section 3. 

It is worth noting that in the case A0 --- 0 with X (~) having a Gaussian 
distribution, the moment conditions of Proposition 2.4(b) do not hold: If X is 

log-normal and we consider the moments of a coordinate of X (A) for any A ¢ 0, 
then the series in (2.1) diverges for every a > 0. Still, in this case, direct calculation 
shows that  the integrand in (2.4) is not zero for A ¢ 0, so that the thesis of 2.4(b) 

does hold, which is what is needed to prove consistency of A. In this case the 
proof of Theorem 4.1 goes through with some minor modifications. The moment 

conditions (2.1) do hold when the distribution of X (Ao) is truncated Gaussian (with 
elliptical symmetry) and for any X with support in a box of the form [e, M] d, for 
some 0 < e < M < oo. This is not a stringent assumption in the present setting, 
since we are interested in modeling X with positive entries; transformation (1.3) 
would not be viable otherwise. 

3. Behavior of A on simulated and real data 

We consider the weight function as defined by (2.5). Algebraic manipulation 
shows that the following explicit formula for Wn(A) holds: 

2d-I 
(3.1) w (A) = n2 

~ ~-~ [ f l  sin{(ej____~ - ek___m)A} 

j = l  k = l  m = l  e j m  - -  e k m  

d sin{(ejm + ekm)A}] 
-H j, 

m~l 

where ej = (edl , . . . ,  ejd) t is defined through (1.5). If ejm - ekm = 0 or if ejm + 
ekm = 0, the terms in the products above are interpreted to be equal to A. This 
formula enables us to easily minimize Wn(,~) using numerical methods, without 
actually having to compute an integral for each trial value of )k. 

3.1 Symmetry  in one dimension 
In this subsection we assume that X (A°) is a symmetric random variable hav- 

ing mean #0 and variance a~. This simple setting provides interesting comparisons 
with other available methods for estimating transformations to symmetry. 

Let 0~ ---- (A0, #0, a~). Let us firstly analyze the issue of choice of the constant 
A via simulation. We consider samples of size 100 under the four configurations 
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case no. A = 0 . 6  A = 0 . 8  A - 1 . 0  A = 1 . 5  A = 2 . 0  

1 mean  0.4989 0.4917 0.5061 0.5140 0.5087 

variance 0.0845 0.0849 0.0846 0.0981 0.1114 

skewness 0.1963 0.0060 0.0099 -0 .0928  -0 .0961  

kurtosis  0.1862 0.2679 0.3796 0.0910 0.3076 

m.s.e. 0.0847 0.0847 0.0846 0.0981 0.1114 

2 mean  -0 .2375  -0 .2374  -0 .2337  -0 .2424  -0 .2459  

variance 0.0387 0.0336 0.0391 0.0412 0.0493 

skewness -0 ,0323  -0 ,0150  0.0816 0.1830 0,0137 

kurtosis  0.2960 0,1447 0.1673 0.1295 0.1558 

m.s.e. 0.0387 0.0336 0,0391 0.0413 0.0493 

3 mean  0.9339 0,9322 0.9373 0.9432 0.9377 • 

variance 0.1633 0.1872 0.1599 0.1937 0.2182 

skewness 0.0030 -0 .0378  -0 .1064  -0 .2100  -0 .1443  

kurtosis  0.6626 0.3368 0.2985 0.2898 0.2224 

m.s.e. 0.1635 0.1875 0.1600 0.1937 0.2184 

4 mean  0.0010 0.0154 -0 .0095  -0 .0059  -0 .0044  

variance 0.0332 0.0301 0.0324 0.0330 0,0379 

skewness -0 ,0215  -0 .0152  0.0589 0.0129 -0 .0620  

kurtosis  0.1680 -0 ,1054  -0 .0674  0.2625 0.3404 

m.s.e. 0.0332 0.0303 0.0325 0.0330 0.0380 

0~ = (0.51,4,0.81), ( - 0 . 2 4 , - 5 , 1 ) ,  (0.95,4,1), and (0,2,0.25), when the distri- 
bution of X (~°) is s tandard normal. Table 1 shows results which describe the 
distribution of ~, based on 1000 trials, letting A take on the values 0.6, 0.8, 1.0, 
1.5, and 2.0. 

An interesting feature in Table 1 is that  minimum variance within the pro- 
posed class of estimators is achieved selecting A near 1.0, regardless of the value 
of 80. It is also apparent tha t  values of A which are either too small or too large 
do not favor estimating the transformation; this fact was pointed out earlier when 
discussing the weight function. On the other hand, the values obtained for sample 
skewness and kurtosis suggest asymptotic normality of the estimator. 

We conducted a second small Monte Carlo exploratory study aimed at com- 
paring the estimator based on the empirical characteristic function with other 
estimators of ,k defined for one dimensional data. Some of these alternative esti- 
mators have appeared previously in the literature, while others are adapted here 
by minimizing existing tests for symmetry. In describing these alternative estima- 
tors, we use the notation ek (~ )  for the k-th A-residual. One family of tests for 
symmetry which we consider is 

[~/~] 

P~,P()~) = E 12' med{ek()~), 1 < k < n} - e(j)(A) - e(n_j+l)(A)l p, 
j = l  
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with p > 0 (suggested by David Ruppert  in personal communication). The list of 
estimators included in our study is the following: 

1. The estimator due to Berry (1987), which selects A to minimize 

g (a) = 

n 

2. The minimizer of the test due to Boos (1982), which is 

{1 / 
where rh = med{[ej(A) + ek()~)]/2, 1 < j < k < n}. 

3. The estimator based on the empirical characteristic function, setting A = 
0.8 and minimizing Wn(,~) defined by (3.1). 

4. The minimizer of R~,I (A). 
5. The minimizer of R~,2(A). 
6. The minimizer of Rn,3(A). 
7. The skewness estimator, obtained by minimizing 

Tn( ) = - 
n 

j = l  

(Actually, the value of ), is found which makes Tn()~) = 0.) This estimator is 
investigated by Taylor (1985). He shows that  this skewness estimator has an 
optimality property for normal errors, and compares it with other estimators of 
as well. 

8. A minimum distance type of estimator (Nakamura and Rupper t  (1990)) 
obtained by minimizing 

F Vn(A) = {Fn(x, ~) + Fn(-X, ~) - 1}2x2dx, 
o 0  

where F~(x, ~) is the empirical distribution function of {ej (~), 1 <_ j <_ n}. 
9. The maximum likelihood estimator assuming f is s tandard normal. Al- 

though this estimator actually a t tempts  to transform to normality, not general 
symmetry, it was included in this s tudy for comparative reasons. The estimate of 

minimizes 

n 

Ln(~)=nlog{d2()~)}+ e~(~) - 2(A - 1) ~--~ log{Xj }. 
j = l  j = l  

We simulated one-dimensional samples with transformation (1.1) using three 
symmetric densities for f:  the standard normal, the t-distribution with 3 degrees 
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of freedom, and a double exponential distribution. Sample sizes considered n = 30, 
50 and 80, again generating 1000 Monte Carlo replications in each setting. The val- 
ues used for A0 were 0.0, 0.51, and 1.0, with (#0, a0:) = (2, 0.52) for the normal and 
double exponential settings, and ~ = (0, 2, 0.42), (.51, 2, 0.452), and (1, 2, 0.352) 
for the t-distribution. Table 2 summarizes Monte Carlo results for a few represen- 
tative cases, where estimators within a fixed case have been ranked according to 
empirical mean squared error. A number of conclusions are noteworthy. 

For the normal distribution and large sample sizes, the method based on 
the empirical characteristic function is amongst the most efficient after (normal 
theory) maximum likelihood. 

In the non-normal symmetric situations, none of the estimators considered is 
uniformly best across all distributions and sample sizes. Which method occupies 
the top spot seems to depend strongly on the particular setting as well as the 
sample size. That  is, a winner in one situation may rank last in another. How- 
ever, the empirical characteristic function estimator never ranks worse than fourth 
(according to mean squared error). No other estimator maintains a high ranking 
across all situations. 

Some of the transformation estimators that  minimize a test for symmetry 
are comparatively inefficient. Examples are estimators numbered 2 and 4. There 
could be a connection between these results and the power these statistics would 
exhibit in testing symmetry. 

There is a substantial improvement in the estimators based on Rn,p(A) when 
p = 1 is switched to p -- 2, and then to p = 3. This point motivates further 
investigation of this estimator for other values of p, but  we do not address this 
issue or any of the asymptotic properties of this estimator here. 

Our results also suggest that  the sample skewness, Tn(,k), yields a very com- 
petitive estimator in this one-dimensional setting. However, our interest here lies 
in multivariate statistics and, in that  setting, the skewness estimator is not directly 
applicable. 

3.2 Symmetry in two and three dimensions 
Let us turn to a bivariate scenario, and exemplify estimation of ~ in simu- 

lated data  sets of size 200, letting ~0 = (0.5, 0.1) and setting the density f to 
be one of four elliptically symmetric bivariate distributions, labeled D1-D4. D1 is 

1 ) (U + (5)), where U has a uniform distribution on the unit circle on the plane. 
1 D2 is a bivariate normal having covariance (.s 2 s) and mean 0 "  D3 is a bivariate 

normal having covariance (.11 .1) and mean 0 "  D4 is (.11 .1 13 1)(v+ v (13))' where 
has the (spherieally symmetric) bivariate distribution corresponding to the density 
characterized by [IV[[ ,~ X~ and arctan(V1/V2) ,~ Uniform(0, 27r). D4 is intended 
to represent a distribution with "heavier tails" than the bivariate normal. D2 
and D3 differ only in that one has a greater covariance term; for likelihood-based 
methods, this may induce a difference when compared to marginal symmetrization 
(see Velilla (1993)). 

Table 3 reports results obtained by minimizing (3.1) as a function of the 
bivariate transformation parameter, where we have set A = 1. 

For each setting, Figs. l(a) and l(b) show scatter plots of original simulated 
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Table 2. 

n = 3 0  ) , = . 5  n = 8 0  A = 0  

bias variance m.s.e, bias variance m.s.e. 

NORMAL NORMAL 

m.l.e. -0.0250 0.4589 0.4595 m.l.e. 0.0060 0.0347 0.0347 

min.dist. -0.0414 0.5941 0.5958 skewness -0.0062 0.0385 0.0385 

emp.ch.fn -0.0202 0.5989 0.5993 emp.ch.fn -0.0016 0.0391 0.0391 

skewness -0.0084 0.6170 0.6170 min.dist. 0.0037 0.0454 0.0454 

R2 -0.0085 0.6678 0.6678 R3 -0.0011 0.0459 0.0460 

R3 0.0577 0.7171 0.7204 R2 0.0019 0.0520 0.0520 

Boos -0.0169 0.8104 0.8106 Boos 0.0063 0.0633 0.0633 

R1 0.0102 0.9802 0.9803 R1 0.0049 0.0742 0.0742 

Berry -0.2610 1.6209 1.6890 Berry -0.0098 0.1341 0.1342 

t 3 d.f. t 3 d.f. 

Berry -0.0204 1.6206 1.6210 R2 -0.0110 0.1744 0.1745 

R3 0.0263 1.7439 1.7446 skewness 0.0007 0.1852 0.1852 

R2 -0.1368 1.7697 1.7884 R3 0.0071 0.1945 0.1946 

emp.ch.fn -0.0573 1.8248 1.8280 emp.ch.fn 0.0137 0.1959 0.1961 

m.l.e. -0.0381 1.8361 1.8375 Berry 0.0028 0.2106 0.2106 

skewness -0.1168 1.9127 1.9268 min.dist. 0.0224 0.2185 0.2190 

R1 -0.0156 2.0084 2.0086 Boos 0.0044 0.2314 0.2314 

min.dist. -0.0640 2.0119 2.0160 m.l.e. -0.0027 0.2348 0.2348 

Boos -0.0394 2.1979 2.1994 R1 0.0180 0.3571 0.3574 

D. EXPON. D. EXPON. 

m.l.e. -0.0381 0.7604 0.7618 Berry -0.0014 0.0599 0.0599 

skewness -0.0185 0.8501 0.8504 skewness 0.0099 0.0599 0.0600 

Berry -0.0727 0.9196 0.9248 emp.ch.fn -0.0148 0.0612 0.0614 

emp.ch.fn -0.0127 0.9477 0.9478 R2 -0.0146 0.0663 0.0665 

min.dist. -0.0342 0.9942 0.9953 R3 0.0033 0.0682 0.0682 

R3 0.0274 1.0169 1.0176 min.dist. 0.0068 0.0693 0.0693 

R2 -0.0500 1.0241 1.0266 m.l.e. 0.0141 0.0747 0.0749 

Boos -0.0219 1.2210 1.2214 Boos 0.0051 0.1092 0.1092 

R1 -0.0546 1.2618 1.2647 R1 -0.0089 0.1523 0.1524 

^ 

d a t a  X ,  a n d  d a t a  af ter  h a v i n g  appl ied  the  e s t i m a t e d  t r a n s f o r m a t i o n ,  X (A), re- 

spectively.  These  f igures sugges t  good pe r f o r ma nc e  of t he  empi r i ca l  charac te r i s t i c  

f u n c t i o n  e s t i m a t o r  when  e l l ip t ical  s y m m e t r y  is achievable  by  a Box-Cox t r ans fo r -  

ma t i on .  

We found  t h a t  a n  app l i c a t i on  on  a real-life b iva r i a t e  d a t a  set is also in ter -  

e s t ing  to look at.  T h e  set  regards  i n d u s t r i a l  p o l l u t i o n  in  558 wa te r  samples  in  

Leon,  Mexico. Two  selected var iables ,  VAR1 a n d  VAR2,  are cons idered  here for 

i l lus t ra t ive  purposes ;  b o t h  are c o n c e n t r a t i o n s  of chemica l  subs t ances ,  i.e. are  pos- 
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n = 5 0  A----1 

bias variance m.s.e. 

n = 80 ~ = .5 

bias variance m.s.e. 

N O R M A L  N O R M A L  

m.l.e. -0 .0906  0.5278 0.5360 m.l.e. -0 .0256  0.1374 0.1381 

emp.ch.fn -0 .0117  0.5793 0.5794 skewness 0.0074 0.1613 0.1614 

skewness 0.0019 0.6084 0.6084 emp.ch, fn - 0.0162 0.1691 0.1694 

R3 0.0176 0.7745 0.7748 min.dist .  - 0 .0129  0.1764 0.1766 

R2 -0 .0207  0.7797 0,7801 R3 

min.dist .  -0 .0601 0.8321 0.8357 R2 

Boos -0 .0153  0.8376 0.8378 Boos 

R1 0.0507 1.0342 1.0368 R1 

Berry -0 .3556  1.4653 1.5918 Berry  

R2 

R3 

0.0036 0.1824 0.1824 

0.0111 0.2243 0.2244 

-0 .0032  0.2432 0.2432 

0.0109 0.3000 0.3001 

-0 .0963  0.4402 0.4495 

t 3 d.f. t 3 d.f. 

-0 .1860  2.6436 2.6781 skewness -0 .0392  0.5606 0.5621 

-0 .1269  2.7379 2.7537 R3 -0 .0024  0.5785 0.5785 

emp.ch.fn -0 .1282  2.7434 2.7598 emp.ch.fn 0.0285 0.6017 0.6025 

Boos -0 .1649  2.8166 2.8437 Berry  0.0188 0.6069 0.6073 

Berry -0 .1801 2.8438 2.8762 R2 -0 .0130  0.6534 0.6536 

m.l.e. -0 .1015  2.9392 2.9495 Boos -0 .0321  0.6685 0.6695 

min.dist .  -0 .1607  2.9469 2.9727 min.dist .  - 0 .0267  0.6857 0.6864 

skewness -0 .1748  3.1144 3.1449 m.l.e. 

R1 -0 .1779  3.1451 3.1761 R1 

D. EXPON.  

Berry  -0 .0409  0.9310 0.9327 R3 

skewness -0 .0216  0.9612 0.9617 Berry  

0.0274 0.7358 0.7366 

-0 .0354  0.8467 0.8480 

D. EXPON.  

0.0106 0.2350 0.2351 

-0 .0067  0.2425 0.2425 

emp.ch.fn -0 .0482  0.9609 0.9632 emp.ch.fn -0 .0189  0.2483 0.2487 

m.l.e. 0.0552 0.9662 0.9692 skewness -0 .0119  0.2504 0.2505 

R3 -0 .0630  0.9745 0.9785 m.l.e. 0.0524 0.2626 0.2653 

R2 -0 .0827  0.9809 0.9877 R2 -0 .0004  0.2719 0.2719 

min.dist .  -0 .0295  1.0171 1.0180 rain.dist.  -0 .0002  0.2813 0.2813 

R1 -0 .0627  1.2578 1.2617 Boos -0 .0025  0.3943 0.3943 

Boos -0 .0242  1.3945 1.3951 R1 -0 .0455  0.4390 0.4411 

Table 3. 

d i s t r ibut ion  A1 A2 
D1 0.308 -0 .015  

D2 0.483 0.146 

D3 0.293 0.120 

D4 0.677 0,128 
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Fig. 1(a) . Four simulated bivariate distributions before transformation to elliptical
symmetry.

itive variables . Figure 2 shows scatterplots and marginal distributions of original
data and after an estimated transformation obtained using the empirical charac-
teristic function. It is striking how similar these are in appearance to some of
the plots in Figs. 1(a) and 1(b) . For comparisons, bivariate transformations are
here not only estimated by using the empirical characteristic function, but also
by maximum likelihood assuming bivariate normality (Andrews et al . (1971)) . In
addition, we also estimate both transformation parameters using marginal likeli-
hood, that is, by individually transforming VAR1 and VAR2 to normality using
normal likelihoods . The three pairs of estimates are very similar in this case (see
Table 4) .

A final example regards a three-dimensional subset of Urology data (Andrews
and Herzberg (1985), p. 249), depicted in Fig. 3. Selected Variables are pH (PH),
conductivity (MHO), and urea concentration (UREA), in 79 urine specimens . The

Bivariate Normal Distribution II
Original Simulated Data

"Heavier Tailed" Distribution
Original Simulated Data
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Fig. l(b). 
metry. 
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Four simulated bivariate distributions after transformation to elliptical sym- 

three-dimensional implementation of equation (3.1), again setting A -- 1, yields the 

estimate ~ -- (-1.46, 1.00, 0.60). Figure 3 also shows bivariate projections of the 
data after using this value in transforming all entries. We note that the marginal 
skewness displayed in original data no longer appears after transformation. In ad- 
dition, judging by all two-dimensional scatterplots of transformed points, elliptical 
symmetry might have been achieved. 

4. Consistency of 

Here we establish consistency and v~-consistency of A by means of empirical 
processes theory as described in Dudley (1984) and Pollard (1984), and empirical 
processes results for U-statistics as given in Arcones and Gin@ (1993). Let us begin 
by listing some assumptions needed to prove consistency. 
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Fig. 2. Industrial pollution example: bivariate data plotted before and after transfor
mation to elliptical symmetry.

Table 4 .

estimator A1 A2

char. function 1.890 0.539

max. likelihood 1.949 0.462

marginal likelihoods 2.076 0.443
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Original Data 
PH ,n,,..., 

U R E A  

.lind,._ 
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: ~ • , ~ , . u i o~ - i  ............... UREA 

• • • ~ • • ~ ....... • : 
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Fig. 3. Urology example: Pairwise scatter plots of trivariate data before and after 
transformation to elliptical symmetry. 

ASSUMPTION 4.1. ~ is selected from a compact set A c R d such that  ~ E 
int(A) (the interior of A). 

Since the parameters being estimated correspond to powers (in a power trans- 
formation), computing limitations prevent the consideration of very large values 
for the coordinates of ~. In practice, one will look for the value of the ~i's in a 
relatively small interval (like [-5, 5], say). It would not be realistic to consider 
powers of the order of 100 in the transformations. Thus, Assumption 4.1 does not 
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represent a real limitation in practice. 

ASSUMPTION 4.2. The setting of Proposition 2.4(b) holds, that is, we have 
an i.i.d, sample X1, • •., X~ of vectors in R d, with the same distribution of X.  X is 

a vector of positive elements, and such that  the distribution of X (A°) is elliptically 

symmetric. The coordinates of X ()~) for )~ E A, satisfy the moment condition (2.1) 
and the supports of their distributions contain non-degenerate intervals. 

ASSUMPTION 4.3. For )~ in A, EA, as defined before Proposition 2.4, is non- 
singular. 

Write P for the probability law of X and P~ for its empirical version: If C is 
a measurable set in R d and g a measurable function, 

n X(x~ec) and Pn(g) = n 
i=1 i=1 

With Assumptions 4.1 and 4.2 we get what is called, in the empirical processes 
literature, an envelope funct ion,  namely, there exists a function F~ on R 4 such 

that F~ is in L2(P)  and satisfies Fl(X) >_ IIx(A)ll, for all x in the support of f and 
)~ E A. The following two propositions are needed for the proof of consistency. 

PROPOSITION 4.1. ~:)~, as defined in (1.4) is uniformly consistent for  )~ E A: 

(4.1) sup IIJC,~ -~,~ll  ~ o, a . s .  a s  n ~ ~ .  

A~A 

PROOF. For )~ E A, write T)~ for the vector transformation x --~ x ()t) and 

T~j for the coordinate transformation xj  ~ xj-(~J). Let ~rj denote the projection 

~j(x)  = xj .  The j - th  coordinate of the average XA is Pn(T~j o r j ) .  Let Aj = 
{Aj,)t E A}. Without loss of generality we shall assume that Aj is an interval. 
Also let 

c ~  = {(x, t) c / V  × /¢  : 0 < t < (T~ o ~j)(x) 

or (T~j c ~j)(x)  < t < 0}, and 

o(x,~) = { ~ j :  (x, t) E C~j } 

Rewrite O(x,t) = {Aj: 0 < t < (x) 5 - 1)/Aj or (x) j - 1)/Aj <_ t < 0}, to see that  
O(x,t) is the union of at most two intervals in Aj. It follows that  the dual density 
(Assouad (1983)) of the class 

C = {C~j : ~ ~ Aj} 

is finite and, therefore, by Proposition 2.13 of Assouad (1983) C is a Vapnik- 
Chervonenkis class. We conclude that the class 

F = { T ~ j o ~ j : A j E A j }  
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is a VC-subgraph class (see Dudley (1984, 1987) for this and related notions). 
Then, applying Lemma II.25 and Theorem II.24 of Pollard (1984) we obtain 
(4.1). [] 

PROPOSITION 4.2. With Sj~ as defined in (1.4), 

(4.2) sup [[S)~ - E)ll[ ~ 0 a.s. as n ~ oc, 
)~CA 

where 11" [I denotes Euclidean norm with the matrices seen as vectors of length d 2. 

PROOF. Let S)~,o ~ - n-ll ~-~]=I(X(~) _ / ~ ) ( X ( ~ )  _ lt~)t. By the previous 
proposition and the Cauchy-Schwarz inequality, we have 

sup [IS)~ - S)~,~[I ~ 0 a.s. as n ~ oo. 
,~EA 

Therefore we can replace S)~ in (4.2) by S)~,~, which will simplify the proof. For 

a probability law Q on R d, a collection of measurable functions G and p = 1, 2 let 
Np(e, G, Q) denote the metric entropy of G with respect to the LP(Q) norm, as 
defined in Pollard ((1984), Chapter  2). Let Y be the class of functions defined in 
the previous proof. By the fact that  Y is a VC-subgraph class, established above, 
and Lemma II.25 of Pollard (1984) 

(4.3) Yp(~, F, Q) < ap(1/~) b, 

for positive constants ap, bp depending only on the Vapnik-Chervonenkis index of 
the class C and on f FPldQ. From the moment assumption on the coordinates of 

X (~), we obtain, via dominated convergence, that  the components of It)~ and the 

entries of EA 1/2 are differentiable functions of A E A. It follows that  the class of 
functions 

F~  = {g: g(x) = ( %  o ~3)(x) - (#) j ; j  < d,~ • A} 

also satisfies (4.3), for possibly different constants ap and bp. Then, we have (see, 
for example, Problem 24, Chapter 2 in Pollard (1984)) that  the class 

F ,  • F ,  = {gh: g,h e F , }  

satisfies 
NI(~, F l, • rl,,  Q) _< N2(e, F~ • F~, Q) < a~(1/~) ~b~ , 

for the constants a2 and b2 mentioned above. An application of Theorem II.24 of 
Pollard (1984) now gives that  for each pair i, j ,  

sup I(S)~,~)~j - (Ej~)ijl ~ 0, 
)~eA 

a.s. 

completing the proof. [] 
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Now we can prove consistency of Jl. 

THEOREM 4.1. If the integrable, nonnegative weight function w in (1.6) is 
strictly positive in a neighborhood of the origin and zero outside a compact set, 
then under Assumptions 4.1 to 4.3, A ~ ~ ,  a.s., as n -* oz. 

PROOF. Let e l ( A ) ,  i = 1,.. . ,  n be the A-residual as defined in Section 1. Let 

(4.4) 

ei(A)ec • ~ l / 2 ( x f A ) -  tttA) a n d  

2 

U.(A)=/(l~=lsin(u~ed(A)o,~) ) w(u)du. 

Our proof of consistency relies on proving the following three facts, from which 
consistency of A follows by a standard argument using Proposition 4.2: 

(I) sup IWn(A) - G(A)I --* 0, a.s. 
A 

(II)  sup  IUn(A) - E U n ( A ) I  --+ O, a.s. ,  
A 

and 

(III) EUn(A) converges, uniformly in A, to a continuous limit E A which is zero 
only at A0. 

Note first that Wn(A) can be written as f(¼ ~ - 1  sin(utei(A)))2w(u) du. Now 

(4.5) 1 ~ sin(ut e4 ( A ) ° ° ) i : l  - In ~2~ sin(ut e i ( A ) ) i = l  

n 
1 

<- -~ Z lu~( S~ 1/2 - ~[/2)(x~ a> -.A)I 
i=1 
1 n 

+ - h l l .  
n 

i=1 

The second term in (4.5) goes to zero uniformly in A E A and u E {u : w(u) > 0} 

by Propositions 4.1 and 4.2, and the fact that the entries of Z~ 1/2 being continuous 

functions of A, are uniformly bounded. For a matrix M let [IM[[ = supilxil=l [IMx[I. 
The first term in (4.5) is bounded above by 

1 ~ i l u l l i l S ~ l , , 2  _ s],<211)Ix(A > _ ~AII 
n i=1 

_< - I N I I s ~  - r ~  + II.AII , 
n i=1 A 

and this approaches zero uniformly in A by Proposition 4.2 and the strong law of 
large numbers applied to the function F1. Therefore (I) is proved. 
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For (Xi, Xj) E R d × R d, and A E A let 

(4.6) gA(X~, Xj) = f sin(utei(A)oo) sin(utej (A)~)w(u)du, 

with ei(A)oo and ej(A)oo as given in (4.4). Let 

1 
(4.7) n(n 1) 

iCj 

Since Un(A) and U~(A) differ only in the diagonal terms, we have 

(4.8) sup [U~(A) - U~(A)[ = O ( 1 )  

The stochastic process {U~(A),A C A} is a U-process, as those considered in 
Arcones and Gin~ (1993). It is indexed on the class of symmetric kernels 

G = {gA : R d × R ~ ~ R ; A ~  h}, 

with gA as defined in (4.6). By (4.8) and Corollary 3.5 of Arcones and Gin6 (1993), 
in order to prove (II), it suffices to show that,  for every e > 0, 

(4.0) N~I~(e,G,P®P) < oc, 

where N~I] ) (e, G, P ® P)  is the bracketing metric entropy of the class G, as defined 

in page 1512 of Arcones and Gin~ (1993). 
Let K = fw(u)du. Given e > 0, take M > 0 such that  P(FI(Xi) > M) < 

e/(SK).  As noted above, the components of if A and X ()~), and the entries of EA 1/2 
are differentiable with respect to the components of A. It follows that  on the set 
{(Xi, Xj) : FI(Xi) <_ M and FI(Xj) <_ M}, g~(Xi, Xj) has partial derivatives, 
with respect to the components of A, uniformly bounded by a positive constant C. 
Cover A with a regular grid of points at distance e/(2C). It follows that  for each 
A E A there is a f~ in the grid, such that  

Ig (X ,Xj) - 6 ( x , , x j ) ,  

with 
S e/2, if Fl(xi) <_ M and FI(Xj) <_ M, 

6(Xi, x j) 
2K, otherwise. 

Since A is compact, the grid is finite, and by the choice of M, (P  ® P)(6) _< e. 
This suffices for (4.9) to hold, proving (II). 

To prove (III) observe that  E(Un(A) - U~(A)) = O(~),  uniformly in A and 

E(U~(A)) = E(gA) = f gA(X~, Xj)dP(X~)dP(Xj), for all n, 
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where P is the probability law of X.  It is clear that  E(g)~) is continuous in )~ 
and, by the strong law of large numbers and Proposition 2.4 it reaches its only 
minimum, namely zero, at ~ ,  finishing the proof. [] 

Once consistency has been shown, the differentiability of the statistic consid- 
ered allows us to obtain v~-consistency, at little extra cost: For )~ E A, c C R d 

and a real, positive definite symmetric, d × d matrix M, let 8 =- ()~, c, M) (we 
will think of 8 as a p-dimensional parameter for p = 2d + d(d + 1)/2) and let 
he : R d × R d -~ R, be given by 

he(x, y) =- JR d s in(u tM-1/2(x  ()~) - c ) ) s in (u tM-U2(y  0~) - c))w(u)du. 

Put  80 = (~,]t0,  E0) and ~ = (~,X)~,S~). Let Rn(8) -- 1 n(n-1) he(X , 
and 

R(8) = ERn(8)  = jRd he(x, y )dP(x)dP(y) .  

For a function h : R d × R d --+ R, not in the collection {he, 8 E Af}, let 

1 
R , ~ ( h ) -  n (n - -  1) E h ( X i ' X J ) '  

i#j 
and R(h) = EP~(h) .  

Applying Proposition 2.4 we have that,  in a neighborhood A; of 80, R(8) has a 
unique minimum, namely zero, attained at 8 = 80. From the previous theorem we 
can restrict our attention to 8 c Af. We can assume as well, that  the approxima- 
tions used in the proof of the following proposition are valid in Af. R(8) is clearly 
twice differentiable at 80. Call VR the matrix of second derivatives of R(8) with 
respect to the coordinates of 8. We need the following 

ASSUMPTION 4.4. The probability law P is such that  VR is positive definite. 

Then, we have 

PROPOSITION 4.3. Under the assumptions of Theorem 4.1 and Assumption 
4.4, ~ - ~ = Op(1/vf~). 

PROOF. Differentiation with respect to 8 under the integral sign, can be used 
repeatedly, in the definition of he, to get that  there exist a vector of p functions 
on R 2d, A, and a p × p matrix of functions, Vh,e, (depending on 8), such that  for 
8 ~ A f ,  

(4.10) he(x,y)  = heo(x,y) + (0 - 8o) tA(x ,y)  + ~(8 - 8o)~Vh,e.(x,y)(8 - 80), 

where 8" is a point falling in the segment that  joins 0 to 00. A lengthy but 
elementary calculation, using our moment  assumptions, shows that  for 0 in Af, 
each entry of Vh,s. (x, y) is bounded, in absolute value, by a function H(x,  y) in 
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L2(p ® P). Let 7n(0) = x/~(P~(0) - R(O)) . Define likewise fin(h) for functions 
not of the form ho. Using (4.10) and Assumption 4.4, we have 

(4.11) R n ( e ) -  ~n(e__]) + R(e) v ~  

_ ~ ( e o )  o ~,Zn(A) - - ~  + (e-  ~oj 

1 
+ ~--~(0 - Oo)t~n(Vh,o.)(O - 0o) + R(O) 

> Rn(Oo) + op(llO - Ooll/v~) 

+ O p ( l l O  - Ooll~ /v~)  + kilo - Ooll ~, 

for some positive constant k. 7n applied to a vector (or matrix) of functions is 
understood to mean the vector (matrix) obtained by applying -y~ to each coordi- 
nate (entry). The second term in the right hand side of last inequality comes from 
the application of the usual Central Limit Theorem for U-statistics (see Randles 
and Wolfe (1979), Theorem 3.3.13, for instance) to the fixed functions forming the 
vector A, while the Op(ll 0 -  Oo tl 2~v I-d) term corresponds to the application of that 
same theorem to the function H(x, y) introduced above. Given the differentiabil- 
ity of he and R(O) there is no need to use empirical processes results to get these 
(or the following) inequalities. On the other hand, by definition of ~, 

(4.12) Rn(O) = Wn(X) + Op(1/n) <<_ W~(~o) + Op(1/n) 

~_ Rn(Oo) ~- Op(1/n). 

The last inequality comes from the x/~-consistency of X ~  and S~ ,  which is 
easy to obtain (~o is fixed), and an approximation argument like the one given in 
inequality (4.5) and the lines after it. Assume, by the previous theorem, that 0 is 
in Af and combine (4.11) and (4.12) to get 

op(1/n)  > n~(0) - R~(00) 

-~ kilo - 00112 ÷ Op(ll~ - 0011/v~) ÷ o~(110 - 0o112). 

With this last inequality, use the completion of the square trick in the proof of 
Theorem 1, page 126, of Sherman (1993) to finish the proof of v/-n-consistency for 
0, which implies, of course, the x/~-consistency of ~. [] 

Technical difficulties, mainly the fact that R~(0) might not fall within Op(1/n) 
of minimizing Rn(0) (see the argument in the proof of Theorem 2 of Sherman 
(1993), or in the proof of Theorem 5, Section VII.l, Pollard (1984)) prevent us, 
at the present moment, from pushing the argument in order to prove asymptotic 
normality of ~. We plan to address this topic in future research. Two important, 
immediate applications of Gaussian asymptotics, would be to provide analytical 
tools for optimal selection of the constant A, as well as methods for building 
confidence intervals and tests. 



708 ADOLFO J. QUIROZ ET AL. 

Acknowledgements 

The authors wish to thank the editor and two referees for careful reading of 
the manuscript. Anonymous referee "A" was particularly helpful in detecting both 
mathematical and typographical errors, and bringing our attention to relevant 
references. His suggestions for clarifying and shortening some of the proofs were 
incorporated into the present, much improved, form of the manuscript. 

REFERENCES 

Andrews, D. F. and Herzberg, A. M. (1985). Data: A Collection of Problems from Many Fields 
]or the Student and Research Worker, Springer, New York. 

Andrews, D. F., Gnanadesikan, R. and Warner, J. L. (1971). Transformations of multivariate 
data, Biometrics, 27, 825-840. 

Arcones, M. A. and Gin6, E. (1993). Limit theorems for U-processes, Ann. Probab., 21, 1494- 
1542. 

Assouad, P. (1983). Densit6 et dimension, Ann. Inst. Fourier Grenoble, 33, 233-282. 
Berry, D. A. (1987). Logarithmic transformation in anova, Biometrics, 3, 39-52. 
Boos, D. D. (1982). A test for asymmetry associated with a Hodges-Lehmann estimator, J. 

Amer. Statist. Assoc., 77, 647-651. 
Cambanis, S., Huang, S. and Simons, G. (1981). On the theory of elliptically contoured distri- 

butions, J. Multivariate Anal., 11,368-385. 
CsSrg6, S. (1986). Testing for normality in arbitrary dimension, Ann. Statist., 14, 708-723. 
CsSrg6, S. and Heathcote, C. R. (1987). Testing for symmetry, Biometrika, 74, 177-184. 
Devlin, S. J., Gnanadesikan, R. and Kettenring, J. R. (1976). Some multivariate applications 

of elliptical distributions, Essays in Probability and Statistics (eds. S. Ideka, T. Hayakawa, 
H. Hudimoto, M. Okamoto, M. Siotani and S. Yamaoto), 365-395, Shink Tsusho Co., Ltd. 
Tokyo. 

Dudley, R. M. (1984). A course on empirical processes, Ecole d'Et~ de Probabilit~s de Saint- 
Flour, XII-1982, Lecture Notes in Math., 1097, 1-142. Springer, New York. 

Dudley, R. M. (1987). Universal Donsker classes and metric entropy, Ann. Probab., 15, 1306- 
1326. 

Fang, K. T. and Anderson, T. W. (eds.) (1990). Statistical Inference in Elliptically Contoured 
and Related Distributions, Allerton Press, New York. 

Fang, K. T., Kotz, S. and Ng, K. W. (1990). Symmetric multivariate and related distributions, 
Monographs Statist. Appl. Probab., 36, Chapman and Hall, London. 

Feuerverger, A. and Mureika, R. A. (1977). The empirical characteristic function and its appli- 
cations, Ann. Statist., 5, 88-97. 

Ghosh, S. and Ruymgaaxt, F. (1992). Applications of empirical characteristic functions in some 
multivariate problems, Canad. J. Statist., 20(4), 429-440. 

Hinkley, D. V. (1977). On quick choice of power transformation, Appl. Statist., 26, 67-68. 
Lo~ve, M. M. (1955). Probability Theory: Foundations, Random Sequences, Van Nostrand, New 

York. 
Nakamura, M. and Ruppert, D. (1990). Semi-parametric estimation of symmetrizing transfor- 

mations with application to the shifted power transformation (unpublished manuscript). 
Nelson, C. H., Cox, D. D. and Ndjuenga, J. (1989). Mean variance portfolio choice: a test for 

elliptical symmetry~ Tech. Report, No. 41, Department of Statistics, University of Illinois. 
Pollard, D. (1984). Convergence of Stochastic Processes, Springer, New York. 
Randles, R. H. and Wolfe, D. A. (1979). Introduction to the Theory of Nonparametric Statistics, 

Wiley, New York. 
Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics, Wiley, New York. 
Sherman, R. P. (1993). The limiting distribution of the maximum rank correlation estimator, 

Econometrica, 61, 123-137. 



TRANSFORMATION TO ELLIPTICAL SYMMETRY 709 

Shohat, J. A. and ~hmarkin, J. D. (1943). The Problem o] Moments, Mathematical Surveys, 
Number 1, American Mathematical Society, Rhode Island. 

Taylor, J. M. G. (1985). Power transformations to symmetry~ Biometrika, 72, 145-152. 
Velilla, S. (1993). A note on the multivariate Box-Cox transformation to normality, Statist. 

Probab. Left., 17, 259-263. 


