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Abstrac t .  f(x) is a univariate density in C 4 with bounded support. For any 
n and sufficiently small kernel bandwidths, the symmetric appendage of any 
negative mass, -U ,  to any smooth unimodal symmetric kernel of order p = 2 
shifts expected estimator mass from regions where f"(x) > 0 to regions where 
f"(x) < 0. For large n, the mean automatic kernel adaptation induced by - U  
is analyzed in the simplest MISE reduction scenario: The symmetric appendage 
of - U  to the uniform kernel K(x, X) over MISE-optimal bandwidths reduces 
MISE by shifting K(x, X) mass asymmetrically across the observation X in 
the direction of decreasing If"(x)l. 

Key words and phrases: Kernel adaptation, higher order kernels, induced ker- 
nel asymmetry. 

1. Introduction 

The kernel K(x, X) is a symmetric measurable function of x, centered on an 
observation X, that integrates to 1 over an interval (X - H/2 ,  X + / / / 2 ) .  {Xi}~ 
is a set of n random observations, each with density f .  E~ denotes expectation 
with respect to the joint observation density fn  on R ~. 

For a univariate density estimator ](x) -- (l/n)~-~i~1 K(x, Xi), it is well 

known that bias, B(x) = En{](x) - f(x)},  inherently accompanies the use of 
Parzen kernels. For a density f in C ~ and a kernel bandwidth H,  bias is reduced 
to O(H p) by using a negative-valued kernel of order p _> 3, cf. Gasser and Miiller 
(1979). There exist optimally shaped kernels of order p > 3, Berlinet (1993), 
which can either globally minimize VAR(x) or minimize MISE = fn MSE(x)dx, 
MSE(x) = VAR(x)÷B2(x), VAR(x) = En{[/(x)-En{/(x)}]2}, for an appropriate 
choice of (p, H(n)). Such kernels can reduce MISE to O(n-2p/(2P+I)), Schucany 
and Sommers (1977), and are viable since Gajek (1986) provides a truncation 
algorithm for eliminating the estimator's negative values while further reducing 
MISE. 

It is well known that higher order kernels offset increased variance with re- 
duced bias, for large n. Also, for any n > 1, the bias at x for a kernel of order 
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p is proportional to the p-th derivative of f evaluated near x. Thus a positive 
symmetric kernel (of order p = 2) tends to overestimate f where f '(x) > 0 and 
tends to underestimate f where f~t(x) < 0, while the bias is zero on intervals 
where f '(x) = O. 

Aside from the fact that higher order kernels can reduce bias and MISE, it 
is not known how symmetrically appended negative kernel mass - U  mechanically 
acts to accomplish bias and MISE reduction. In this regard, one can pose three 
basic questions: (1) For what values of (U, n) is the direction of bias reversed? 
(2) Where and why is the direction of bias reversed? (3) What is the automatic 
kernel adaptation process by which negative kernel mass achieves bias and MISE 
reduction? 

Questions (1) and (2) are addressed for symmetric rectangular and continuous 
unimodal kernels, respectively, in Sections 2 and 3, where the discussion implicitly 
includes kernels of order p = {2, 4}. It will be shown, for f in C 4 with bounded 
support, that the bias is reversed for any U > 0 and any n _> 1, at any x where 
fll(x) ~ O. This reversal occurs simply because the sign of the symmetric negative 
kernel mass opposes that of the symmetric positive mass in K(x, X), suggesting 
that kernel symmetry is somehow inappropriate whenever F(x) ~ O. For f in 
C 4, the bias reversal is tantamount to a shift in expected estimator mass from the 
region where f"(x) > 0 to the region where f '(x) < O. 

Question (3) is addressed, at least by example, in Section 4. It is clear that the 
negative kernel masses in the kernels {K(x, Xj)}~ -1, for Xj sufficiently near Xn, 
diminish the positive mass in K(x, Xn) in some adaptive manner. Beginning with 
a uniform kernel on MISE-optimal bandwidth H and symmetrically appending 
appropriate - U  mass to produce a rectangular kernel of order p = 4 over MISE- 
optimal bandwidth H p > H, one might expect that the U-induced adaptation 
would create, on average, a kernel akin to the Epanechnikov kernel. However, 
as shown in Section 4, this simplest adaptation actually creates an asymmetric 
kernel. The illustration involves uniform kernels Kr(x, X) of order p = 2 and 
rectangular kernels Kw(x,X) when (a) Kw is of order p = 4, (b) Kr and Kw 
are both on MISE-optimal bandwidths, (c) MISE(Kw) < MISE(Kr) and (d) the 
positive part of K~, denoted K +, differs from Kr only by a constant. Then, the U- 
induced mean adaptation of K + is shown to be equivalent to a mean adaptation of 
Kr(x, X), whereby K~ mass is shifted asymmetrically across X in the direction of 
decreasing If'(x)l. In this case, the efficacy of higher order kernels for sufficiently 
large finite n derives from the capacity of - U  to induce a certain f - r e l a t e d  kernel 
asymmetry. In more general circumstances, when item (d) cannot be satisfied, 
as when considering MISE-optimally shaped kernels of order p = {2, 4}, it is 
conjectured that  a similar adaptation process is at work creating an asymmetric 
shape or an asymmetric bandwidth. 

2. Preliminaries 

X The observations { i}1 are i.i.d, and real-valued, with unknown but strictly 
curvilinear density f with bounded support S(f). It is assumed that f is in C 4, 
so that f is bounded. 
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DEFINITION 2.1. For any fixed h > 0, with h = hi + h2, h[x] is the open 
interval of length h centered on x, hl[x] is the open interval of length hi centered 
on x and h2[x] is the disjoint set h[x] - hl[X] with length h2 = h - hi. Integral 
averages of f over the sets hi, h2 and h are defined for any x in R as: 

]j(x) = (1/hj) fh f(t)dt; 
j Ix] 

( l /h )  [ f(t)dt. h(x) 
Jh 

j = 1, 2, 

DEFINITION 2.2. For any fixed h > 0, the sets 

CU(h) = {x e S ( f ) :  f"(-) > 0 on h[x]} 

CD(h) = {x e S ( f ) :  f"( . )  < 0 on h[x]} 

define closed proper subsets of S(f) on which f is, respectively, concave up and 
concave down. Denote CU(h) 0 CO(h) = Ch. 

Subsequently, h is taken sufficiently small that  CU(h) and CD(h) both con- 
tain intervals. Note that  Ch T S(f) as h 1 O, for strictly curvilinear f .  

PROPOSITION 2.1. 

on CU(h) : o < ](x) < ]l(x) < ]2(~) 
On CD(h): 0 < f2(x) < f l (x )  < f(x). 

COROLLARY 2.1. 
h~[x], 

For symmetrical h2, [x] C h2[x] and symmetrical hl,[X] C 

On CU(h): 0 < ]l,(X) < L, (x)  

On CD(h) : 0 < f2'(x) < ]l'(x). 

DEFINITION 2.3. For hi <: h and U > 0, 

K,(x, X) -- (1/hl)lhl[x](X) 
g~(x, X) = kl(U)lhl[X](X ) q-k2(U)lh2[X](X), 

where kl(U) = (1 + U)/hl and k2(U) = -V/h2. 

DEFINITION 2.4. it(X) and iT(x) denote estimators using kernels Kr(x, X) 
and Kw (x, X), respectively. 
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PROPOSITION 2.2. For any U > 0 and any n > 1, 

E~{fw(x)} = ~ En{fr(x)} + Ulfl(x) - f2(x)l on CD(h) 
( on CV(h) 

where 

En{L(x)}= ]l(X) { < f(x)  on CD(h) 

> f (x)  on CU(h). 

PROOF. 

(2.1) En{)~(x)} = Ex{K~(x,  X)} = JR Kr(x, X ) f ( X ) d X  = j~(x), 

where Kr(x ,X)  is reconfigured as a function of X for fixed x. Similarly, 

En{fw(x)} = (1 + U)fl(X) - Uf2(x). Proposition 2.1 completes the proof. [] 

COROLLARY 2.2. Proposition 2.2 extends to estimators using kernels based 
on symmetric intervals hl,[X] ~ hi[X] and h2,[X] C h2[X]. 

PROOF. Use Corollary 2.1. [] 

So, for any (U, n), the symmetric appendage of - U  to Kr reverses the direction 
of bias on Ch. The pattern of bias and bias reversal also suggests that kernel 
symmetry is inappropriate when f "  7 ~ 0, a notion that will be pursued further 
in Section 4. For example, considering any x in CU(h): For the kernel Kr, the 
bias is expressed Br(x) = f l (x)  - f(x) > 0. For the kernel Kw, defining Bu(x) = 
]2(x) - f(x),  the bias is Bw(x) = B~(x)(1 + U) - Bu(x)U, which is just a sum of 
two biases B~(x) and B~(x), each weighted and signed by the Kw kernel masses 
evenly distributed over the respective sets hi Ix] and h2[x]. The biases Br and B~ 
are each directly the result of kernel symmetry, when f ' ( x )  ~ O. It so happens 
that B~ reverses B~, since - U  < 0. 

3. Expected estimator mass shift for continuous kernels 

Proposition 2.2 is next extended to continuous analogs of Kr and Kw. 
Kc(x,X) is any nonnegative smooth symmetric unimodal kernel with support 
hl[X] C h[X]. For U > 0, Kcw(x,X) is defined as ( I+U)K~(x ,X)  on hl[X], with 
unimodal smooth symmetric negative side lobes of total mass - U  supported over 
h2 [X], so that Kcw is continuous and symmetric over h[X]. Denote the estimators 

using Kc and Kcw as ]c(x) and few(x), respectively. 
For f (x)  in C a, the bias can be written, cf. Berlinet (1993), for any smooth 

symmetric kernel K of order p = {2, 4} as 

(3.1) B(x) = (1/p!)(h/2)P f (p)(xo)Mp(K), 
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where f(P)(Xo) is the p-th derivative of f evaluated at a point x0 in h[x] and 

Mp(K) = [<(v)vPdv 
1 

if(v) = (h/2)K(x, X); v = (x - X)/(h/2). 

So, quite generally, if p = 2, the bias is positive over CU(h) and negative over 
CD(h). 

PROPOSITION 3.1. For any U > 0 and any n >_ 1, 

E , { L ~ ( x ) }  = [ E,~{/~(x)} + UD(x,n) on CD(h) 
( E,~{/c(x)} -UD(x,n)  on CV(h), 

where D(x, n) > 0 and 

E,~{]c(X)} { < f(x) on CO(h) 
> on CU(h) .  

Z PROOF. For given n and { j } l ,  approximate each Kc~(x, Xj) by step func- 
tion kernels 

m 

Km(x,X~) = E a,,mKi,m(x, X3) 
i=1 

so that  on R Km(x, Xj)-'~Kcw(x, Xj) for each j .  Each Ki,m is a symmetric 
kernel with positive mass over hi;i,m[Xj] C hl[Xj] and negative mass - U  over 

h2;i,m[Xj]~h2[Xj], with ~-'~i~1 ai,m = 1. Let fro(x) = ( l /n )  Ejn=i gm(x, Xj), so 
that  fm(x)Lfc~(x) on R. By Corollary 2.2, E,~{fm(x)} = Ex{g,~(x,X)} = 
~m= 1 ai,,Jl#,m(x) + U~-~iml ai,m[f-l#,m(X) -- •#,m(X) l- Also, by construction, 

( l / n )  E~=l  E , ~ :  ai,m(llh:;i,m)lhl;,,,~[Xj] (x) a(1/n) E j \ :  Kc(x, = 
Since f is bounded, the Lebesgue Dominated Convergence Theorem, Royden 
(1963), can be used twice to obtain 

(3.2) E n ( ~ w ( X ) }  ~- En{fc(T)}  -~ UlimIIl E ai,m[fl;i,m(x) - ]2;i,m(X)] • 

The limit in Equation (3.2) exists and is denoted d(x, n), for any U > 0 and any 
n > 1. The sum in Equation (3.2) is a weighted average of differences that,  by 
Corollary 2.1, are positive on CD(h) and negative on CU(h). Take D(x,n) = 
td(x, n)t. [] 

Thus, symmetrically appended negative kernel mass rather generally reverses 
the direction of bias on Ch, for any (U, n), simply because the sign of - U  opposes 
the sign of the symmetric positive mass in Kc~. For f in C a and nontrivial CU 
and CD, as has been assumed here, the bias reversal process on Ch amounts to an 
expected estimator mass shift from CU to CD, since fn E,~{](x)}dx = 1, when 
ch s(I). 
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4. Induced mean kernel asymmetry in the (Kr,  Kw) case 

When the use of negative kernel mass reduces MISE, the bias reversal due 
to - U  is regarded as the result of some U-induced automatic kernel adapta- 
tion. To examine this fundamental bias reversing mechanism, for n observations 
{X, Y1, Y2,..- ,Yn-1}, the mean impact of the negative masses in {K~(x, y j )}~- i  
on the shape of the positive part of Kw(x, X) will be analyzed when: 

(a) U has a value such that  Kw is of order p = 4. 
(b) Both Kw and Kr are on MISE-optimal bandwidths. 
(c) MISE(Kw) < MISE(Kr).  
(d) The positive part of Kvo(x, X) is equal to (1 + U)Kr(x, X). 

Let the positive part of Kw be denoted K +. I tem (d) above requires that  the 
adaptation process be viewed when the modification of K + is equivalent (as will 
be shown) to a modification of Kr. So, item (d) ensures that  U adapts Kr shape 
in the simplest adaptation scenario. 

The arguments in this section are confined to rectangular kernels of order 
p = {2, 4} because they are relatively easy to analyze. Regarding more practical 
kernels, such as the Epanechnikov kernel Ke (x, X) and the MISE-optimally shaped 
kernel of order p = 4, denoted K4(x, X), cf. Gasser and Miiller (1979), there is 
a serious complication: K + cannot be superimposed on (1 + U)K~ since K + is a 
quartic in x - X while K~ is a quadratic in x - X. For the case (Ke, K4), one 
cannot attain the analog of item (d). We proceed, then, with the case (Kr, K~). 

DEFINITION 4.1. For n observations {X, Y1,Y2,...,Y,~-I}, Kv(x,X) is de- 
fined at x in hi IX] as the positive part of K~ (x, X) modified by the negative parts 
of K~ (x, Yj ). Of the n -  1 Yj values, N1 lie in hi [x] and are assumed for sufficiently 
small hi to equally absorb the negative contributions of the N2 Kw(x, Yj) kernels 
for Yj that  lie in h2[x]. Kv(x, X) is written as 

Kv(x, X) = lh,[x](x)lkl(U) + [N2(x)/(Nl(x) + 1)]k2(U)]. 

Kv(x, X) is a diminished version of K + (x, X). Given n and fixed but arbitrary 
X, N~(x) and Nl(x) are random variables with mean values (n - 1)]2(x)h2 and 
(n-  1)]l(x)hl, respectively, by the binomial law. The expected or mean shape of 
Kv(x, X), considering the random Yj, is 

(4,1) /?.(x, x )  = E, _l{gv(x, X)} 

Nt(x) + 1 " 

For small h and (as will become the case after Proposition 4.3) for hi(n) such 
that  nhl(n)2,oo, a crude large n approximation of the expectation of the ra- 
tio N2(x)/(Nl(x) + 1) is h2/hl. Subsequently, using Definition 2.3, /~v(x, X) ---- 
K,~(x, X), so that  prior to Gajek truncation,/;2v is approximately a kernel. 

Following Definition 4.1, the mean shape of Kv(x, X), accounting probabilis- 
tically for the variety of Yj observation locations about X, is taken to measure 
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the automatic kernel adaptation performed by - U  upon K+(x, X). So, we next 
compute/(v(x,X) in Equation (4.1) exactly. 

PROPOSITION 4.1. For sujficiently small hi and~or any X in Ch, the mean 
value of Kv (x, X) at x in hi [X] is 

( 4 . 2 )  

where 

( 4 . 3 )  

Kv(x, X) = lh,[x](x)[kl(U) + k2(U)H(x, n)], 

H(=, n ) =  Ah=S~(=) 
Sl(x) = 1 +  (1 - j ~ h l ) +  (1 - . ~ h l )  2 + . . . +  (1 - j~hl) '~-2. 

PROOF. Referring to Definition 4.1, 

0 < g(x ,n)  = ~ (N2/(N1 Jr 1))C(N1,N2)Pr(x,N,,N2), 
(gl ,N2) 

where  C(N1, N2) coun t s  o b s e r v a t i o n  c o m b i n a t i o n s  and  p e r m u t a t i o n s  and  

P r ( x ,  N I ,  N2) = (/1 (x)hl) N1 (fi2(x)h2) 2v2 (1 - Ah) "-l-(g~+g2) 

is t he  p r o b a b i l i t y  t h a t  N1 obse rva t i ons  lie in h i  [x] and  N2 obse rva t i ons  lie in h2 [x], 

u s i n g / h h  =/lh] + ]2h2. As an  example ,  for n = 5, t he  values  of  C ( N 1 ,  N2) used  
to  c o n s t r u c t  H(x, n) are p r e s e n t e d  in Tab l e  1. 

Table 1. Values of C(N1, N2) for constructing H(x, n) with n = 5. 

0 0 4 0 1 
0 4 0 4 1 
4 0 0 0 1 

0 1 3 1 4----(4) 
1 0 3 0 4 
1 3 0 3/2 4 
0 3 1 3 4 
3 1 o 1/4 4 

3 0 1 0 4 
o 2 2 ~ 6 = (24) 
2 0 2 0 6 
2 2 0 2/3 6 
1 1 2 1/2 12 = (4)(12) 

1 2 1 1 12 
2 1 1 1/3 12 

N1 N2 n - I - ( N I + N 2 )  N2/(NI+I) C(N1,N2) 
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For 2 ~< n K 5, H(x, n) is written as follows: 

n = 2: H(x,n) = ]2h2[1] 

n = 3 : H(x,n) = f2h212 - ]1hl] 

n = 4:  H ( x , n ) =  ]2h213- 3]1hl + (]1hl) 2] 

n = 5: H(x,n) = ]2h214 - 6]1hl + 4(]1hl) 2 - (]1hl)3]. 

Equation (4.3) follows by induction, with 

(4.4) 0 < (1 - / l h l )  n-2 < .- .  < (1 -]1hl) 2 < (1 - ] l h l )  < 1. 

DEFINITION 4.2. 

PROPOSITION 4.2. 

1/(fl(fl  + 1)) < 0.5. 

PROOF. Set 

[] 

Let h = flhl, where fl > 1 is a parameter. 

gw(x ,X )  is of order p = 4 if and only i fU = V*(fl) = 

[] 

DEFINITION 4.3. For given (n, fl) and using U = U*(fl), h*(n, fl) denotes 
the bandwidth for Kw that  minimizes MISE for f ,  yielding MISE(K~). For 
given n, h~ (n) denotes the bandwidth for KT that  minimizes MISE for f ,  yielding 
MISE(K*). 

Next, it's shown that items (c) and (d) above can be accomplished simulta- 
neously, making appropriate use of the parameter ft. 

PROPOSITION 4.3. For any fixed large n = no, there exists fixed large fl = flo 
such that h*(n0,fl0) = floh~(no) while MISE(K~) = O(n -s/9) and MISE(Kr) = 
0(n-4/5). 

PROOF. For the kernels Kr and Kw, VAR(x) is computed as 

VARr(x) = (1/n)[fl/hl - ~] 

VARw(x) = (1/n)[k~flhl + k~fah2 - ( f lhlkl  + f2h2k2)2]. 

Since h~(n) -~0 and h*(n, fl) ~ 0 ,  Parzen (1962), and since U*(fl) --* 0 as fl --* c~ 
by Proposition 4.2, large (n, fl) approximations of VAR(x), using Definition 2.3, 
are VAle(x)  ~- f ( x ) /nh l  and VARy(x) - f(x)f l /nh. So, using equation (3.1) for 
large (n, fl), for p(g~) = 4, 

MISE(Kr) ~ 1/nhl -4-[M2(Kr)(hl/2)21/2!] 2/R[f(2)(x)]2dx 

MISE(Kw) ~- fl/nh + [Ma(Kw)(h/2)41/4!] 2/R[f(4)(x)]2dx. 

'__ [~w(v)v2dv = O. 
1 
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Then, using Lemma 4a of Parzen (1962), large (n, ~) approximations of the MISE- 
optimal bandwidths for g ~  (with U = U*(~)) and Kr are 

h* (n, 13) ="~ { (~3/n) 

h ~ ( )  "~{(1/ ) n = n --k 

+ [8(M4(K~)/4!)2(1/2)s/R[f(4)(x)]2dx I }1/9 

[4(M2(Kr)/2!)2(1/2)4 /R[f(2)(x)]2dx ] }1/5, 

where M2(Kr) = 1/3 and M4(Kw) -1/5t32. Thus, for large (n,/3), 

(4.5) h* (n, ]3) (n) c1 5/9n 4/45 00. 

For a fixed large n, denoted no, the objective is to determine a particular large ~, 
denoted ~30, such that 

(4.6) h* (no, t3o) /h~ (no) = ~o. 

For ~ satisfying Cl < ~34/9, the objective is achieved by taking 

(4.7) ~0 = (C2Cln4/45) 9/4, 

where c2 = 1 makes equation (4.5) exact. The parameter ~ would then be the 
fixed value ~0 for all n. For the particular n = no, equation (4.6) is satisfied. 
Since ~ is thus fixed as a function of no, h*(n,~o) = 0(n-1/9), h~(n) = O(n-1/5), 
MISE(K*) = O(n -s/9) and MISE(K*) = 0(n-4/5). [] 

PROPOSITION 4.4. The (no, ~o) in Proposition 4.3 can be taken large enough 
so that MISE(K*) < MISE(K*). 

PROOF. From the equations for MISE in the prior proof, when (n, ~) = 
(no, fl0), the integrated VAR(x) terms for estimators based on K* and K* are 
asymptotically identical by equation (4.6). Using Equation (4.7) and the equa- 
tions for h* and h~ in the prior proof, the integrated B2(x) terms for estimators 
based on K* and K*, denoted respectively as IB2(K *) and IB2(K*), compare 
as IB2(K*)/IB2(K *) ~ Cono 26/45-~ O. [] 

DEFINITION 4.4. Denote the (no, j30) in Proposition 4.4 as (n~, ~3~). 
The use of (n~, t3~) ensures items (c) and (d) above since equation (4.6) implies 

that (K*) + -- (1 + U)K*. The use of (n~, t3~) will provide convenient glimpses 
of the two optimal rectangular kernels K* and K*. Next, it is shown that the 
mean U-induced adaptation of K* involves an asymmetric shape with a particular 
asymmetric shift in K* mass. 

PROPOSITION 4.5. Let X be in Ch, with h sufficiently small so that the 
averages/1 (x) and ]2(x) differ approximately by a constant over x in hi [X], with 

/2(x) ~-/l(x) + c3 on hl[X], 
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where c3 is an (X, n, ~)-dependent constant. Then, 
(i) For any X in CO(h), [(~(x, X)  is opposite in sign from f '(x),  ]or any 

h l < h .  
(ii) For any X in CV(h), - '  K~(x, X)  has the same sign as ft(x) for hi = h~(n) 

and (n,/~) = (n~, ~;), for sufficiently large n~. 

PROOF. From Proposition 2.1, c3 > 0 on CU and c3 < 0 on CD. From 
Proposition 4.1, 

I ~  (x, X)  = --U lhl IX] (x)[H' (x, n) /h2], 

where H(x,n)/h2 ~- []l(x) + c3]Sl(x) and 

(4.8) d/dx{]l(x)Sl(x)}  = ]~(x)(1 - ] l h l ) n - 2 ( n -  1) 

(4.9) c3d/dx( S1 (x) } = -c3hl f; (x)S2 (x), 

with S2(x)=  1 + 2 ( 1 -  •h l )  + . . . +  ( n -  2)(1 - j~hl) n-3. Aside from ]~(x), the 
terms in equations (4.8) and (4.9) are positive for X in CD, proving part (i). For 
X in CU, let 

S~(x) = [1+ 2 + 3 + - . .  + ( n -  2)]G(x,n) 

= [(n - 2)(n - 1)/2]G(x, n); G(x, n) > O. 

Then for X in CU, 

(4.10) H'(x ,n) /h2~-f~(x)G(x,n)(n  - 1 ) [ ( 1 - f l h l )  n-2 ( ~ ' ~ ) 1  V~-~)) -C3hl 

G(x, n) is a weighted average of terms in inequality (4.4) such that ( 1 -  f lh l )~-3  < 
G(x,n) < 1. Thus, 

(4.11) 0 _< lim (1 - ]lhl)~-2/G(x,  n) < 1. 

Considering the second term in brackets in equation (4.10), 

0 < c3h1 ~ h l [ ] 2 ( x ) -  ]l(x)] = hl[]h(X)-  ]l(x)](~/~-- 1) 

Taylor's formula for some x0 in h[x] yields 

c3hl ~- (1/24)~(l?-  1)f"(xo)hal . 

Using hi = h~ (n) and (n, ¢~) = (n; ,  ~), 

(4.12) 3- .  • ~ ~ ,, 21Se4 c nln o ---(~) f (xo)(n~) 

= 
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Equations (4.9)-(4.12) yield part (ii). [] 

COROLLARY 4.1. For X in Ch and (n, ~) su~iciently large, let K~ and Kr 
both lie on MISE-optimal bandwidths, with h*(n, fl) = /3h~(n), U = V*(13) and 
MISE(K*) < MISE(K~). Then the mean U-induced adaptation in the shape of 
the kernel K*(x, X)  shifts K* mass across X in the direction of decreasing If"(x)l. 

PROOF. U acts twice to adapt K*(x ,X) ,  with U = U*. U first adapts 
K*(x, X) by its mere appendage, elevating K*(x, X) uniformly over h~[X] to be- 
come [K*(x,X)] + = (1 + U*)K*(x,X).  Secondly, U diminishes [K*(x,Z)] + to 
become Kv(x, X),  by the mean action of random observations near X. Analyt- 
ically, these two adaptations are written using Definition 2.3 and equation (4.2) 
a s  

[~v(x, X) = K*(x, X)  + U*lh~[x](X)[1/h~ - H(x, n)/h2] 

= [K*(x, X)] + - U*lhl[z](x)[H(x, n)/h2]. 

Gajek truncation is accomplished by forming the estimator 

/(x) = Ma {0,L(x)- a} 

for some constant a > 0, and so does not affect mean adapted shape. The result 
in Proposition 4.5 then geometrically says that the mean U-adapted shape of 
K* (x, X), for X in Ch, is asymmetric and slopes toward the nearest inflection point 
of f that  one would encounter without passing through a point where f~(.) = 0. [] 

In light of the behavior in equations (4.11) and (4.12), it is emphasized that 
the large (n,/3) conditions in Corollary 4.1 may not be necessary to induce the 
particular mean asymmetrical mass shift in K*. For example, large n is also 
required for reduced B(x) to offset increased VAR(x) on Ch since 

VAP~ (x) - VAI~ (x) = (1/hln)[A(x)U 2 + 2I(x)]l (x)U], 

where for large n :  A(x) ~- ]l(x) and I(x) ~- 1. 
It has been assumed that f is strictly curvilinear since bias and bias correction 

would both be zero on intervals where fH(.) _- 0. Roughly speaking, then, the bias 
is zero at inflection points of f and there is no adaptation at inflection points since 
the U-induced asymmetry vanishes at such points. 

So, in the case of rectangular kernels, under conditions (a)-(d) and for suffi- 
ciently large n, the use of negative kernel mass destroys the original uniform kernel 
symmetry in order to achieve reduced bias and MISE, for X in Ch ~- S(f) .  In 
this case, the U-induced asymmetry affects the mean shape of the adapted kernel. 
The U also increases variance. One must wonder if it is possible, especially for 
smaller n, to improve estimator performance by incorporating estimates of f~ in 
a recursive scheme using properly skewed rather simple nonnegative kernels. 

U* (n) and the ratio h~(n)/h* (n) both asymptotically go to zero in the (Kr,  
K*) case, while their analogs in the (RYe,/(4) case are fixed. Thus, the adaptation 



686 MICHAEL STURGEON 

mechanism by which - U  reduces bias and MISE may be different in the two cases. 
Still, it is conjectured that the efficacy of higher order kernels for sufficiently large 
finite n is based on the ability of negative kernel mass to induce an appropriate 
kernel asymmetry. 
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