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Abst rac t .  We address the question as to whether a prior distribution on the 
space of distribution functions exists which generates the posterior produced by 
Efron's and Rubin's bootstrap techniques, emphasizing the connections with 
the Dirichlet process. We also introduce a new resampling plan which has two 
advantages: prior opinions are taken into account and the predictive distribu- 
tion of the future observations is not forced to be concentrated on observed 
values. 
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i .  Introduction 

The bootstrap resampling plan introduced by Efron (1979) has a Bayesian 
counterpart called by Rubin (1981) the Bayesian bootstrap. Both resampling plans 
are asymptotically equivalent (Lo (1987), Weng (1989)) and first order equivalent 
from the predictive point of view. We investigate the question as to whether 
the posterior distributions obtained by means of the bootstrap procedures arise 
via Bayes Theorem from a prior on the space of distribution functions. The fact 
that the Bayesian bootstrap "gives zero probability to the event that a future 
observation is unequal to the observed values in the sample" (Meeden (1993)) led 
some Bayesian authors to question its applicability and to suggest modifications 
to the basic procedure. We also suggest a new generalization of the Bayesian 
bootstrap which takes into account prior opinions and has moreover the appealing 
property that the predictive distribution for a future observation is not necessarily 
concentrated on the observed values. 

The paper is organized as follows. In the next section we introduce the boot- 
strap resampling techniques of Efron and Rubin in a general Bayesian nonpara- 
metric context where one wants to approximate the posterior distribution of a 
statistical functional ¢(F)  with F a random distribution function. We character- 
ize the prior distributions for F which generate Efron's and Rubin's bootstraps, 
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emphasizing the connections with the Dirichlet process. In Section 3 we propose a 
new bootstrap technique. A couple of applications are discussed in the last section 
of the paper. 

Let us set some notation and terminology. The definition of a distribution 
Beta(a,/3) requires for both parameters to be strictly positive. If a = 0 and/3 > 0, 
we indicate by Beta(0,/3) the distribution function of the point mass at 0, whereas 
if a > 0 and/3  = 0, we define Beta(a,  0) to be the distribution function of the 
point mass at 1. Analogously, for every integer n > 0, Binomial(n, 0) will indicate 
the distribution function of the point mass at 0. 

2. Bootstrap and prior distribution for F 

Let {X~} be an exchangeable sequence of real random variables (r.v.) defined 
on a probability space (f~, ~', P).  De Finetti 's  Representation Theorem guaran- 
tees the existence of a random distribution function F conditionally on which the 
variables of the sequence {X~} are independent and identically distributed (i.i.d.) 
with distribution F.  

In the Bayesian context the bootstrap procedures provide methods for ap- 
proximating the conditional distribution 

(2.1) C(¢(F, X) I x , , . . . ,  x , )  

where, for clarity of exposition, we indicated with X the sample X 1 , . . . ,  X~ and 
¢(F, X)  is a functional depending on both F and X.  

Efron's bootstrap suggests to approximate the conditional distribution (2.1) 
by means of 

(2.2) C(¢(F*, X) I x l , . . . ,  

where F~ is the empirical distribution of an i.i.d, sample X ~ , . . . ,  X* from the 
empirical distribution function Fn of X 1 , . . . ,  Xn. In particular, for every Borel 
set B, the conditional distribution 

(2,3) £.(F(B) [ X1,. . . ,  X,~) 

is approximated by 

(2.4) ~E(F~(B) I X1 , . . .  , X~) = 1Binomial(n, F,~(B)) 
n 

where n- lBinomial(n ,  F,~(B)) indicates the distribution of a r.v. Y E [0, 1] such 
that  nY has Binomial(n, Fn(B)) distribution. 

The Bayesian bootstrap suggests instead to approximate (2.1) by means of 
the conditional distribution 

X) L 
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where, given X1 , . . . ,  X~, F n is the random distribution function defined by set- 
ting, for every x E ~, 

Fun(x) = 1 n Z vdEX', )(x) 
Z i = I  i i=1 

and {Vn} is a sequence of i.i.d, random variables with exponential distribution of 
parameter i independent of {Xn}.  Therefore, for every Borel set B, the conditional 
distribution of F(B),  given X1 , . . . ,  Xn, is approximated in this case by 

(2.5) E.(FUn(B) [ X 1 , . . . ,  X~) = Beta(nFn(B), nil  - F~(B)]). 

Since, for every Borel set B and for all n, 

(2.6) P[Xn+I e B I X I , . . . , X ~ ]  = E[F(B)  I X ~ , . . . , X ~ ] ,  

approximations (2.4) and (2.5) imply that both Efron's and Rubin's bootstraps 
evaluate the conditional probability that the next observation falls in B equal to 
the frequency according to which the past observations fell in B. In this sense 
they are first order equivalent from the predictive point of view. 

The Bayesian approach to the evaluation of the conditional probability (2.6) 
requires to elicit a prior distribution for F on the space of distribution functions 
and then to use the posterior distribution of F for the computation of the expected 
value appearing in (2.6). An interesting prior for F was introduced by Ferguson 
(1973) in a fundamental paper on a Bayesian approach to nonparametric statistics. 
We will indicate this prior, called Dirichlet process, by I)(kFo) where k > 0 is a 
real number and Fo is a proper distribution function. F0 can be interpreted as the 
prior guess at F whereas k is the 'measure of faith' in this guess. For the definition 
of the Dirichlet process and a review of its salient features we refer to the seminal 
papers of Ferguson (1973, 1974). 

In the rest of this section we want to investigate the question as to when 
the bootstrap procedures are in agreement with the Bayesian approach. The next 
theorem characterizes the priors for F such that, for every Borel set B and every 
n, the posterior distribution of F(B) ,  conditionally on X1, . . .  ,X~, is given by 
(2.4) or by (2.5). 

THEOREM 2.1. Given a random distribution function F, let {X~} be a se- 
quence of r.v. 's conditionally i.i.d, with distribution F.  For every Borel set B and 
for every n, 

(2.7) C(F(B)  I X~ , . . . ,X ,~)  

is equal to (2.4) or (2.5) if and only if F concentrates on a random point. 

PROOF. 
Sufficiency. Assume that, given a r.v. X, F concentrates on X. Then, for all 

n > 0 ,  
P[X = X1 . . . . .  Xn] = 1. 
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Fix a Borel set B and note that, for all n, 

F_,(F(B) I Xl,"" Xn) -= {/[1,o0)(') if X1 E B 

' I[0,o~)(') if X~ ~ B 

= Beta(nF~(B), n[1 - F~(B)]) 

1 
= - Binomial(n, F~ (B)) 

n 

since P(FI(B) = Fn(B)) = 1. 
Necessity. Assume that (2.4) or (2.5) holds for every Borel set B and for every 

n. In particular, for every given Borel set B, 

f Ill,m)(') if X1 E B 
E.(F(B) I X1) / I[o,~)(') if X1 ~ B. 

Therefore, given X1, F concentrates on X1. [] 

Remark 2.1. The previous characterization theorem is somewhat related to 
a result due to Regazzini (1978) and Lo (1991) which states that, for every n _> 1 
and for every Borel set B, 

k n 
, - - -  F 0 ( B )  + P[Xn+I B I Xx . . . , X d  k + n k-- n &(B) 

with k > 0 and F0 a distribution function, if and only if F is a Dirichlet process 
13(kFo). In fact Theorem 2.1, could be considered as an extension of this result to 
the case k = 0. 

A random distribution F concentrated on a random point is of no interest 
for the statistician since it implies that the exchangeable random variables of the 
sequence {Xn} are all equal with probability one. However an F of this type can 
be regarded as a limit of a Dirichlet process l)(kFo) when k --* 0 (Ferguson (1974)). 
Therefore it seems that bootstrap procedures are justifiable in the Bayesian context 
when the weight k given to the prior guess F0 at F is extremely small. Lo (1987) 
has shown that the approximations (2.4) and (2.5) for the posterior distribution 
of F(B), given X 1 , . . . ,  Xn, are also reasonable when n is large and the prior for 
F is a Dirichlet process 13(kFo). Even in this case the weight given to the prior 
opinion elicited with F0 becomes negligible. In the next section we want to suggest 
a different bootstrap procedure which takes into account the prior opinion F0 and 
can be considered as an extension of Efron's and Rubin's bootstraps. 

3. A new bootstrap technique 

In this section we assume that the random distribution function F condi- 
tionally on which the r.v.'s of the sequence {Xn} are i.i.d, is a Dirichlet process 
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Z)(kF0), with k > 0 and F0 a proper distribution function. We want to suggest a 
resampling procedure with the aim of approximating the conditional distribution 

(3.1) £(¢(F)  [ X i , . . .  ,X,~) 

where ¢(F) is a functional depending on F. In particular we will consider two 
types of functional: 

q l :  Cq(F) = inf{t E ~ :  F(t) > q} where 0 < q < 1; 
Q2: Ch(F) = f hdF. 

In principle the conditional distribution function (3.1) can be computed by 
means of Bayes Theorem. For functionals of type Q2 this has been studied by 
Hannum et al. (1981) and by CifareUi and Regazzini (1990). Their results, however, 
are not easy to handle analytically. Therefore arises the need for an approximating 
technique. 

Our proposal stems from the fact that it is trivial to simulate a Dirichlet 
process when the parameter F0 is discrete with finite support as it is made clear 
by the following lemma which we state without proof. 

LEMMA 3.1. Let Fo be a discrete distribution function with support { Z l , . . . ,  
z~} in ~. For i = 1 , . . . ,  r, let Pi be the probability which Fo assigns to zi. Assume 
that V1,. . .  , V~ are r independent r.v.'s such that, for i = 1, . . .  ,r, 

£(V~) = Gamma[kp~, 1] 

where k > O. If  F is the random distribution function defined, for every x E ]~, 
by setting 

1 
F(x) 

E =I Yi i=1 

then F is a Dirichlet process I)(kFo). 

Given a sample X1 , . . . ,  Xn from a Dirichlet process F with parameter kFo, 
the posterior distribution of F is again a Dirichlet process with parameter kF0 + 
nFn. If F0 is a discrete distribution with finite support, the parameter 
(k + n)- l (kFo + nFn) is also discrete; let {zl , . . .  ,z~} be the finite support of 
this last distribution with corresponding probability masses {Pl , . . . ,  pT }. Then 

) ) C(q)(F) [ X l , ' " , X n )  = ~ • EiL1 yi E vii[z,, ~) t X I , . . . ,  Xn 
i=1 

where, given X1 , . . . ,  Xn, the r.v.'s 171,..., VT are independent and such that, for 
i =  l , . . . , r ,  

£(Vi I X1, . . . ,  Xn) : Gamma[(k + n)pi, 1]. 

In this case it is immediately evident how to apply a Monte Carlo method in or- 
der to find an approximation of (3.1). However, in most situations of statistical 
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interest, Fo is not discrete so that the direct approach just described will not be 
applicable. When this happens, a possible way out is first to approximate the 
parameter kFo + nFn with a suitable bounded, monotone increasing, right contin- 
uous step function a* such that a*( -oo)  = 0, and then to use the process :D(a*) 
as an approximation of the posterior process Z)(kFo + nFn). Rubin's bootstrap 
originates from the same idea by setting c~* = nF~. Our alternative proposal is 
to approximate kFo + nFn by (n + k)F m where F m is the empirical distribution 
function generated by an i.i.d, sample of size m from (n + k)-l(kFo + nFn). 

In order to justify our proposal, let G be a Dirichlet process 7)(wGo); when a 
sample X1 , . . . ,  X~ from a process Z)(kFo) has been observed, set 

w = n + k and Go - - - F o  + Fn. 
n + k  

For any given m, let X* = (X~ , . . . ,  X~)  be an i.i.d, sample from the distribution 
Go. Define G~ to be a random distribution which, conditionally on the empir- 
ical distribution F m of X*, is a Dirichlet process 7?(wF*). In agreement with 
the definition of Antoniak (1974), G~n is a mixture of Dirichlet processes; note 
that, for any given measurable partion B1 , . . . ,  Br of ~, the marginal distribution 
of (G~(B1) , . . . ,  G~(Br)) is a mixture of Diriehlet distributions with normalized 
Multinomial weights. 

When m grows to infinity, the law of G*  weakly converges to the law of 
G. With the next two theorems we show that the distribution of ¢ (G*)  weakly 
converges to the distribution of ¢(G) when ¢ is a functional of type Q1 or Q2. 

THEOREM 3.1. Let 0 < q < 1 and G be a Dirichlet process 7)(wGo). Then 
the distribution of Cq(G*) converges weakly to the distribution of Cq(G), when 
f r t - - -+ O0.  

PROOF. We need to show that, if t is a continuity point of the distribution 
of Cq(G), 

(3.2) lim P[¢q(G~) _< t] = P[¢q(G) <_ t]. 
m---*c~ 

By Glivenko-Cantelli Lemma, the sequence {F*} converges uniformly to Go 
on a set A of probability one. Fix a continuity point t of Go and note that, 
conditionally on F*,  the random variable G*(t) has distribution 

Beta(wF~(t), w(1 - F~(t))) 

which weakly converges to a Beta(wGo(t), w(1 - Go(t))) on A, as m --+ co. There- 
f o r e ,  

lira P[¢q(G~n ) <_ t l F~] = lim P[G*(t) > q [ F*] 
m - ' *  (:~ m----*oo 

= P[G(t) > q] = P[~bq(G) _< t] 
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on a set of probability one. This implies that (3.2) holds when t is a continuity 
point for Go. The proof is completed by showing that any discontinuity point of 
Go is also a discontinuity point of the distribution of Ca(G). [] 

THEOREM 3.2• Let G be a Dirichlet process 7?(wGo) and h be a real valued, 
G* bounded and Go-continuous function defined on ~. Then ¢ h ( m )  converges weakly 

to ¢h(G), when m ~ co. 

PaOOF. Apply Glivenko-Cantelli Lemma and Corollary 2.7 of Hannum et 
al. (1981). [] 

Assume that X 1 , . . . ,  Xn is a sample from a Dirichlet process F with param- 
eter kFo and ¢(F) is a functional of type Q1 or Q2. The previous results imply 
that the conditional distribution of ¢(F), given X1 , . . . ,  Xn, can be approximated, 
for m large, by the conditional distribution 

c(¢(a;O I 

where, given X1, . . .  ,X~ and the empirical distribution function F*  of an i.i.d. 
sample Xi~,... ,  X *  from the distribution 

k TL 
n +---~Fo + n - - ~ F ~ ,  

the process G~n is Dirichlet with parameter (n + k)F m. Details of a resampling 
procedure supported by this argument will be introduced in the next section along 
with a couple of numerical examples. Note that the bootstrap technique suggested 
above approximates the conditional probability P[Xn+I E B I X 1 , . . .  ,Xn] by 
means of 

E[G* (B) [ X1, .  . , Z~] = kFo(B) + nF~(B) 
• k + n  

This is the same predictive probability obtained by computing, via Bayes Theorem, 
the posterior distribution of F. Moreover, by taking into account the prior opinion 
elicited by the distribution Fo with weight k > 0, this resampling plan does not 
force the future observation to be equal to one of the observed values as is the 
case with Efron's and Rubin's bootstraps. The technique has also the advantage 
of being fully consistent with the Bayesian approach since it can be considered as 
only a tool for approximating numerically a 'true' posterior distribution when this 
is analytically hard to manage. 

4. Numerical illustrations 

We now want to describe a resampling plan which has the aim of computing 
an approximation for (3.1) and is supported by the arguments of the previous 
section. The procedure will be tested with two applications. 

Assume that a sample X1 = x l , . . . , X ~  = x~ has been observed from a 
random distribution F. Elicit the prior opinion about F by a proper distribution 
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function F0, the prior 'guess' at F, and by a positive number k, the 'measure of 
faith' in this guess. In order to build a distribution function which approximates 
t:(C(F) [ X1 -- Xl , . . . ,  Xn = xn) we propose to follow these steps: 

1. Generate m observations x~. . . ,  x~ from (n + k)-l(kFo + nFn). 
2. For i = 1 , . . . ,  m~ generate vi from a 

3. Compute the quantity 

t = ¢ . v  v J [ ~ ; , ~ ) ( . )  . 
~i=l vi i=1 

4. Repeat steps (1), (2), (3) s times obtaining the quantities t l , . . . ,  ts. 
5. Approximate the conditional distribution function £ (¢ (F)  I X1 = 

x l , . . .  ,Xn -- x~) by means of the empirical distribution function generated by 

E 1 , . . . , t s .  

Example 4.1. We observe xl = 0.1, x2 -- 0.05. Assuming that this is a 
sample from a random distribution F, we want to compute 

(4.1) f~ ( /  xdF(x) [ xl,x2) . 

Our prior guess F0 at F is a Uniform distribution on [0, 1]. To this guess we assign 
weights k = 0, 1, 2, 100. The procedure described above was then applied with 
m = 300 and s = 5000. For different values of k, the distributions approximating 
(4.1) are summarized in Table 1 by their mean, median, 75th and 95th quantile 
here indicated with q75 and q95 respectively. 

For k = 0 our procedure is equivalent to Rubin's bootstrap. However, if the 
posterior distribution of F, given X1 = Xl, X2 = x2, is a Dirichlet process/)(2F2), 
then one can verify that (4.1) is a Uniform distribution on [0.05, 0.1] so that  the 
values for the mean, the median and the quantiles can be computed analytically. 
On the other hand, when the prior distribution of F is a Dirichlet process l)(kFo), 
it's always possible to compute the mean of (4.1) (Ferguson (1973)). All these 
analytical results are reported in Table 1 between square brackets. 

For comparison purposes we approximated the distribution (4.1) by means of 
a different technique. We assumed that  the prior distribution for F is a Dirichlet 
process D(kFo) and observed a sample of size 300 from a P61ya urn of parameter 
kFo + 2F2 (Blackwell and MacQueen (1973), Lo (1988)). The mean of this sample 
can be viewed as a realization of a random variable having distribution (4.1). 
The procedure was then iterated 5000 times and the empirical distribution of the 
sample means thus obtained was considered as an approximation of (4.1). Results 
relative to this simulation are reported in Table 1 between round brackets. 

The results computed by means of these different techniques look all very 
similar and they all confirm the obvious fact that the more k increases, the more 
relevant becomes the prior opinion elicited with F0. 
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Table 1. Results of the experiments  described in Example 4.1. 
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Mean Median 

k = 0  [0.0750] 0.0747 (0.0749) [0.07501 0.0745 (0.0750) 
k = l  [0.2166] 0.2156 (0.2152) , 0.1789 (0.1786) 

k = 2  [0.2875] 0.2888 (0.2862) , 0.2675 (0.2654) 

k : 1 0 0  [0.4916] 0.4918 (0.4891) , 0.4918 (0.4893) 

q75 q95 
k = O  [0.0875] 0.0871 (0,0872) [0.0975] 0.0975 (0.0973) 

k = 1 * 0.2813 (0,2815) * 0.4770 (0.4804) 

k = 2  , 0.3688 (0.3667) , 0.5462 (0.5279) 

k = 100 * 0.5156 (0.5114) , 0.5451 (0,5431) 

Table 2. Exact  values for the quantiles of a Gamma[20, 1]. 

q----0,25 q = 0 . 5 0  q = 0 . 7 5  

F = Gamma[20, 1] 16.83 19.67 22.81 

Example 4.2. For the purpose of comparing our resampling plan with other 
bootstrap techniques recently introduced in the Bayesian literature we repeated 
an experiment originally due to Meeden (1993). Given a sample X 1 , . . . ,  Xn from 
a random distribution function F,  we want to estimate the 25th, the 50th and 
the 75th quantile of F.  In the following experiments the sample X 1 , . . . ,  Xn was 
generated by a Gamma[20, 1]. For q = 0.25, 0.5, 0.75, define, as before, the 
functional 

Cq(F) ---- inf{t • ~ :  F(t) > q}. 
The exact values of Cq(F) when F = Gamma[20, 1] are reported in Table 2. 

Two experiments~ differing by the sample size, were performed; in the first 
one the sample size n was set equal to 11, in the second it was set to be 25. We 
first obtained an approximation of 

(4.2) c(¢q(F) I x l ,  . . ,  

by applying the procedure described at the beginning of the section with m = 100 
and s = 300. We then estimated the 25th, the 50th and the 75th quantile of F by 
the mean of the corresponding distribution (4.2). As prior guess at F we considered 
four different distributions: Uniform[0, 60], Uniform[8.5, 30], LogNormal[2.97, 0.22] 
and Gamma[20, 1]. To each distribution we assigned three weights: k = 0, 1, 5. 
Each experiment was repeated 100 times; the average values of the estimators, 
indicated respectively by q25, (i5o and q75, are reported in Table 3. 

Note again that  for k = 0 our procedure is equivalent to Rubin's Bayesian 
bootstrap. Since the values relative to this case were already computed by Meeden, 
for comparison purposes we reported them in Table 3. 
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Table 3. Results of the experiments described in Example 4.2. 

Prior Distribution 

U[0, 60] U[8.5, 30] LogNormal[2.97, 0.22] Gamma[20, 1] 

( n =  11 ,n- -25)  ( n - - l l , n = 2 5 )  ( n - - l l , n - - 2 5 )  ( n - - l l , n = 2 5 )  

k = O  

(/25 k = 1 

k = 5  

k = O  

c/50 k = 1 
k = 5  

k = O  

~/75 k = 1 
k = 5  

17.21, 16.96) 
17.19, 16.93) 
16.96, 16.87) 

19.89, 19.74) 
20.10, 19.78) 
20.84, 20.21) 

(22.68, 22.83) 

(23.46, 23.00) 
(27.14, 24.21) 

17.21, 16.96 
17.04, 16.82 
16.44, 16.42 

19.89, 19.74 
19.77, 19.58 
19.68, 19.42 

22.68, 22.83) 
22.81, 22.71) 
23.17, 22.74) 

(17.21, 16.96) (17.21, 16.96 
(16.99, 16.74) (17.45, 16.97 
(16.90, 16.81) (17.07, 16.92 

(19.89, 19.74) (19.89, 19.74 
(19.73, 19.48) (19.96, 19.80 
(19.63, 19.55) (19.76, 19.68 

(22.68, 22.83) (22.68, 22.83 
(22.85, 22.71) (22.77, 22.94 
(22,58, 22.69) (22.72, 22.87 

With this experiment Meeden (1993) compared Rubin's bootstrap with the 
smooth Bayesian bootstrap of Banks (1988) and his own Bayesian bootstrap based 
on a grid reaching the conclusion that all these procedures performed similarly. 

Table 3 shows that the results obtained with our resampling technique are 
quite similar to those of Meeden especially when the weight given to the prior 
opinion is small compared to the sample size. In fact, even for k : 5 the average 
values of the estimators are close to those found with k : 0 with the possible 
exception of those relative to 75th quantile when the prior is Uniform[0, 60]. 
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